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SADDLEPOINT APPROXIMATIONS FOR MARGINAL
AND CONDITIONAL PROBABILITIES
OF TRANSFORMED VARIABLES

By BiNGYI JING! AND JOHN ROBINSON
University of Sydney

The Lugannani and Rice formula for tail areas in the univariate case has
recently been extended to tail areas for marginal distributions and for con-
ditional distributions in certain multivariate settings. However, the results
on relative order of errors are given only formally or under the strong conti-
nuity assumptions necessary to obtain density approximations. This paper
attempts to give a unified treatment of these results for smooth transforma-
tions of multivariate means under weaker conditions appropriate to indirect
Edgeworth approximations for probabilities.

1. Introduction. Improvements to tail area approximations for sums of
random vectors by the normal distribution may be made by using Edgeworth or
saddlepoint approximations. The latter are frequently to be preferred because
their errors are relative, so the approximations are accurate for both large and
small tail probabilities. Generalisations of the Edgeworth expansions to smooth
functions of means were derived rigorously by Bhattacharya and Ghosh (1978)
and have been widely used, in particular, recently, in studies on the accuracy
of bootstrap methods [e.g., in Hall (1988)]. It is the purpose of this paper to
obtain saddlepoint approximations for marginal and conditional distributions
of statistics which can be written as smooth functions of means and to prove
that relative errors of order n~3/2 exist under weak conditions. The numerical
accuracy of tail areas using these methods would be expected to be considerably
greater in the tails than that of Edgeworth methods.

There are essentially three methods of calculating saddlepoint tail area
approximations in common use now: the indirect Edgeworth expansion; the
numerically integrated saddlepoint density, usually renormalized for additional
accuracy; and the formula of Lugannani and Rice (1980). Daniels (1987)
compared the Lugannani and Rice formula and the indirect Edgeworth expan-
sion with relative error of order n=3/2 in the case of the mean, for exponential
and inverse normal distributions, cases where the saddlepoint approximations
to the density of the mean are “exact,” and found that the indirect Edgeworth
expansion performs slightly better than the Lugannani and Rice formula. How-
ever, the Lugannani and Rice formula is much simpler and easier to use than
the indirect Edgeworth expansion for relative error of order n=3/2,
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1116 B. JING AND J. ROBINSON

The indirect Edgeworth method was studied in Robinson, Hoglund, Holst
and Quine (1990), where conditions were given for validity of order terms for
relative errors. The proofs of the other methods are based on strong conditions
involving identically distributed variables for which densities exist. It is not
easy to see how the smoothing methods necessary to obtain the validity results
in Robinson, Héglund, Holst and Quine (1990) could be used directly to prove
the validity of the Lugannani and Rice result without the strong continuity as-
sumptions necessary for the density approximations. So, in Section 2, we define
the indirect Edgeworth approximation and obtain a general result for the error
for rectangles and half-planes. We then discuss saddlepoint density approxima-
tions under strong conditions and give an explicit discussion of renormalisation;
finally, we show that when an indirect Edgeworth approximation exists with
relative error of order n~3/2, then the corresponding integral of the formal sad-
dlepoint density is approximately equal to it with a relative error of the same
order and is thus a valid approximation with the same relative error. In Sec-
tion 3, we discuss smooth transformations of multivariate means and obtain
formal density approximations for these. Then, in Sections 4 and 5, we give a
unified treatment of one-dimensional marginal and conditional results giving
tail approximations in a Lugannani and Rice form, thus generalizing the re-
sults in Daniels and Young (1991) and Skovgaard (1987), respectively. Finally,
in Section 6, we give an example of the results using marginal approximations
in nonparametric settings. It must be pointed out that the methods used for
this are based on those in Daniels and Young (1991).

It should be noted that all the saddlepoint tail area approximation results
obtained for the above mentioned three cases take the following form:

(1.1) (1 — ®(w+/n) - %q&(ﬁ)\/ﬁ)(% - @)) (1 + %p,, + 0(n-3/2)),

where i and () are defined differently at each occurrence. If we consider the
approximations in the normal range, then p, = O(n~1/2), giving the saddlepoint
approximations a relative error of order n~%/2, However, for large deviations,
the error is of order n=!. An approximation which has the same asymptotic
properties as this but lies in the range (0, 1) was suggested by Barndorff-Nielsen

(1986, 1991) and proved to be equivalent to the Lugannani and Rice formula
by Jensen (1992). From Jensen (1992), if

s~ 1 ~
w -w—%logw(w),

then we can show that (1.1) can be replaced by
(1 - dw*v/n)) (1 + %pn + O(n_3/2)).

2. Indirect Edgeworth and saddlepoint methods. Let Xi,...,X, be
independent (but not necessarily identically distributed) random vectors in R¢,
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andletS = ¥7_.X; and X = S/n. Without loss of generality we may take ES = 0.
Then let

_1y ox _ 1 05
w(0) = ~ ;logEe = ~log Be’*.

Let © = {6: k(f) < oo} and write the mean vector and the covariance matrix as

e OK(0)
m(0) = k'(6) = TR
" 0%k(0)
V) = k"(6) = ETR

Let 4 be the probability measure of X. Then
PXeB) = [ udy
B

= exp (n EOEE m]) / exp(—nb - y)ve(dy)
B—-m
= exp(n[(6) - 0 m] )19, B),
where vy is an exponentially shifted probability measure.

2.1. Indirect Edgeworth approximations. Using an Edgeworth approxima-
tion for vy gives the formal indirect Edgeworth approximation [Barndorff-
Nielsen and Cox (1979), and Robinson, Héglund, Holst and Quine (1990)],
(2.1) P(X € B) = exp(n[x(6) - - m] ) (e; - (6, B) + §(6, B))

where

%4@m=/
B-m (27r/n)d/2Al/2

6(6,B) =1(6,B) — e; _ 3(6,B),

exp(-nd-y —nly*1%/2) [, ‘& i
1+ n2Qi(vy®) | dy,
2.2) * 2, n T QulVry) | dy

where y* = V-12y_ |ly*|? = y* - y*, A = det(V); Q;¢ are polynomials with coef-
ficients based on cumulants calculated at 6; and 6(6, B) is the error term. The
result (2.1) is exactly that of Barndorff-Nielsen and Cox (1979), who restrict
attention to the two-term expansions for the one- and two-dimensional cases.

The order of the error §(9, B) determines the worth of the approximation. It
is difficult to give a simple expression for the error bound in general. By using
the method of Skovgaard (1986), we can get §(9, B) = O(n~ ¢~ 2/2]ogn) for any
Borel set B, but this can be improved. Notice that since e; _ 3(8, B) is O(1), the
order of the error §(6, B) is a relative error.

In the case § = 0, von Bahr (1967) considered the restrictions that X, ..., X,
were i.i.d. random vectors, that E||X;||° < oo and that Cramér’s condition was
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satisfied. He used the Edgeworth expansion up to s — 2 terms and showed
that, for rectangles and bounded convex sets, the error §(6, B) = o(n~¢—2/2)
[see von Bahr (1967), Theorem 2]. For unbounded convex sets, he imposed the
additional condition that a number of moments of higher order exist, and he
was able to show that §(9, B) = O(n~ ¢~ 2/2) [see von Bahr (1967), Theorem 2].
Bhattacharya and Ranga Rao [(1976), Section 20] extended von Bahr’s results.
They showed that if X, ..., X, were independent (not necessarily identically
distributed) random vectors, E||X;||* < oo and Cramér’s condition (20.55) of
Bhattacharya and Ranga Rao (1976) was satisfied, then for a subset of

Aile: @g ) = {A e R ®o,v((BA)) <ce foralle > 0}

which includes the class of all convex sets, the error §(, B) = o(n~ ¢~ 2/2) [see
(20.48) and (20.49) of Bhattacharya and Ranga Rao (1976)]. Note that &, v
above stands for the multivariate normal distribution function with vector
mean 0 and covariance matrix V, and A means the boundary of A. However,
Bhattacharya and Ranga Rao (1976) and von Bahr (1967) assumed Cramér’s
condition, which is rather restrictive. For example, it is not satisfied by the
Wilcoxon rank sum statistic. Robinson, Héglund, Holst and Quine (1990) re-
laxed Cramér’s condition to (S.4) of the conditions (S.1)—(S.4) below; however,
their results are only useful for bounded sets. In this paper, we will extend
those results of Robinson, Hoglund, Holst and Quine (1990) to half-planes and
rectangles, in which we are mainly interested here. The techniques involved
are those of von Bahr (1967) and Robinson, Héglund, Holst and Quine (1990).
Consider the following conditions:

(S.1) There exists a convex, compact K C int(©), for all n, such that int(X)
is not empty.
(S.2) There exists a positive-definite matrix V(@) such that, as n — oo,
V(8) — Vy(8) uniformly for § € K.

(S.3) ns(8) = Eo|X|* < C, for all 6 € K.
(S.4) qo(n®~2/2) < Cn=2, for A = (d + 1)(s — 2)/2, where

qo(T) = sup {|ﬁg(n)|: enl/? < n1/2||V(0)1/277|| < n(s—z)/z}_
n «

THEOREM 1. Assume conditions (S.1)—(S.4) hold. If B is a rectangle (or a
half-plane) and 0 ¢ B, then we can choose 8 such that, for every u € B — m,
0 -u > 0; and then the error in (2.1) satisfies

|6(0,B)] < Cn=6=2/2,

The proof of Theorem 1 is given in the Appendix.
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REMARK 2.1. If, in particular, for some x € 8B, the boundary of B, we can
choose 8 = 6(%), the solution of m(f) = %, such that, for everyu e B-x,60-u >0,
then we get the most useful indirect Edgeworth approximation.

REMARK 2.2. The difficulty with approximation (2.1) lies in the complex-
ity of the terms of first and second order and the difficulty of obtaining rea-
sonable formulae for the integral in any but the simplest cases. Robinson,
Hoéglund, Holst and Quine (1990) used this method to obtain results for a
number of examples in one dimension and to obtain some approximations for
conditional results.

REMARK 2.3. Here we consider only nonlattice variables because our in-
terest is in transformed variables and our techniques would not give relative
errors of O(n~3/2). In special cases when the lattice variables are not trans-
formed, results have been obtained by Daniels (1987), Skovgaard (1987), Robin-
son, Héglund, Holst and Quine (1990) and Jensen (1992).

REMARK 2.4. Durbin (1980) obtained a result clearly related to Theorem
1 but under rather different conditions. He considers statistics which are not
necessarily sums of i.i.d. random variables but imposes conditions on the char-
acteristic function and the cumulants.

2.2. Saddlepoint density approximations. Under sufficient continuity con-
ditions such that smoothing is unnecessary, such as if X3, ..., X, were indepen-
dent and identically distributed random vectors with integrable characteristic
functions, it is possible to obtain an approximation which is appropriate for ar-
bitrarily small sets B. In this case we can show, from Robinson, Héglund, Holst
and Quine [(1990), Theorem 1], that

exp [n(n(e) -9 x)}
(2 /n) “2 A1/
Then there is an indirect Edgeworth expansion for the density,

fulx) = gn(x)<1 +n71Qg(0) + o(n—?»/z)),

PXex+B)=

(1 + %Q26<0))v01(3)(1 +0(n~%?)).

where
exp[—nA)]

(2 /n) 2 A2
A(x) = sup [t-x — k(t)] = 0 -x — K(6).
t

gn(x) =

This is the usual saddlepoint estimate of the density. See Robinson, Hoglund,
Holst and Quine [(1990), Remark 6] for further details.

2.3. Integrated saddlepoint approximations. To obtain P(X € B), for an
arbitrary set B, we can integrate the density if it exists. In particular, if we
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integrate over ®¢, we can renormalize the density by dividing by this integral.
We will show that this improves the order of approximation. Integrating the
density over R¢ gives

1= / g,,(x)(l N %ng(x)(O) N O(n—3/2)>dx.
Rd

/ gn(x)dx =1— l/ &n(®)Q20((0) dx + O (n~3/2)
Rd n Jgpd

=1- leo(O) + O(n‘3/2),
n
from the Laplace approximation. So the renormalized saddlepoint density is

(x 1 _

fwf;T))d; = fa(x) — ;gn(x)([Q20(x)(0) - Q20(0)] +0(n 1/2)).
In the region ||x|| = O(n~1/2), the second term above is O(n~3/2), while for large
deviations the error is O(n~1).

We need a method of justifying the approximation obtained by integration
of the formal density estimate as above when the conditions implying validity
for the approximation to the density are not satisfied, but those for the indirect
Edgeworth expansion are. This would be the case, for example, if we approx-
imate the tail area of a rank statistic. In the case of a Wilcoxon statistic, the
jumps in the distribution function are of O(n=%/2), so an indirect Edgeworth
expansion with this error could be obtained, but a density estimate is not avail-
able. If we integrate the formal density, then we obtain a result equal to the
indirect Edgeworth expansion to O(n—3/2). This equality follows in cases where
the continuity assumptions are satisfied, and so in other cases, since this is not
dependent on the continuity assumptions, but purely on the form of the expan-
sions. So if the conditions of Theorem 1 are satisfied, we can use the integral of
the formal density to obtain the following theorem.

THEOREM 2. Assume that conditions (S.1)—(S.4) hold with s = 5, and that B
is a rectangle (or a half-plane) and 0 ¢ B. Then

P(XeB)= / g,.(x)(l + %onm(O))dx(l +0(n7%/2)).
B

These approximations can be obtained by numerical integration, but it is
convenient to have a simpler formula for the integrated result. Such a result is
provided by the indirect Edgeworth method considered above, but in a number
of cases a simpler form can be obtained by applying the method of Temme (1982)
to the integral of the density. This technique was suggested by Daniels and
Young (1991) and gives results of the same form as were obtained by Lugannani
and Rice (1980). This third approach appears to be the most useful, and the
remainder of this note is an attempt to put these problems in a single framework
for smooth transforms of sample means.
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3. Transformations. Consider a C®-transformation g: ¢ — R¢. Write

a = g(x). Let
5 -1
- g
i)

and assume that J > 0 in M;s = {x: ||x|| < é6}. Then g is a C°°-diffeomorphism
on M onto its image M. Let

L(a) = A(x(a)),
where x(a) = g~1(a) for a € M}. Let

L(a) = ilgfL(a) =0,

so x(a) = 0 if we take ES = 0. Choose é§ small enough so that L(a) is convex in
Mg; this is possible since

PL@\ _(x\T  (PA@\ (o«
0a® x=0 - da x=0 Ox? x=0 da x=0,
(OA(x)/0x)-¢ = 0 and (8%A(x)/0x2), - is positive definite. Assume also that

conditions ensuring that the formal density estimate exists are satisfied. Then
the joint density of A = g(X) is f(a)(1 + O(n~3/2)), where

exp[—nL(a)]J

3.1) fla) = W

(1+1n71Q2(0)).

Note that here 0 = 8(x(a)).
Let B be a convex set which intersects M but such that B does not contain o.

Then we can minimize L(a) in B N M} and the minimum occurs on the boundary
of B.

4. Marginal densities and distributions. Let A = (A;,4) = (g1(X),
g2(X)) with A; € ®%, 0 < k& < d. In this section, we are interested in get-
ting saddlepoint density approximations for A, for general &, and saddlepoint
approximations for the tail area probability P(A; > a;), for the case & = 1.

4.1. Saddlepoint approximations for the marginal density. Under the con-
ditions of Section 2.2, which ensure the existence of the density of A, we can
consider a saddlepoint approximation to the marginal density of A4, f4,(a1). Let

H(a,) = i(lzlf L(a) = L(a),
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where & = (a1, @2(ay)). So from the Laplace approximation, the marginal density
of Al is

I exp|-n(L(@) - L@)|
fa,(@1) = W /ng_k (2 /)PP 172

4.1
@D x J(l +n71Q20(0) + (n‘3/2))da2
= (n/2r)"*exp[-nH(a)] G(a))(1+ 1 1@5(ar) + O(n%2)),
where
J
4.2 G = =1 L =
( ) (al) A1/2 det(L22)1/2

Lys(a) = 8%L(a)/a2, and J, A and Ly, are J, A and Ly, evaluated at & and
Q2(a1) is a function of a; obtained from the integration.
As in Daniels and Young (1991), we can write

H"(a1) = L1y — L12L3;' Loy,

so another expression for G(a;) is

Jdet [A" (x(&))] 0 (@)'/?

4. G = =
(4.3) (a1) det T2

4.2. An alternative form for the marginal density. Using (4.2), and two ma-
trix identities, Tierney, Kass and Kadane (1989, 1991) derived an expression
for G(aj) which does not involve gy(x). For a fixed a; € R*, let A € R* be
the Lagrange multiplier for the problem of minimizing the function A(x), sub-
ject to the constraint g;(x) = a;. Let x(a;) be the solution to the problem, and
Alx) = A(x) — X - g1(x). From Tierney, Kass and Kadane (1989, 1991),

(4.4)

)

1/2
t "
G(al) = — de [A (:)]—// -1
det[X"()] - det{ (g1@)" [ )] " (g1@) }

x=x(ay)

where by X" (x) we mean A”(x) — A -81(x). Also, H(a,) from Section 4.1 is equal
to A(x(a1)). Therefore

4.5) fa,(@1) = (n/2r)* exp [—nA(x(al))] Glay) (1 +n-1Qy(ar) + o(n—3/2))

with G(a;) defined as in (4.4).
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4.3. Integrated saddlepoint approximations for the marginal distribution.
In this section, we restrict attention to £ = 1. Note we can write P(4; > G;) =
P(A € B) with B = {a: a; > @1}, a half-plane. If the assumptions ensuring that
the formal density estimate exists are satisfied, we can integrate (4.1) over B to
get a saddlepoint approximation for P(g(X) € B) with relative error O(n—3/2).
However, even if these assumptions are not satisfied, we can use the methods
of Section 2.3 to show that the integral of (4.1) over B gives a saddlepoint
approximation with relative error O(n=3/2). The following theorem is related
to results obtained under stronger conditions involving existence of densities
by, for example, Tierney, Kass and Kadane (1989), DiCiccio, Field and Fraser
(1990), DiCiccio and Martin (1991) and Daniels and Young (1991).

THEOREM 3. If conditions (S.1)~(S.4) hold with s = 5, and if B = {a: a; >
@i}, then, for v/n(a, — ay) > ¢ > 0,

(4.6) P(A; > @) = /Bf(a)da(l +0(n™*?));

this can be written

~ ~ 1 1 w
P(Al > al) = <1 — (D(LU\/T_I) — :/“‘,—L(P(W\/;i)(ﬁ - %@))

x (1 + 1 (Qu@) - Qatan) + o(n-3/2)>,

(4.7)

where & = (ay, as(a@y)),

lf(\) = 2H(61) sgn(Zil — al)

Y@) _ J
W AY2det[Lyp]Y/2H (a1)

and

Proor. The proof of (4.6) concerns only technical smoothing arguments
and so it is given in the appendix. However, the derivation of (4.7) from (4.6) is
given below.

Consider the change of variable

w = +/2H(a,) sgn(a1 — a1),

where L(a) = inf,, H(a;) = 0. Then integrating (4.1) gives

P(A, 281)= 1

(4.8) V2r/n

X (1 +n71Qy(a1(w)) + O(n_3/2))dw,

/OO exp(—nw?/2)y(w)
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where
d
Yw) = Glay) % .
w
Now
dw _ H'(ay)
da;,  w
So
dai ), oo, @—a w (dw/dal)a1=a1
Thus 4
d_::’l = (H"(an)) .
a; =0
So from (4.3),
G
»(0) = _L)l/z =1.
(H”(al))

Using the expression ¥(w) = 1+ (4»(w) — 1) in (4.8), we have

~ —~ ~ 1 w

P, >ay) = (1 ~ @)~ gl )(5 - @))
1 1
X (1 + ;’1,1)1(0) + ;Qz(al) + O(n_3/2)> ,

where 1, (w) = [1 — (W)l /w? + ¢'(w)/w. Taking @ = —oo in (4.8), we obtain

1=1+n"191(0)+ n7'Qq(c1) + O(n=3/2).
So 11(0) = —Qa(ay) + O(n=12), and (4.7) follows immediately. O

4.4. An alternative form for the marginal distribution. Corresponding to
the alternative form of the saddlepoint density given by Tierney, Kass and
Kadane (1989) and discussed in Section 4.2, we can derive an integrated sad-
dlepoint formula which involves only the transformation a; = g;(x).

From Section 4.2, H(a;) = Alx(a1)], so we get

H'(ay) = N [x(ay)] - #/(ay),
and thus

P(A, > @) = (1 — B@vi) - %go@ﬁ)(% _ i”%))

X (1 + %(Qz(al) - Qz(al)) + O(n'3/2)) ,
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where
w= \/21\ [x(c’il)] sgn(c’il — al),
1/2
() _ det[A"(x)] 1
‘7’ det [A" ()] - det[ (g,@)" [ @)] _l(g’l(x))] o N [x(@y)] - 2'@)’

5. Conditional densities and distributions.

5.1. Conditional densities. Under the conditions of Section 2.2, which en-
sure the existence of the density of A, we can consider a saddlepoint approx-
imation to the conditional density f4, |4, =a,(@1), the density of A; at a; given
Ay = ag, where a = (a;,a3) with a; € ®* and ay € R4 %, Let

L((a1,a9)) = igllfL((al, as)).

Now from (3.1),

exp[—nL(a)]J

fal@ = (27 /n)*?A1/2

(1 +n"1Qy(a) + O(n_3/2)>,

and also from the marginal density result,

exp [—nL(&l, a2)] jz
(@m/n) @ P2 RY? det(Tyy)1/2

where Ly1(a) = 8%L(a)/da2, and Js, Ay and Ly; are J, A and Ly; evaluated at
(a1(az),as). So

fa,(@z) = (1 +n—1Q;(a2)+0(n-3/2)),

fala)

fastaa=ed) = 2
(5.1) _(n\*"?J [ det(TynA, . L(a) — L((a,as)
= (ﬂ) 3—2 — exp{—n[ a) — L((a1,a9 )]}

X (1 +n " 1g9(aq) + O(n_3/2)).

5.2. Conditional distributions. Again we will restrict our attention to% = 1.
We will find a saddlepoint approximation to

P(Al 281 |A2 =a2).

Unlike Section 4.3, here we will assume a strong Cramér condition because we
use the density in the eonditioning. Again in the following, we will take s = 5.
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THEOREM 4. If conditions (S.1)-(S.8) hold and also

(8.4 lim sup |Dp(n)| < 1,

Tl > ¢

then

g P18 2= a) - <1~<I>(wf>—7so( f)(l-y))

X (1 + %(qz(al) —qo(@)) + 0(n‘3/2))

where

&= \/2 [L@1,a2) ~ L(@,02)] sen @ — ),
- N 1
Yw) _ J [ detL11)Ay OL
w - 32 ( A > (8a1)

ProoFr. Consider the change of variable a to (w,ay), where

(5.3) w = 1/2(L(@) - L(@1, a2)) sgn (a1 — &y).
Then integrating (5.1),
P(Al > Zil |A2 = (12)

(5.4) =\/—/ exp(

where

>¢(w)(1 +n7'gs(a1) +O(n 3/2))dw,

det(Lu)Az 1
vl )_J—2< A > dw/da;

~ o~ N\ 1/2
_ J [detLi)A, w
A 9L /9ar’

Similarly to Theorem 3, we can easily show that 1(0) = 1. Then writing (w)
=1+ ((w) — 1) in (5.4), we get Theorem 4 in the same way as Theorem 3. O

REMARK 5.1.  Theorem 4 extends Skovgaard (1987), which gave equivalent
results for a linear transformation. It also generalizes the results by Wang
(1993).
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6. Applications. One important application of saddlepoint approxima-
tions is in bootstrap analysis. Davison and Hinkley (1988) applied saddlepoint
approximations to replace intensive Monte Carlo simulation for unstudentized
bootstrap means with great accuracy. Daniels and Young (1991) extended the
technique to the studentized bootstrap means. Jing, Feuerverger and Robinson
(1994) used the saddlepoint approximations to look at the accuracy and cover-
age of bootstrap confidence intervals by studying relative errors in much the
way Hall (1988) used Edgeworth methods.

In the following, we will give an example to illustrate the use of Theorem 3.
Consider the simple linear regression model

yi=a+ﬂzi+5,~, i=1,..,,n,
where ¢1,...,¢, are an independent sample from the distribution function F.
Here we assume z,...,2, are fixed and ¥?_;z; = 0. Then the least-squares

estimate of 8is B = X_ ,zyi/S0 122. Robinson (1987) considers the bootstrap
(percentile and percentile-¢) and randomization methods for constructing con-
fidence intervals for 3 and indicates that the percentile-t method gives the best
approximations. See also Hall [(1992), Section 4.3] for comparisons of different
bootstrap methods in the regression context.

A confidence interval for 3 is

(5_ wWs 5 ugls )
(Sae)™ (S

where s? = (n — 2)7197_ 82, uy(F) is the solution of

-8 1
Pl ——M =< uu(F)> = —aq,
<s/(z::1z?)”2 2

with u (F) being defined similarly. The percentile-t confidence interval for 3 is
~ u*s ~ uy,s
[ R #) ,
72 172
( (Xio12}) (2i12])
where uy; is the bootstrap approximation for uy(F),
*— B 1
6.1 P*< TorL gu;;> - o
s*/(2i212])

where §* — 8 = $}_ 72/ 5} 12%,

8*2 = _2)—1|:th2 —n —6-*)2 — (B - B)2Zzl2:|
i=1

i=1
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and the ¢}’s are generated randomly with replacement from the residuals s,
and where P* denotes probability conditional on the &’s, and u} is defined
similarly. It can easily be shown that (6.1) is equivalent to

(2ol )
[22216?2/,,' _ (E*)z] 12 = ‘U

where p; = n'/2; /($F_122)Y/2 and t}; = [n/(n — 2)1Y2uf (1 +ul? /(n — 2]~ V2.

We can approximate ¢7;, hence uj; by Monte Carlo simulation. However, we
now apply Theorem 4 in an attempt to replace Monte Carlo simulation, in a way
similar to Davison and Hinkley (1988) for unstudentized means and to Daniels
and Young (1991) for studentized means. To approximate P*, the conditional
probability given the sample Cramér’s condition is not satisfied, but if it holds
for the ¢&’s, then (S4) holds for the *’s [see, e.g., Albers, Bickel and van Zwet
(1976)]. Then, to apply Theorem 3, we consider X; = (e;",e;"z,pie;*), i=1,...,n.
So X = (&, Zefz/n, Y pif/n), and

«,

1
2

1< . . «
(01,62, 03) = -~ ;logE exp (91€i + 026} + 03 (pi; ))
i=

1 1 SR

== Z log [; Z exp (61 + pibs)E; + 0263)} .
i=1 Jj=1

We will choose the following transformation:

ay = n'/2xg ) (x5 — 22) /7,
Qg = X1,
ag = Xg.

For the law school data in Efron (1982), we obtained u; = 1.777 and uy; =
—1.728 for o = 0.10. So the 90% percentile-¢ confidence interval for 8 by using
the saddlepoint approximations is (0.271, 0.628). By using Monte Carlo sim-
ulation (with 500,000 resamples drawn), we get a 90% percentile-¢ confidence
interval for 5 to be (0.2692, 0.6284). In this case the saddlepoint method gives
a very good approximation.

APPENDIX

A.1. Proof of Theorem 1. We will first get a bound for 6(¢,B,T), which
is the convolution of §(8, B) with a smoothing density over the d variables, and
then through a smoothing lemma similar to Lemma 2 of Robinson, Héglund,
Holst and Quine (1990), we will get a bound for §(6, B).

From (2.2),

50, B) = / Yo - 5(—y) exp(—n6 - y)H(dy),
ng



SADDLEPOINT APPROXIMATIONS 1129

where
H(dy) = vnho(dy) — es _ 3(y, vp)dy,

where e;(y, vg) is the formal Edgeworth expansion for vy of order %, so

66,B,T) = /

6(0,B — w)Ky(du)
R

= (27T)_d/ I?L(f)fe,m-s(f)fz(ﬁ)d&,
md
where
Xo,m - B(&) = /de—B(u)eXp(ne-U+i§~u)du,
®

h is the Fourier transformations of H and K; is a smoothing function to be
chosen later.

We first consider the case that B is a rectangle. There exists a matrix @
such that

B={w=Qu:ueB}={w|aj<w;j<bj,j=1,...,d}

Let n = Q¢. Then
50,B,T) = 2m)~¢ / R@n)Ro,m -5 @A@n)dl,
R

where K is chosen such that

d
K@n=]] (1 - BZ-,—{—‘) for n;| < T.

j=1

We should note that all the C’s used in the following are positive constants and
may be different at each occurrence.

LEMMA 1. Under the conditions of Theorem 1,

|66, B, T)| < Cn=C =724 Cn= T

Proor. Using the method and notation of von Bahr [(1967), pages 76-77],
we can show that

dnr

66,8, <CY"’ 'HVGF(1“‘*"P(-naﬂ%)P~)ﬁ<Q'np>
§0,B,T)| < /
T, A) nl/2|np|| < T,y €T H'y er |77'r|
.<_Il+12+13,
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where I, is integral over S;, i = 1,2, 3, with
St = {ne: n¥¥ WO 2| < Cnl-2/@Y,
Sz = {nr: Cr=2/29 < nV2|[W(e)/2ne | < Cn¥/2),
Ss = {nr: Cr1/? < 12||W©) 2| < T},

for W = QVQ'. Itis easy to check, using von Bahr’s method, that I; < Cn~¢~2/2
and we can follow Robinson, Héglund, Holst and Quine (1990) to get
I, <Cn=6=2/2and I3 < Cn=6-2/2 for T = n®-2/2 from which the lemma
follows. O

The following lemma can be obtained from Lemma 2 of Robinson, Héglund,
Holst and Quine (1990) with slight changes, but applies only to half-planes
or rectangles.

LeMMA 2. If|0] < C and € = ¢/T, where Kp(S(e)) = 1 — a > 2/8, for S(e) =
{y:y € R ||ly| < €}, and if B is a half-plane or a rectangle, then writing
(B)e ={x+y:x € B,y € S(¢)} and (B)_. = ((B°).) we have

6(0,B)| < C{max(|6(0,BE,T)|, 606,B_.,T)|) + Cs}.

Choosing T' = n®~2/2 jn Lemmas 1 and 2, we get Theorem 1. Notice that
there is no restriction on the size of B, so the theorem is true for half-planes
as well.

A.2. Proof of Theorem 3. Choose ¢ small enough suchthat N} = {x: |x;| <
g,i=1,...,d} C M} and N, = g~ (V). So we have

Pg(X)cB) =P(Xeg  (BnN;)) +P(e(X) € B (N2)°),

where P(g(X) € BN (N*¥) = n=Uen’ for ¢ = logn//n.
Let A=BNN! g 1=hand A’ = h(A). If v; is a vertex of A, then, for any
vEA,

h@) =h(vy) +h' W)v —vy)+ 0(62) =h1(v) + 0(62).
Consider the parallelogram P given by h;(A). From A’ c PU (A’ — P), we get

166,A",T)| < |6(6,P,T)| +|6(6,(A" — P),T)],
where
66,A,T)=1(0,A,T) —e,_3(6,A,T).

By the method of von Bahr (1967), we can show that, as in the proof of Theorem
1, for T = n®~2/2,

|6(8, P, T)| = O(n—(s - 2)/2).
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From Robinson, Hoglund, Holst and Quine (1990, Lemma 1),
166, (A’ ~ P), )| < CXg,ar - p\On?/?
x (ns(e)(det V() -2z TdCIne(T)> .

We can show, for /n(a; — o) >c¢ > 0,
Ro, 4 - p(0) = O(69* V) = O(n~ @V 2Qogn)*+*).

Now taking T' = n®® ~ /2 in condition (S.4), we get |6(6, (A’ —P), T')| = O(n~¢~2/2),
Hence

A1) 166,A",T)| = O(n~~2/2),

It can also be shown that, similarly to Lemma 1,

—e)

(A.2) 16(6,A")| < c{max(w(a,A;, T)|,160,A",,T))) + Ce}.
Then choosing T = n® ~2/2 in (A.2), and using (A.1), we get the theorem.
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