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MORE ASPECTS OF POLYA TREE DISTRIBUTIONS
FOR STATISTICAL MODELLING!

By MICHAEL LAVINE
Duke University

The definition and elementary properties of Polya tree distributions are
reviewed. Two theorems are presented showing that Polya trees can be con-
structed to concentrate arbitrarily closely about any desired pdf, and that
Polya tree priors can put positive mass in every relative entropy neighbor-
hood of every positive density with finite entropy, thereby satisfying a consis-
tency condition. Such theorems are false for Dirichlet processes. Models are
constructed combining partially specified Polya trees with other information
such as monotonicity or unimodality. It is shown how to compute bounds on
posterior expectations over the class of all priors with the given specifica-
tions. A numerical example is given. A theorem of Diaconis and Freedman
about Dirichlet processes is generalized to Polya trees, allowing Polya trees
to be the models for errors in regression problems. Finally, empirical Bayes
models using Dirichlet processes are generalized to Polya trees. An example
from Berry and Christensen is reanalyzed with a Polya tree model.

. 1. Introduction. Polya trees form a class of distributions for a random
probability measure P intermediate between Dirichlet processes [Ferguson
(1973)] and tail-free processes [Freedman (1963) and Fabius (1964)]. Their ad-
vantage over Dirichlet processes is that they can be constructed to give prob-
ability 1 to the set of continuous or absolutely continuous probability mea-
sures, while their advantage over more general tail-free processes is their much
greater tractability. The basic ideas of Polya trees can be found in Ferguson
(1974), Mauldin, Sudderth and Williams (1992) and Lavine (1992). The rest
of the introduction reviews the definitions and elementary properties of Polya
trees. Section 2 contains two theorems showing the suitablility of Polya trees
for statistical modelling. Section 3 combines robust and nonparametric Bayes
ideas by showing the feasibility of modelling with partially specified Polya trees
and incorporating other information such as shape constraints. A numerical
example is given. Section 4 proposes models in which Polya trees are used to
represent the errors in regression settings. The main result is a generalization
of a theorem of Diaconis and Freedman (1986). Finally, Section 5 addresses the
empirical Bayes problem, using Polya trees in place of Dirichlet processes. [See
Antoniak (1974), Berry and Christensen (1979), Escobar (1994), Escobar and
West (1990), Ferguson (1983), Kuo (1986), Lo (1984) and West (1990) for the
use of Dirichlet processes.] Section 5 contains a reanalysis using Polya trees of
a problem from Berry and Christensen (1979).
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1162 M. LAVINE

Let E = {0,1}, E° = @; let E™ be the m-fold product E x E x --- x E and
E* = UPE™; and let EV be the set of infinite sequences of elements of E. Let Q
be a separable measurable space, let 7y = {Q} and let IT = {7,,; m = 0,1,...} be
a separating binary tree of partitions of 2; that is, let =g, 71, . . . be a sequence of
partitions such that U3°m,, generates the measurable sets and such that every
B € 7y 41 is obtained by splitting some B’ € m, into two pieces. Let By = Q
and, for all e = &1 ---¢,, € E*, let B,y and B,; be the two pieces into which B,
is split. Degenerate splits are permitted, for example, B, = B¢ U @. For every
0 € Q, let €™(6) be the element of E™ such that § € B.ng). Note therefore that
§=nB em(6)-

DerINITION 1. A random probability measure P on 2 is said to have a Polya
tree distribution, or a Polya tree prior, with parameter (II, A), written P ~
PT(II,.A), if there exist nonnegative numbers A = {a.: ¢ € E*} and random
variables Y = {Y.: € € E*} such that the following hold:

(i) all the random variables in Y are independent;
(ii) for every ¢ € E*, Y, has a Beta distribution with parameters o, and a,1;
(iii) for everym =1,2,... and every ¢ € E™,

9(361,,,%):( ﬁ YE,...Ej_1>< ImI (1—Y€1..‘6j_1)>,

j=1;€j=0 j=1;6j=1
where the first term in the products above is interpreted as Y, or 1 — Y.

Degenerate Beta distributions are permitted, for example, oo = 0 making
the distribution degenerate at 0. The random variables ©,0,, ... are said to
be a sample from P if, given P, they are i.i.d. with distribution P. The Y.’s have
the following interpretation: Y, and 1 — Y, are, respectively, the probabilities
that ©;, € By and ©; € By, and Y, and 1 — Y, are the conditional probabilities
that ©; € B,y and ©; € B, given that ©; € B..

Three important facts about Polya trees are the following:

1. They are conjugate. If P has a Polya tree distribution and © |P ~ P, then
P | © has a Polya tree distribution [Ferguson (1974), Mauldin, Sudderth and
Williams (1992)]. Updating a Polya tree after observing ©; is simple; for
every ¢ such that ©; € B, add 1 to a.. We call the new parameters A |©.
Sometimes we will not have observed ©; exactly but will only know that
©; belongs to some set. If that set happens to be Bs for some § € E*, then
again the updating follows the same rule. The difference is that when ©;
is observed exactly there are infinitely many o.’s to update; when we see
©; € By, there are only finitely many.

2. Dirichlet processes are special cases of Polya trees. A Polya tree is a Dirichlet
process if, for every € € E*, a. = a¢ + a1 [Ferguson (1974)]. The parameter
of the Dirichlet process is o = mGo, where m = a5 and Gy is determined by
Go(B.) = E[P(B.)] = Pr[©; € B.].
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3. Some Polya trees assign probability 1 to the set of continuous distributions,
for example, when o, ., = m? as in Example 2 of Section 5.

2. Suitability of Polya trees for statistical modelling. One occasion-
ally wants to construct anonparametric prior centered at and concentrated near
a given distribution. Dalal and Hall (1980) show that Dirichlet processes can be
so constructed if “near” is interpreted in the sense of weak convergence. Lavine
(1992) gives a theorem showing that the cdf of P, with a Polya tree distribution,
can be made uniformly close to a given cdf, with arbitrarily high probability.
The next theorem says that using Polya trees the pdf of P can be made close to a
given pdf q. Such a theorem is impossible for Dirichlet processes because, under
a Dirichlet process, P does not have a pdf; whereas Kraft (1964) and Metivier
(1971) show that a Polya tree can be constructed so that P is almost surely abso-
lutely continuous with respect to Lebesgue measure. See also Ferguson (1974)
and Lavine (1992). Note that if degenerate Beta distributions are allowed, then
Theorem 1 is true trivially: take the Polya tree to be degenerate at . The point
of Theorem 1 is that the construction with nondegenerate Beta distributions
still has full support in the set of all probability measures. Such constructions
may be useful as priors in Bayesian analyses. Let p be the random density of
P. Let ess sup denote the essential supremum, the supremum except perhaps
on a null set.

THEOREM 1. For a given probability measure Q with density q, any positive
number k and any 1 € (0, 1), there exists a Polya tree distribution for P such that
P has a density p satisfying Prless supy|log(p(8)/q(8))| < k] > n.

Proor. Construct the Polya tree so that

Q(Be"'(e))

E [TP [Ben(o) | Ben - ‘“’)]] T QBa-w)

Then,

Pr [ess sup

log 5 (e)l ]

=Pr |esssup Z log T[BE”‘(O) | Bem - 1(9)] <k
] m=1 E CP[BEM(O)lBE”‘_l(O)]]

i a
= P(B.ng) | Bom-
> Pr |esssup Z log — [Bero) | Ben-19)] | <r
L o m=1 E _:P[Bsm(g) |BE,,._ 1(0)]- |
[ 7
— P[Bengy | B -
>Pr Z esssup |log — [Ben@) | Ben - 10)] <k
Lm':l 0 E ?[Bam(g) |BE’"— 1(0)] ]
S Y, 1-v,
_Prli”;)aseugm ( log ]E[Y]‘ <kl
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There are only finitely many elements in E™ so, by choosing the o.’s suffi-
ciently large, each summand can be made arbitrarily small with arbitrarily
large probability and the probability that the sum in less than £ can be made
greater than . O

For distributions F, and F with densities f. and f, let D(F,,F) denote the
relative entropy or Kullback—Leibler divergence [ log(£.(6)/f(8))f.(8)d6 and let
N4(F,) = {F: D(F,,F) < 6} denote a relative entropy neighborhood. Barron
(1986) remarks that if a prior u satisfies W(IN5(F,)) > O for all § > 0, then
u satisfies a consistency condition at F.. It may therefore be desirable for a
prior to put positive mass in every relative entropy neighborhood of a wide
class of probability measures to ensure consistency over that class. The next
theorem says that Polya trees can be constructed with positive mass in every
relative entropy neighborhood of every distribution with an essentially positive
density. Such a theorem is impossible for Dirichlet processes because they give
probability 1 to the set of discrete distributions.

THEOREM 2. A Polya tree prior u can be constructed so that, for any dis-
tribution F, with density f, and having finite entropy, u(Ns(F,)) > 0 for all
6>0.

ProoF. We suppose that the pu to be constructed below almost surely has a
density. Let 6 be given and let \ denote Lebesgue measure:

. F, (BE'"(G)) /)‘(Bfm(a))
= 1 * d
[ 108 <m m_ (F(BE,.,«,)) "(Bew) ) ) O

1) - /log ( lim (H F, (Bef(e) |B€f—1(0))/)‘(Bef(0) |Baf— 1(9))>) f*(e)df)

-1 F(Beso) | Bes-10)) /A (Beso) | Bes - 1(0))
= F.(B.i@) | Bei-1s)
= 1 ) f«(0)do
/Z Og( X(Beig) | Bei- 1)) f

s F(BEj(e) |B.;- 1(0))
B o £.(8)db.
/ El: g( A(B.ig) | Bei-1(9))

The first equality above is implicit in either Theorem 35.8 of Billingsley (1986)
or Equation (1) of Lavine (1992). The first integral of the RHS of (1) converges
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by assumption. The second integral is

/ Zl < 51(0) |Bef 1(9)) ) f*(e) do

B, )| Bei- 1))

/ Zlo ( 51(9) Ist 1(9))) f*((g)de
B

1 eJ(G)IBel 1(9))
F(By) (Beiy | Bei- 1))
- F.(B )10g< ) / (6)do
0 A(Bo) By 55 (B.io) | Bei-19)) f

+F*(Bl)log<1;§§i))) /B Zlo ( Beig | Bei- :(e))) f.(0)ds.

B.i) | Bei-1(g))

Similarly, by dividing the integral over B into the sum of two integrals over By
and Bj; and likewise for the integral over B, and by continuing to subdivide
integrals indefinitely, the previous expression becomes

oo F(B50|B€) F(Belle)
I R

m=0ec€E™

1 - Ye
@) DI, <Be°)1°g< A(Ban . )) +Baloe (W)

m=0ec€Em™

<Oomax lo —XE—— Vlo ——1—:—X€——
_m=Oe€E’" g )‘(Be:OlBe) & /\(B€1|Bs) .

The Polya tree parameter A can be chosen so that a.o /(a0 + a.1) = E[Y.] =
A(B.o | B.) and with the a.’s increasing sufficiently rapidly with m so that the
sum in (2) converges with positive probability. However, if the sum in (2) con-
verges, then the tail sum 37 - - - must be less than 6/2 for some M. Thus,

0 < Pr[(2) converges)| gPr{Z--~<§} +Pr[;-~-<§} +o

1

which implies the existence of an M such that Pr[¥5; --- < §/2] > 0. Finally,
because the Y.’s have Beta distributions and hence have full support, there is
positive probability that the sum 2]1" ~1... differs from the first integral of (1)
by no more than §/2. Therefore, there is positive probability that (1) is less
than §. O

3. Partially specified Polya trees. It may appear initially that calcu-
lations with Polya tree models are impossible to perform exactly because of
the need to update infinitely many parameters. That this is not necessarily
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so is demonstrated in Lavine (1992). Nonetheless, calculations and computer
programs may be simplified if the Polya trees are updated only as far as a pre-
determined level. This section presents two scenarios under which it is sensible
to stop updating below a given predetermined level and under which the error
of approximation may be either estimated or bounded.

To give probability 1 to the set of absolutely continuous distributions, to
model other beliefs in smoothness or to satisfy Theorems 1 and 2, Polya trees
may be constructed so that the o’s increase rapidly toward the bottom of the
tree. A sample of n observations then cannot affect the tree very strongly below
the level at which the o’s become large relative to n. To achieve, therefore, a
specified accuracy in the computation of the predictive distribution, it is only
necessary to update finitely many levels of the Polya tree. For a specific example,
suppose that, for e € E™ 1, a9 = .1 > m? and that a sample of size n has
been observed. The updated predictive density g at a point  can be bounded
above by

2(a€m(0) + n)

.. <
log g(0©1,...,0,) <log g(6) + Z log CY——

m=1

< log g(6) + Z log(l " o m(e))

m=1

< log g(6) +

l\DIB

a em(9)

S]o-a

< log g(6) +

l\DIB

and below by

2(are '”(0))

... >
log g(e | 91, ) @n) = ]‘Og g(e) + ”Z:llog 2a€'"(0) +n

>log g(6)+ ) _ log (1 _ 2anm(o)>

m=1
> 1
> log g(8) — =
=la€m(0)
n e 1
> - = —.
2 log g(6) - 5 3
m=1

Therefore, g(6| ©1, . ..,©,) can be evaluated to within a factor of 6 by updating
the Polya tree as far as level M, where logé > (n/2)X5 m

Another argument for considering only finitely many levels of a Polya tree
arises out of robust Bayesian considerations. It is unreasonable to expect an
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elicitee to specify a single Polya tree, or even a mixture of Polya trees, that is the
only reasonable representation of prior beliefs. However, it might be possible for
the elicitee to specify finitely many parameters near the top of a tree, possibly
along with other beliefs, such as shape constraints, about P. There will then
be a class I' of prior distributions consistent with the prior information, and
one can search for upper and lower bounds on prior and posterior quantities of
interest, over I'.

Let S be a finite subset of E* such that, for any e = ¢; - - - €, in S, the initial se-
quencee; - - - € for each j < mis alsoin S, and suppose that the elicitee is willing
to specify the parameters {B.o, B.1, @0, ®c1: € € S}.Let T = {P(Beo), P(Be1): € €
S} be the random probabilities assigned by the partially specified Polya tree,
and let T, be the mass distribution of P conditional on 7. Thus, P = (T, T5)
and L(P) = L(Ty) x L(Te | Ty).

DEFINITION 2. The random variable T is said to have a finite Polya tree dis-
tribution with parameter (BS,.AS ), written T ~ PT(BS , AS), if there exist sets
BS = {B.0,B:1: € € S}, numbers AS = {@c0,c1: € € S} and random variables
yS = {Y.: ¢ € S} such that the following hold:

(1) all the random variables in ‘z}s are independent;
(ii) for every ¢ € S, Y, has a Beta distribution with parameters o, and a.;;
(iii) foreverye=¢1---en €8S,

s 4 )T 0

j=1;€j=0 j=l;€j=l

Mauldin, Sudderth and Williams (1992) define finite Polya trees using a
special case of the preceding definition. We suppose that the elicitee will be
able to give a marginal prior for 7', but not a conditional prior for T given T'.
We suppose also that the elicitee will be able to name a set P, a subset of the
set of all possible distributions which will receive mass 1 under any reasonable
prior. For example, P may be the set of all unimodal distributions. Let E be
the event (T,T2) € P and let v be a measure on Q. The class of priors I' is
the class of all priors, conditioned on E, such that Ty ~ PT(B5, A5), such that
Pr[? <« v] = Pr[d®/dv is a.e. positive] = 1 and such that L(Ts | T) is otherwise
arbitrary, that is, probabilities of the.form Pr[P N {P = (T, Ts): Ty, = ¢}] are
governed by the finite Polya tree.

It is the unconditional distribution of 7'; that has the Polya tree distribution.
Conditional on E, the distribution of 7, might not be Polya tree. For example, let
Q =(0,1] and B = {B;1,Bq,Bs,B4}, where B; = (i — 1)/4,i/4], and let P be the
set of unimodal distributions. The distribution of T given E cannot be Polya
tree because the event [P(B;) > P(Bs); P(By) > P(B3)] has positive probability
under any Polya tree but probability 0 conditional on E.

We want bounds on posterior expectations of interesting functions of P. Two
useful examples are the posterior predictive mean E[ [ 6 dP] and the posterior
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predictive probability of a set E[P(C)]. We concentrate on finding the upper
bound, as finding the lower bound is similar.

The following theorem says that the class of posteriors I'g has the same form
as the class of priors. Therefore finding bounds on posterior expectations can
be reduced to the problem of finding bounds on prior expectations.

THEOREM 3. Let v be a measure on Q; let m = {By,...,B} be a partition of
Q; let Ty = (P(B1),...,P(B)) and Ty = (P|T1); let the set of priors T be the set of
all conditional distributions for P = (T4, Ty) given E, where L(T;) = PT(BS, AS)
is specified, Pr[P <« v] = Pr[d?/dv is a.e. positive] = 1 and where L(Te|Ty) is
otherwise arbitrary. Let © be an observation from P, and let J be defined by
© € By. Then the corresponding set of posteriors I'g is the set of all condi-
tional distributions for (T1,Ts) given E, where L(T1|©) = PT(BS, AS |© € J),
Pr[? <« vl = Prld?/dv is everywhere positive] = 1 and where L(Ty|T)) is
otherwise arbitrary.

Proor. We prove Theorem 3 without restriction to E, then note that the
set of posteriors corresponding to priors restricted to E can be obtained by
restricting to E the set of posteriors of unrestricted priors. Note first that o is
sufficient for 7'y, so L(T | ©) = PT(B5, 45 | © € J) follows easily. Now we want to
show that any probability measure @ for (T3 | T) that is absolutely continuous
with an almost everywhere positive density is the posterior L(T; | Ty, ©) for
some prior @o. However, let @, be proportional to @/(d?/dv(©)) and the result
follows. O

REMARK 1. The class I changes into the class I'¢ only by updating the
distribution for T';, a finite set of probabilities and a more easily understood
object than P.

REMARK 2. Although Theorem 3 is proven for general distributions for 7',
we intend to use finite Polya tree distributions for T';, because they are conjugate
and easily updated.

REMARK 3. Given T, the classes I' and I'g are ordinary quantile classes,
possibly with restrictions, so that known results for quantile classes may

apply.

ExaMPLE 1. Let Q = [0,4). We present a class of finite Polya tree priors
with shape constraints to model an opinion that the law of the data has a
nonincreasing density that is approximately exponential with parameter 1, and
we show how to bound expectations over that class. Let S = {®, 1, 11}. Define
By =10,In4/3), By = [In4/3,In2) and By1¢ = [In 2,1n 4), so that Q is the disjoint
union BO UB10 UB110 UBlll- Let Qo = 20, ay = 60, 10 = 80/3, 11 = 160/3 and
a110 = a111 = 40. The opinion that ©, hasroughly an Exponential(1) distribution
ismodelled as Y = P(By) ~ Beta(20, 60), Y, = P(B19)/P(B;) ~ Beta(80/3,160/3)
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© -
density of Y
density of Y_1
density of Y_11

© -

< -
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0.0 0.2 0.4 0.6 0.8 1.0

FiG. 1. Densitiesof Y, Y and Y1;.

and Yi; = P(By10)/P(B11) ~ Beta(40,40). Figure 1 shows the densities of Y, Y;
and Yn.

For any @ € T, the expectation of © is [ [E[© |Ty,T2ldQ(Ty | T1)dQ(Ty),
which is maximized over I by determining Q(T; | T';) separately for each value
of T to maximize E[©] subject to monotonicity. The upper and lower bounds
can be estimated by the following steps:

Step 1. Generate a sample #1, ..., ¢y from the known distribution of 7.

Step 2. For each ¢; in the sample, let g;; = pjil¢y, dis1)/(dir1 — ¢i), for i €
{0,...,3}, be the average density assigned by ¢; to the interval [¢;, ¢;.1).

Step 3. For each j, a nonincreasing density consistent with #; exists if and
only if gjo > --- > gj3. If these inequalities do not hold, then drop the jth point
from the sample. Let N* be the number of points remaining.

Step 4. Let u; and /; be the maximum and minimum expected values of
© | ¢j, respectively.

Step 5. Let & = Tu;/N* and] = ¥.l;/N* be the estimates.
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For Step 4 it is easy to see that u is given by the denfity that is uniform
and equal to gj; over the interval [¢;, ¢;, 1). The minimum, /, can be found by an
optimization problem in a small number of variables [see Berger and O’Hagan
(1988) for details of a similar optimization problem]. O’Hagan and Berger (1988)
point out that the minimum can be bounded below using a density that is a step
function with at most two values in each interval; the value of the bounding
density in the interval [¢;, ¢;, 1) is g;; _ 1 on the left side of the interval and ¢ /i1
on the right side of the interval.

A sample of size N = 1000 was generated, of which N* = 818 were acceptable
according to Step 3. The estimates are z = 1.09 and [ = 0.80. Figures 2 and 3
show how closely the model mimics the exp(1) distribution. Figure 2 shows
boxplots of all 4000 of the g ;’s grouped by interval. The solid diamonds are
0.25 divided by the interval length—a typical value for g;; according to the prior.

o _|
H
*
T
l
|
|
|
|
|
o _| |
o ¢ %
' I
|
|
|
i !
|
| *
|
L
Co I | «
5] | T
| |
| |
L
|
L
*
o
o
1 2 3 4

interval

Fic. 2. Boxplots of the q;; from Example 1: typical values according to the prior are indicated by
diamonds.
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Fic. 3. Boxplots of points on the random cdf’s from Example 1: values from the exp(1) distribution
are indicated by diamonds.

Figure 3 shows boxplots of points on the 818 good cdf’s. The solid diamonds are
the values from the exp(1) cdf.

4. Errors in regression. This section describes the posterior distribu-
tion when Polya trees are used to model the errors in regression settings. The
main result is a generalization of the following theorem which is implicit in
Lemma 2.1 and Remark 1 of Diaconis and Freedman [(1986), page 71].

THEOREM DF. LetY; = 0 + ¢;, where the ¢; are independent with unknown
distribution P. With respect to the prior @, let 8 and P be independent, 6 having
density f and P being Dirichlet with parameter measure « which is absolutely
continuous; let g = o’ /|||, where ||a|| is the mass of a. The posterior @, can be
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characterized as follows:
@n(d0) = CT O[] (¥ - 0)de,

Qu{d?| 6} isD<a+zn:6yL_g>,

i=1

where
Cu= [ O] exi-o)as

and where IT* is the product over distinct values in the sample.

The first generalization is to drop the requirement that 4 and P be indepen-
dent with respect to the prior. Note that in the setting of Theorem DF, after a
single observation Y7, # and P are no longer independent. The second gener-
alization is from a single sample to a regression model: 6, = r(X;, 3) where r
is a known regression function, X; is a known vector of covariates and 3 is an
unknown vector of parameters, with prior density f. Finally, the third general-
ization is from Dirichlet processes to Polya trees: (P | 3) ~ PT(Ilg, Ap).

THEOREM 4. LetY; = r(X;, 3) + ¢;, where the ¢; are independent with un-
known distribution P. With respect to the prior @, let 3 have density f and
(P|B) ~ PT(Ilg, Ap). The posterior @, can be characterized as follows:

Q.dp)=C B [[a(YilB, Y1, .., Yi 1) dB,

i=1
Qn{dj)lﬁ} is PT(Hﬂ,‘Aﬁ IYl "r(Xl,/B),-”aYn _r(XnnB))a

where
Cp= /f(ﬂ)HQ(Yi |8,Y1,...,Y;_1)dpB
B a1

and where q(Y;|3,Y1,...,Y;_1) is the density of Y; given 3,Yy,...,Y; _1.

ProoOF. The theorem follows by applying Bayes’ theorem and the definition
of conditional distribution. O

One reason for stating the theorem, apart from theoretical interest, is to point
out that posterior densities for 8 and for Y%, a future observation with known
covariate Xy, are computable. It is only necessary to evaluate q(Y;|3,Yq, ...,
Y, _ 1), which is explained in Lavine (1992).
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pat

theta

F1G. 4. Density estimates for the ©;’s from Example 2: the left curve is for ©1, O3, ©4 and Og; the
middle curve is for ©q; and the right curve is for Os.

5. Empirical Bayes problems. The following empirical Bayes model was
first stated by Antoniak (1974): P, an unknown probability measure, has a
prior that is a mixture of Dirichlet processes; conditional on P, ©,,...,0, is a
sample of size n from P; for each i € {1,...,n}, conditional on P, ©4,...,0,,
X; is a sample of size 1 from Fg,, independent of P and {X}, ©;: j #i}. When
X =(Xi,...,X,)is observed, but not ® =(04,...,0,), we may wish to estimate
or find the posterior distributions of P, ©;, ©, .1 or X, , 1.

The problem was further studied by Berry and Christensen (1979) in the
case where Fg, is the binomial distribution with parameter ©;, by Ferguson
(1983) in the case where Fg, is the normal distribution with parameter ©; and
by Lo (1984) in the general case. Kuo (1986) proposes a Monte Carlo method
for computing the estimates. More recently, the model has appeared [Escobar
(1994), West (1990), Escobar and West (1990)] with computations done by means
of the Gibbs sampler [(Gelfand and Smith (1990)], an algorithm for drawing
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Theta 2

Theta 5

Thetas 1,3,4,6 Theta 2
F1G. 5. Pairwise plots of the Gibbs sampled points from Example 2.

an approximate sample from a multivariate distribution when the conditional
distribution of each variable given all the others can be sampled. Here we
generalize the model so that P has a Polya tree prior, show how posteriors
can be computed via the Gibbs sampler and discuss advantages provided by
mixtures of Polya tree over mixtures of Dirichlet processes.

To generate a sample from the posterior distribution of (®) via the Gibbs
sampler, it is required to generate an observation from the distribution of, say,
(0,1X,03,...,0,_1), which is the same as the distribution of (6, | X,,©4, ...,
©, _1). However, as described in Lavine (1992), the density of (©,, | ©4,...,0, _1)
is a piecewise rescaled version of the prior density of ©,, so the density of
(©n|X,,01,...,0,_1)is a piecewise rescaled version of the density of (8, | X,,).
Therefore, if the density of (6, |X,) is available for sampling, then so is the
density of (0, |X,,©1, ...,0, _1), at least to arbitrary accuracy. The sampling
algorithm is particularly easy if only finitely many of the Polya tree parameters
need be updated.
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Algorithmically, the difference between a Dirichlet process prior and a Polya
tree prior is that for the Dirichlet process the distribution of (6, |X,,04,...,
©, _1) is a mixture of the distribution of (8, |X,) and the degenerate distri-
butions de,, ..., de, ,. Sampling from this mixture would typically be just as
easy as the sampling required for the Polya tree model. However, the Dirichlet
process model imposes features that may be deemed undesirable. For example,
when P has a Dirichlet process prior, then with positive probability some of the
O,’s are equal [Ferguson (1973)], and the law of the pattern of multiplicities
has a specific form [Antoniak (1974)]. In contrast, the Polya tree prior can be
constructed so that ©4,...,0, are distinct with probability 1.

ExXAMPLE 2. An example from Berry and Christensen (1979) uses data from
Martz and Lian (1974), who are quoted as saying, “The Portsmouth Naval Ship-
yard, Portsmouth, N.H. routinely must assess the quality of submitted lots of
vendor produced material. The following data consist of the number of defects
x; of a specified type in samples of size n = 5 from past lots of welding material.
The past data are (0, 1,0,0,5) and in the current, i.e., sixth, lot, x = 0.”

Berry and Christensen (1979) use amodel in which x4, . . . ,xg are observations
from binomial distributions with n = 5 and success probabilities ©4, ..., 0g. The
©’s in turn are a sample from P, which has a Dirichlet process prior Wlth base
measure Beta(1, 1). They estimate @1 = @3 = @4 = @6 = 0.1143, @2 = 0.2178
and ©5 = 0.7795, the points shown as diamonds in Figure 4.

The data were reanalyzed with a similar model, but with P having a Polya
tree prior, where 7, is the collection of intervals [/2™, (i + 1)/2™), fori = 0,.. .,
2m —1, and where o, .., _,0 = Q¢,...e, _;1 = m? to ensure the absolute continuity
of P. A sample of size 1000 from the posterior distribution of ©1,...,0¢ was
obtained via the Gibbs sampler. Figure 4 shows univariate posterior density
estimates. Figure 5 indicates the bivariate posterior distributions with plots
of the sampled points. By symmetry, 61, 63,6, and 6g have the same marginal
posterior. However, because the Polya tree prior puts its mass on continuous 2,
61,03, 04 and 6 are distinct with probability 1.
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