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EFFICIENCY VERSUS ROBUSTNESS:
THE CASE FOR MINIMUM HELLINGER DISTANCE
AND RELATED METHODS!

By BRUCE G. LINDSAY

Pennsylvania State University

It is shown how and why the influence curve poorly measures the
robustness properties of minimum Hellinger distance estimation. Rather,
for this and related forms of estimation, there is another function, the resid-
ual adjustment function, that carries the relevant information about the
trade-off between efficiency and robustness. It is demonstrated that this
function determines various second-order measures of efficiency and robust-
ness through a scalar measure called the estimation curvature. The func-
tion is also shown to determine the breakdown properties of the estimators
through its tail behavior. A 50% breakdown result is given. It is shown how
to create flexible classes of estimation methods in the spirit of M-estimation,
but with first-order efficiency (or even second-order efficiency) at the chosen
model, 50% breakdown and a minimum distance interpretation.

1. Introduction. There are two fundamental—but potentially competing
—ideals in parametric estimation: efficiency when the model has been appropri-
ately chosen and robustness when it has not. The primary goals of this paper are
to come to an understanding of how the minimum Hellinger distance estimator
and its relatives balance these two ideals, and to develop this understanding
into new approaches to efficiency and robustness trade-offs.

In the M-estimation approach to the construction of robust procedures, the
robustness is attained at some sacrifice of first-order efficiency [e.g., Hampel,
Ronchetti, Rousseeuw and Stahel (1986)]. Mathematically, this trade-off be-
tween efficiency and robustness must occur if one adheres to the notion, central
to much of robustness theory, that the influence curve carries most of the criti-
cal information about the robustness of a procedure. If one insists, for example,
that this curve be bounded, then it will generally not equal the influence curve
of the fully efficient maximum likelihood estimator.

On the other hand, the fully known properties of minimum Hellinger dis-
tance estimation indicate that some of the information about robustness is, in
this case, not carried by the influence curve. This method attains first-order ef-
ficiency, yet has certain robustness properties [Beran (1977), Tamura and Boos
(1986), Simpson (1987, 1989) and Donoho and Liu (1988)]. Note that the effi-
ciency of this method at the model means that it must have the same influence
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1082 B. G. LINDSAY

function as the maximum likelihood estimator. One of our basic points is that
the influence curve is a very misleading measure of robustness in the case of
minimum Hellinger distance; we will illustrate this with an example at the end
of this section.

The rest of this paper presents an investigation of this phenomenon, with the
following key findings. Within a large class of minimum distance type methods,
including both maximum likelihood and minimum Hellinger distance, there ex-
ists a key function, here denoted A(-) and called the residual adjustment func-
tion (RAF), whose shape completely determines the robustness and efficiency
behavior of the corresponding estimator. Although similar in interpretation to
the y-function of M-estimation, the impact of its shape occurs only in second-
order calculations of efficiency and robustness.

The analysis here leads to a different paradigm for robustness in which the
degree to which an observation is treated as an “outlier” depends on both the
sample size and its probability of occurrence under the specified model. This cor-
responds to the intuition that an observation of X = 3 is unusual in a standard
normal sample of size 10, but not so surprising in a sample of size 10,000.

We investigate these ideas in the context of the multinomial model because
it offers a simple setting with minimal mathematical nuisance. As such the ap-
proach taken here is completely free of usual continuous location—scale model
ideas and analyses. A companion paper [Basu and Lindsay (1993a)] shows that
these ideas can be applied in that setting, with results very similar to conven-
tional robust methods.

First, some notation and basic ideas. Suppose the sample space is a count-
able set, without loss of generality X = {0,1,...,K}, with K possibly infinite,
and that mg(x) is a family of probability densities on X, indexed by 3 € Q. To
avoid technicalities, it will be assumed that mg(x) > 0 for all x € X. Moreover,
suppose that n independent and identically distributed observations Xj, ..., X,
are made from mg(x). Let d(x) be the proportion of the n observations which had
value x. For any function A(-) on X, we will let h denote the vector (h(0), . .., h(K)),
with d thereby being the data vector and mg being the model vector. The sym-
bol “C” will denote summation on variable x over X unless otherwise noted.
The function ¢(x) will denote some nominal true density, not necessarily from
the model. The minimum Hellinger distance estimator is that value of 8 that
minimizes the squared Hellinger distance, ©[vd(x) — \/ms(x)]2.

In Section 2 we will establish that the maximum likelihood estimator and
minimum Hellinger distance estimators have the same influence curves at the
model mg(x). That is, if £ € X, let x¢(x) be the indicator function for £. Let

1) te(x) := (1 — e)t(x) + exe(x)

be an e-contaminated version of density #(x). If T'(t) is a functional on the space
of densities #(x), then it is Fisher consistent for our problem if T(mg) = 3. Its
influence function is defined to be

OT((1-ot+exe)| _ OT()
Oe T e

T'(¢) :=

e=0
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If the functional is the maximum likelihood estimator Ty, (t) or the minimum
Hellinger distance estimator Typ(t), then Proposition 1 (Section 2) establishes
that, when ¢(x) corresponds to some mg(x),

OT((1 — e)mg +exe)

5 =B tu(&; B),

e=0

(2) T =

where u(¢; 5) is Vlog(mg(£)), the score function, and i(5) is the Fisher informa-
tion.

Viewed as a function of ¢, AT'(¢) := T'(t.) — T'(t) represents how the functional
changes with contamination. Consider the Taylor series approximation:

(3 AT(e) == T(t.) — T(t) = €T ().

This approximation is critical to the dual role of the influence function as a
measure of efficiency and of robustness. First, the asymptotic variance of the
estimator follows from the approximation 7(d) — T'(t) = ¥ T"(x) d(x) [von Mises
(1947); see also Fernholz (1983)]. In our case, this would imply that, when the
model is correctly specified, any estimator with the same influence function as
the maximum likelihood estimator, namely, (2), has the same efficiency and so
is optimal.

Approximation (3) also plays a role in robustness properties through a shift
in perspective. Let #(x) in the above calculations be a model density ms(x), and
suppose that the true density is t., so that the model has been contaminated by
observations at ¢ in proportion . If the goal is to estimate the value T'(t) = 3 and
the functional T'(d) is used, then T(d) converges to T'(t.). Hence the function
AT(e)now represents the asymptotic bias in estimating 3 under contamination.
In the case of first-order efficient estimators, this means that

4) AT(e) = €i(B) " tu(¢; B)

is a first-order approximation to contamination bias. Thus, to this order of ap-
proximation, all the first-order efficient estimators have the same sensitivity
to contamination as the maximum likelihood estimator and would therefore,
in some eyes, be considered nonrobust. However, a key point in our analysis is
that the approximation (3) can be very misleading, as we now illustrate.

ExampPLE 1. To simplify this study, we consider the estimation of the mean
value parameter y in a one-parameter exponential family model. In this case,
the influence curves of first-order efficient estimators all equal 7"(¢) = € — p.
Moreover, since the maximum likelihood estimator is just the sample mean, the
approximation (4) for the maximum likelihood estimator Ty, is exact. Thus, for
¢ fixed, the plot of the ATy, against ¢ is linear in €.

The 100% accuracy of this approximation for ATy, can be contrasted with its
accuracy for ATyp, the change in the minimum Hellinger distance functional,
through the following example. The model is binomial(12, 3), and the true value
8= % The contamination is mass ¢ at ¢ = 12. In Figure 1, the diagonal straight
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FiG. 1. Bias plot for the Hellinger MDE in a binomial example.

line corresponds to ATy, (e) for the maximum likelihood functional, where the
curve for minimum Hellinger distance ATyp(¢) is strikingly different. Since
both estimators have the same influence curve, the slopes at ¢ = 0 must be
identical; however, this appears to be contradicted by the plot.

The plot has two key features, whose source we will identify in this paper.
First, the linear influence curve approximation for Hellinger works very poorly,
even for extremely small ¢. In Figure 2, we scale the picture to the level of
contamination from 0 to 5%. It was found that the actual bias of T' was more
than 90% of its linear predicted value only for contamination in the neighbor-
hood of 1 in 10,000. At contamination level 5%, the actual bias was only 13.6%
of predicted.

We next observe that the estimator then stays nearly constant (not exceed-
ing 3 = 0.54) until € ~ 0.50, at which point the second key feature occurs: sud-
denly, the global minimum of the distance switches from a local minimum near
B = 0.54 to a local minimum at 3 = 1, where it stays for every larger ¢. The
latter is dramatic visible evidence for the related result of Simpson (1987) that
the Hellinger distance functional has an asymptotic breakdown point of 0.5 in
the Poisson model.

This example motivates the need for an alternative to the influence curve
analysis when we consider the efficiency and robustness of some estimators. The
next step is to find the key struc¢tural element that links maximum likelihood
and minimum Hellinger distance. In the process, we extend to a natural gen-
eralization of this type of estimation, all elements having a minimum distance
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FiG. 2. Blown-up corner of the plot in Figure 1.

interpretation, with a wide range of possible efficiency—robustness trade-offs.

2. The estimating functions. Define the Pearson residual function §(x)
to be

6(x) = [d(x) — mp(x)] /mp(x).

We use this name because the model-weighted sum of the squared residuals,
Y mg(x)é(x)?, is Pearson’s chi-squared distance. We note that these residuals
are not standardized to have identical variances. It is important to note that
these residuals have range [—1, oo].

Let V denote differentiation with respect to 3. The focal point of this paper
is the class of estimating equations for 3 of the form

(5) > A(8(x)) Vmp(x) = 0,
where A(6) satisfies the following assumption.

AssumpTION 1. A(6) is assumed to be an increasing twice-differentiable
function on [—1, c0), with A(0) = 0 and A’(0) = 1.

Such a function A(6) will be called a residual adjustment function (RAF). It
will be shown in Section 3 that the estimating equations (5) arise naturally
in the minimization of certain distance-type measures. Using the linear RAF
App(d) := § yields the most important special case, the maximum likelihood
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equations:
0= Z 8(x) Vmg(x) = Z(d(x) — m(x))u(x; b) = Z d@)u(x; B).
The minimum Hellinger distance equation also has the structural form (5), with
App(®) :=2[V6+1-1].

Our first point is that such an estimating function automatically gives us first-
order efficient estimators. [See also Rao, Sinha and Subramanyan (1983).]

PROPOSITION 1. For an estimating function of the form £ A(6(x)) Vmg(x), the
influence curve of the estimators T(-) has the form T'(¢) = DEN-1 NUM, where,
for p* = T(t) and 6(x) = [t(x) — mp-(x)]/mp-(x),

NUM = A'(6©))u(¢, %) - E[A' (5GO)u(X, %],
DEN = E[u(X, f")u(X, 5} A" (500)] + 3 A(6) V. (o).

If the density t(x) is a model point mg(x), then B* = 3, 6(x) = 0 for all x, and the
estimators defined by ¥ A(6(x))Vmg(x) = 0 have influence function i(8)~'u(¢; B).

PrOOF. The proofis straightforward but tedious differentiation of the esti-
mating equation. O

In Appendix A we have shown that the influence function approximation
yields the correct asymptotic distribution for the estimators of interest. This
proof is of interest largely because the natural expansions in 6 fail to converge
when the sample space is infinite. To solve this difficulty, we show how to convert
the remainders from Pearson residuals to a Hellinger-type residual.

An important class of residual adjustment functions that contains the above
two have the form

aQ+6*-1
A+1 7

Arising from minimizing the power-weighted divergence family of distance-type
measures [Cressie and Read (1984)], the estimators correspond to maximum
likelihood (\ = 0), Hellinger distance (\ = —%), as well as minimum Pearson’s
chi-squared (A = 1), minimum Neyman’s chi-squared (A = —2) and minimum
Kullback-Leibler divergence (A = —1). In Figure 3 we show a variety of shapes
available for A(6) within this class.

(6) Ax() =

REMARK A. Since A(6) is monotone, we could have taken as residual func-
tion any invertible increasing function of §, and we would still generate the same
class of estimating functions. The Pearson form of residual was chosen because,
on this scale, maximum likelihood occupies the central position of having the
linear residual adjustment function, A;p(6) = 6.
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F1G. 3. The RAF's for NCS, PCS, HD and MLE.

REMARK B. What is an outlier? If one member of our sample is X = ¢,
with d(§) = 1/n, then the Pearson residual is 6(¢) = (nm(¢))~! — 1, so that the
magnitude depends on both the sample size and the model probability. As we
can see in Figure 3, a large such residual gets quite different weights using
different functions.

Exactly as in the case of the y-function of M-estimation, the structure of
the residual adjustment function A(6) has direct bearing on the efficiency and
robustness properties of the corresponding estimator. It is clear from (5) that
these estimators are completely determined by the form of A(§). We can now
summarize how the results of this paper give insights into the striking behavior
of minimum Hellinger distance in Figure 1.

It is the behavior of A(6) for § near 0 that determines behavior of the bias
response curve AT'(e) near ¢ = 0. The estimators considered here all have the
same influence curve, AT"(0), because they all have the same first-order Taylor
approximation A(6) =~ é. The second-order approximation,

(7 A(6) ~ 6 +Az6%/2,

where Ay = A”(0), will be shown to determine a number of second-order effi-
ciency and robustness properties of the RAF estimators, including the sharp
bend of AT'(¢) near ¢ = 0 for Hellinger distance in Figure 1. These results will
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be presented in Sections 4 and 5.

On the other hand, to understand the behavior of AT(¢) near ¢ = 0.5, we
must consider the large-§ behavior of the function A(6). This outlier analysis
will be performed in Section 6. We will show that the breakdown properties of
the estimator are determined by the tails of A(5).

In addition, in Section 3 we will show that estimating equations of the form
(5) are always associated with distance-type measures. In Section 7, we will
consider some new measures with a flexible trade-off in efficiency and robust-
ness. Other issues to be considered in this paper included construction of robust
tests (Section 5) and computation using iterative reweighting (Section 8).

3. Disparity measures. We now verify a very important property of RAF
estimators: that solving the estimating equations (5) corresponds to the min-
imization of a measure of “distance” between the data d and the model mg.
There are a number of fortunate consequences: for example, this gives a means
of selecting between solutions of the estimating equations, it gives a nice con-
ceptual meaning to the estimator and it enables us to create a robust analogue
of the likelihood ratio test. In addition, it is crucial in the development of the
breakdown results.

Suppose that G(-) is a real-valued thrice-differentiable function on [—1, c0),
with G(0) = 0. For any pair of densities mg(x) and d(x), define the disparity
measure determined by G to be

®) od,mg) = ¥ ma@)G(6()),

where §(x) is the Pearson residual defined in Section 2. If G is strictly convex, as
will be assumed, then applying Jensen’s inequality to the measure p shows that
it is nonnegative, and it is zero only when d = mg [Csiszar (1963)]. As a conse-
quence, if we use as an estimator that value of 3, call it T(d), that minimizes p,
then this minimum disparity estimator (MDE) is Fisher consistent. [Such mea-
sures are sometimes called f or ¢-divergences; Gelfand and Dey (1991) have
used these measures to study Bayesian robustness.]

An important class of such measures is the Cressie-Read [Cressie and Read
(1984) and Read and Cressie (1988)] family of power divergence measures, de-
fined by

{[d(x)/mg(x)]'\ - 1}
AA+1)

{(1+o@)™" -1}
= ms 2O+ 1)

For A = -2,-1, —%, 0 and 1, one obtains the following well-known measures:
Neyman’s chi-squared divided by 2,

PWD(d, mp) = ) "d(x)
)

[deo) - ms@)]®

(10) NCS(d, mp) = 7P
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Kullback~-Leibler divergence,
(11) KL(d,mg) = 3 ms(x) [log(mg(x)) - log(d(x))];

twice-squared Hellinger distance,

(12) HD(d, mp)=2Y" [\/d‘@) - ,/m,,<x)]

likelihood disparity,
(13) LD, mp) = Y d(x)|log(d(x)) — log(ms(x) |;

2
)

Pearson’s chi-squared divided by 2,

[d@) — ms@)]?

(14) PCS(d,mp) = By

We now show that solving the estimating equation ¥ A(6(x)) Vmg(x) = 0 cor-
responds to minimizing a disparity measure.

Under differentiability of the model, minimization of the disparity measure
p(d, mg) over § corresponds to solving an estimating equation of the form

d(x)
mg(x)

—Vp(d, mg) = Z [G’ (6(x)) - G((S(x))] Vmg(x) = 0.

[Here we have used the negative gradient of p so that in the case of the like-
lihood disparity (13) the equation, namely, ¥ d(x)u(x; 3) = 0, agrees with that
obtained by maximizing the likelihood rather than minimizing the likelihood
disparity.] This minimum disparity equation can then be written in the form of
the estimating equation (5) with

A(8) = (1 +8)G'(6) — G(6).

Since A’(6) = (1 + 6)G"(6), second-order differentiability of G, in addition to its
strict convexity, implies that A(§) is a strictly increasing function of 6 on [—1, 00).
In addition, since under regularity conditions ¥ Vmg(x) = 0, we can redefine
A() by A(6) := A(8) — A(0), so that A(0) = 0, without changing the solutions to
the estimating function above. Finally, since A’(0) = G”(0) > 0, we can rescale
A so that it satisfies A’(0) = 1. Thus we have shown that, by starting with
G strictly convex and thrice differentiable, minimizing the disparity measure
results in an estimating equation of the form (5), with A(6) satisfying the given
assumptions.

For the converse, it is easily checked that given a differentiable increasing
function A(6) [or a nonnegative function A’(6)], one can construct a disparity
measure pg with residual adjustment function A(6) by using

§ ot
(15) G(6) = / / A'(s)(1+s)"tdsdt.
o Jo



1090 B. G. LINDSAY

REMARK C. Suppose for a given G(6) we construct G*(6) := c(G(6) — aé),
for scalar a and positive ¢. Then the disparity measures display the relation-
ship, pg« = ¢pg, and so the minimization problem is exactly the same for both
measures. By suitable choice of ¢ and a we can arrive at the standardization
A'(0)=0and A”(0) = 1.

REMARK D. In arelated approach with a different emphasis, Kemp (1986)
considers a class of weighted discrepancy estimating equations of the form
¥ 6(x)Wps(x) = 0, where W is chosen for simplicity of calculation.

4. Second-order effects: estimation curvature. We now turn to the
role of approximation (7), A(6) ~ §+A362/2, and show how the curvature param-
eter A, becomes a measure of the trade-off between efficiency and robustness in
a second-order sense. Note that, for the power-weighted divergence family (9),
A, = ), so it equals 0 for maximum likelihood and —0.5 for Hellinger distance.
We will show that the structure of the minimum disparity equation is such that,
whenever this parameter is nonzero, we can expect the influence curve to give
a poor approximation to the actual behavior of the estimator under contamina-
tion. Moreover, when it is negative, we expect the actual behavior to be more
robust.

We start with a simple mathematical result regarding the second-order de-
ficiency of the MDE’s. Since we are in the context of the multinomial model, we
may directly apply the concept of second-order efficiency given by Rao (1961,
1962). In this theory, the second-order efficiency E; of an estimator T' is mea-
sured by finding the minimum asymptotic variance of U(8) — a(B)IT — 3] -
XB)IT — B)? over a and A, where U is the score function for an iid sample.
This quantity is minimized by the MLE; the minimum value is determined by
the model and the parameterization, but is zero when estimating the mean
value parameter of an exponential family model. Our point here is that the
deficiency of an MDE is a simple function of the estimation curvature A; and a
nonnegative quantity D depending on the model but not on A(6).

PROPOSITION 3. Suppose the sample space is finite (K < o). The second-
order efficiency of a minimum disparity estimator with RAF A(6) is

E;(MDE) = E5(MLE) + A2D.

PrOOF. Read and Cressie (1988) give this result for the PWD family (9).
However, the calculations depend only on the first and second derivatives of the
estimating functions with respect to § (at § = 0), so the results are identical for
any estimating functions with the same derivatives. However, all the MDE’s
with the same value of A, have the same first- and second-order derivatives
at.zero. [Proved also in Rao, Sinha and Subramanyan (1982).] O

The statistical significance of Rao’s second-order efficiency is subject to
some controversy. The interested reader will find a lively discussion in Berkson
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(1980). Read and Cressie (1988) show that the MLE is not necessarily second-
order optimal in the PWD family when Hodges—Lehmann deficiency is consid-
ered instead. In Appendix B we offer a geometric description of the multino-
mial problem which shows that, in an exponential family model, A2 is a local
summary measure of the departure of the estimator’s contours from those of
the sufficient statistics and hence is a measure of the “lack of sufficiency” of
the resulting estimator. However, our main point is not that A, is a perfect
measure of second-order information loss, but rather that it is a natural single-
number summary.

The Ap curvature is relevant in robustness as well, again at the second order.
Recall the inadequacy of the bias approximation (4) that was revealed by Fig-
ure 1. Suppose that, as a simple measure of the adequacy of a first-order Taylor
approximation, we consider the ratio of the second-order Taylor expansion to
the first. If we apply this to AT(¢), we find that

quadratic approximation _, [T"(&)/T'(€)]e
linear approximation . 2 '

This indicates that if ¢ is larger than

T'(¢)
T”(f) )

Ecrit =

then the two approximations differ by 50% or more. The estimation curvature
A, plays a pivotal role in the computation of this ratio.

ProprosITION 4. Let i(8) be the Fisher information about scalar parameter 3
in model mg. For an estimator defined by an estimating function of the form (5),

(16) Eait = [{B[F1(O) + AsFa(O)]| 7,
where

f1(6) = 2Vu(¢; B) — 2E[VuX, B)] + T'(OE[VuX, )],
and
i(B)
mp(§)

u(§; )
i(B)

fo(8) = +E[uX, §)°] — 2u(; B)°.

COROLLARY 5. Ifthe rﬁodel is a one-parameter exponential family and (3 is
the mean value parameter, then fi(£) = 0 and s0 eqy = |A2Q(€)| ™1, where
1 (¢ - BEX - p)° €-p7
17 = - .
an O ms©® * [EX - 8)?)° [EX - 5)?]

PRrROOF. These are straightforward differentiations and calculations. O
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Examining the form of @, it is clear that the leading term becomes very
large for a small cell probability mg(¢); this is in fact the dominant term in
the calculations for Example 1. If we use the approximation Q(¢) ~ 1/mg(¢),
then we obtain the result that the quadratic and linear approximations to the
bias caused by point contamination will differ substantially for ¢ with order of
magnitude of ¢}, := mp(§)/|Az| or larger, and that if Ay is negative, the quadratic
approximation will then predict 50% less bias. However, if A, is positive, it
predicts that much more bias.

Computation of @(¢) for the binomial example gives some idea of the rela-
tive dampening effect of the second-derivative term for the different possible
contaminations; see Table 1.

The last column of Table 1 gives 1/Q(¢) and so indicates the values of ¢ for
which the Hellinger distance quadratic approximation (using A = —0.5) is 75%
of the linear prediction. Note that, for £ = 12, this calculation agrees in order
of magnitude with the exact calculations shown in Figure 2.

REMARK E. We do note, however, that it is quite possible to have Ay = 0,
thus having second-order efficiency, but still have global characteristics that
yield bias curves very similar to Figure 1. A second-order-efficient disparity
measure of this type is introduced in Section 8.

REMARKF. A consequence ofthese calculations is that ifthe influence curve
predicts a large influence for an observation £ in an exponential family, it is
in fact likely to have small actual influence on minimum Hellinger distance
or its robust relatives. The above calculations indicate that the influence curve
becomes unreliable for predicting AT'(¢) when there is a contamination fraction
€2 Eeit ®er, =mg(§)/|Ag|. At €., the linear approximation is

crit crit?
.y maOTE) [¢ — EX)
AT(gcrit) ~ ——|Z2_|— = mﬁ(f)—*m‘—’.

here using the mean value parameter. If the sample space is infinite, then as ¢
goes to oo this last expression goes to zero (since the mean exists); that is, the
linear predicted bias for contamination at a large ¢ is necessarily small unless

TABLE 1
The function @ for Example 1

xorl2 —x Q(x) 1/Q(x)
0 4072.0 0.00025
1 324.7 0.0031
2 51.4 0.019

3 12.6 0.079

4 5.6 0.178

5 4.5 0.222

6 44 0.226
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¢ is significantly larger than e, in which case the quadratic approximation
differs significantly from the linear.

5. Second-order effects: testing. In this section we turn to the role of
the approximation A(6) ~ § + A262/2 in measuring the impact of model failure
on testing and confidence set inference about the model ms. We will illustrate
that the disparity measures can be used to create more robust testing proce-
dures. Our focus here will be on the effect of contamination on the limiting
distributions of test statistics. The main point will be that tests based on the
robust disparity measures (negative A,) have a carryover of this robustness to
their limiting distribution, and that A, continues to serve as a local measure of
this robustness. Further results about testing can be found in Basu (1993).

There are some important issues to consider in the creation of robust test
procedures. If one assumes that the true density is simply a contaminated
model, say,

t(x) = mc(x) := (1 — e)mpg(x) + exe(x),

one could consider the underlying j to be the parameter of interest. However,
since there is usually bias in estimating g, it will eventually lie outside any set
of model-based confidence intervals that shrink in width as n becomes infinite.
Moreover, if the true density #(x) is not simply a contamination, there is no
longer a unique well-defined meaning to “true 3.” For this reason, we suppose
rather that we have chosen a functional 7(t) that defines the parameter we are
interested in—it could well be chosen to have less bias than the MLE so that
it more closely represents the underlying 3 if we have a contaminated model.
[For a similar approach, see Kent (1982).] We then ask about the effect of con-
tamination on testing and confidence procedures that concern this parameter.
This analysis can be combined with that of the previous section to get an overall
picture of bias and misjudged variation.

Testing and confidence methods that are asymptotically correct under any
true density can be constructed for the functional T'(t) [e.g., Owen; (1988)],
provided it is sufficiently regular. Instead, we consider the possible defects in
using model-based methods that have optimal power properties when the model
myg is correct. The objective is to create a test procedure that is equivalent to
the likelihood ratio test when the model is correct, but is more robust, in the
sense of preserving size and hence confidence interval coverage, when the true
density is a contaminated model. A local starting point is the likelihood ratio
test for testing H: 3 = 8,. We can express it in terms of the likelihood disparity
function (13):

LRT = 2n[LD(d, m4o) — LD(d, myp)], with T = Ty(d).

The analogous form for our class of minimum disparity estimators is then the
disparity difference test statistic:

DDT = 2n[p(d,mg,) — p(d,mr)], with T = T(d).
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This is the test procedure devised by Simpson (1989) in the case of p equal to
squared Hellinger distance. We consider its behavior as a test statistic for a null
hypothesis of the form H: T(t) = 8y, where t may or may not be in the model.

THEOREM 6. Under the conditions cited in Appendix A, the following hold.:
(1) If t(x) is in the model, then, under the null hypothesis,

(18) DDT — X3imes)-
(ii) Under the null hypothesis, if t(x) is the true density and dim(8) = 1, then
DDT — c(t)x?,
where c(t) := Var;[T'(¢,X)] - V2p(t,mg)|s - go-
PrOOF See Appendix A.

This theorem has the following interpretation: suppose we use (18) to con-
struct a confidence statement about T'(t). If t is in the parametric model, then
the procedure is asymptotically correct. If not, and we are in the scalar 3 case,
then the interval is conservative or anticonservative depending on whether c(t)
is less than 1 or greater than 1.

For the likelihood ratio test we have the simple relationship

E:[uX, Bo) + Vu(X, o))
E[ - Vu(X, 5o)]

In Table 2 we compare these values for the Hellinger deviance test and the
likelihood ratio test, using Example 1 again, with t = m,, the contamination
being at ¢ = 12. It can be seen that the limiting distribution is considerably
more stable for the Hellinger distance.

In order to generalize these results and to find the role of A3, we examine the
effect of letting t = m. and taking the derivative of c(m.) as ¢ goes to zero. In this
manner we discover that those disparity tests whose chi-squared distribution is
most stable under small departures from the model are those with negative A,,
with optimal local stability provided by A; = —1. Let v(€) := u(¢; 8o)? + Vu(€, Bo)
and v := Eu(X, Go)v(X)] /i(Bo).

cLp(t) =1+

TABLE 2
Effect of contamination on disparity tests
€ c(¢) for HD ¢(z) for LD
0.1 1.112 2.000
0.05 1.063 1.523
0.01 1.019 1.109

0.00005 1.00026 1.00055
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PRrOPOSITION 7. For a minimum disparity estimator with curvature As

we have

dc(ma)
de

= i1 o(&) — yulg; Ao)]

i

+A2i_1 [u(f ﬂ0)2 s u({, IBO)E(u(X)a) ] .

In particular, for a one-parameter exponential family model,

dc(m,)
de

=i 1+ A€ — w? —i — (€ — )],

e=0

where i = E(Y — p)?.

PROOF. Again, a straightforward differentiation. Since the result is invari-
ant under reparameterization, the calculation in the exponential family case
can be simplified by using the natural parameterization for the calculation. O

For the example in Table 2, we can compute ¢; _(m.) = 12 and cyp(m,) = 6.
Thus the first-derivative approximation works well for the bottom entry of
Table 2, but does not show the extra stability generated across larger epsilon
by the Hellinger distance.

REMARK G. The element of the power divergence family with estimation
curvature A = A = —1 is the Kullback-Leibler divergence (11), which fails to
exist if there are empty cells [d(x) = 0]. However, Section 7 contains some new
disparity measures with A, = —1 that do not have this failing.

6. Global robustness features. Despite having an unbounded influence
function in the normal model, the minimum Hellinger distance estimator be-
haves in finite samples as if it were a bounded influence estimator, with a
nonzero breakdown point. Beran (1977) and Basu and Lindsay (1993a) have
shown in examples that one point £ in a data set can be moved to infinity with-
out changing the estimator in an unbounded fashion. Simpson (1987) gives a
breakdown lower bound in the case of minimum Hellinger distance and shows
that the bound equals 50% in the Poisson model. In this section, we uncover
the structural features of the residual adjustment function that lead to these
robustness features. ‘

6.1. Outliers. We need a formal mechanism to identify the effects of a
“large” Pearson residual §. Consider a fixed model mg(x) and contamination
level €. Let {¢;: j = 1,2,...} be a sequence of elements of the sample space X.
Let s i(-) denote the Pearson residual for the e-contaminated data,

dj(x) := (1 - &) d(x) + exe, (x).
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DEeFINITION 8. We will say that {¢;} constitutes an outlier sequence for the
model mg(x) and data d(x) if §;(€;) — oo and d({;) — 0 asj — oo.

Suppose we were to add a single new observation to the data. If we were to do
this at ¢; for j sufficiently large, we could make the Pearson residual arbitrarily
large for the given model. The following lemma gives a simple way to identify
such a sequence, and it shows that the definition does not depend on ¢.

LEMMA 9. The sequence {£;} constitutes an outlier sequence if and only if
d(¢;) — 0 and mg(¢;) — 0 as j — oo.

ProoF. Since 0 < d(x) < 1, we have, for every j,
(19) [e/mp(€)] =1 < 6;(¢) < 1/mp(E)).
The result now follows in an elementary fashion. O

REMARK H. Although we are here thinking of an infinite sample space, so
that we can make the residuals arbitrarily large, the calculations have obvious
relevance for large 6 in Example 1 because there are points in the sample space
with very small model probabilities.

6.2. Outliers and disparity measures. In order to evaluate the stability of
a disparity measure p(d, mg) under contamination, we consider its limiting
behavior under an outlier sequence ¢;. Let

d*(x) = (1 — )d(x).

Although d! is no longer a density function, we can still formally calculate
p(dX, mg). Note from the definition of p we have that

(20) p(d;,mp) — p(d,mg) ase —0,

under mild conditions of dominated convergence. Suppose that we also have
the following convergence:

21) p(dj,mﬂ) nd p(d;,mg) asj — 00.

If so, then putting together (20) and (21), for extreme outliers and small con-
tamination fractions ¢, the distance from the contaminated data d; to mg is
close to that obtained by simply deleting the outlier from the sample, p(d, mg).
There is an elementary sufficient condition on the function G in (8) that gives
us convergence (21). First, we let

(22) ' 62(x) = [di(x)/mp(x)] — 1.

AssumpPTION 10. G(-1) is finite, and G(6)/6 — 0 as 6§ — oo.
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Note that if G(—1) is finite, but G(§)/6§ — c, for some constant c, then, by
Remark C, we can without loss of generality use G*(6) := G(6) — ¢é, which does
satisfy the definition. We restrict attention to G* because it has the following
mathematically useful property.

" LEMMA 11. Under Assumption 10, G(6) is a decreasing function.
PROOF. The convexity of G implies G’ is increasing. By 'Hépital’s rule and
Assumption 10,G(6) — 0 as § — oo, and so G’ is negative. Hence G is a de-

creasing function. O

PROPOSITION 12. If Assumption 10 holds, then convergence (21) holds for
the disparity measure pg determined by G.

Proor. We have 6J(x) = 62(x) + €X§J(x)/mg(x), and so
pdj,mp) = > G(6:()mpx) +A; — B,

where A; = G(6;(¢;))mp(€;) and Bj := G(6:(£;))mp(€;). The claim is proved if
both A and B; go to zero as j — co. From (19), we have mg(x) < |1/6(x)|, so

Al < ‘G(5j(§j))/5j(§j)‘ —0 asj— oco.

Turning to the term B}, since —1 < §:(§;) < 6;(¢;), Lemma 11 implies that
|G(62(¢;))| < max[|G(-1)|,|G(5;(¢))|], so that a modification of the preceding
argument shows B; — 0 as well. O

As an application, we note that the power divergence family (9) has the
outlier stability property (21) provided A < 0.

6.3. Outlier stability of the estimating functions. We now turn from the
convergence of the disparity measure to the convergence of the corresponding
estimating functions. Following the ideas of the previous section, it is natural
to make the following definition.

DEFINITION 13. We will say that the residual adjustment function A(:) is

outlier stable for the model my if the estimating functions display the following
convergence under an outlier sequence:

(23) ST A(B,0) Vmpx) — Y A(8:(x) Vmp(x),
where 6 (x) is given by (22).

The consequences of this convergence will be offered shortly; we first offer
easy but statistically important sufficient conditions for outlier stability.
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PROPOSITION 14. If for some k > 1, Eglju(X;b)*] < oo for all 8, A(-1) is
finite and A(8) = O(8% ~V/*)as § — oo, then A(-) is outlier stable for the model my.

COROLLARY 15. Ifthe model mg has finite Fisher information for all 3, then
minimum Hellinger distance, and any other A(6) with A(§) = O(61/2) and finite
A(-1), is outlier stable for mg.

Proor. We first note that the finiteness of the expectation implies that the
terms in its summation representation must converge to zero, and so

mﬁ(&j)(l_k)/k|vmﬁ(§j)| —0 asj— oo.

We then proceed as in the proof of Proposition 12, noting that the difference be-
tween the two sides in (23) equals the difference between C; := A(§;(£;)) Vmg(€;)
and D; := A(6*(§;)) Vmp(;). Since A(6) is increasing, in both C; and D; the
term involving A(-) is bounded in absolute value by the larger of |A(—1)| and
|A(1/mg(€)))|. Letting t; := 1/mg(£;), we then have both C; and D; bounded
above in absolute value by

{AG) V —ACDYE P m(e)t =B Img(E)),
v, V)

where U; is bounded and V; converges to zero. O

As an illustration, for minimum Hellinger distance the limiting estimating
function in (23) is

ZA(&:(x)) Vmg(x) = 22\/(1 —e)d(x)/mg(x) - Vmg(x),

which is just v/1 — € times the function one would obtain if one ignored the out-
lier sequence and used the data d(x). Thus the solutions to the limiting equation
are exactly the same as one would obtain if the outlier were simply discarded
from the data set. Since the estimating equations converge, the solutions will
converge as well, provided the convergence is uniform.

In Basu and Lindsay (1993a) it was demonstrated in a numerical example
that the minimum Hellinger distance estimator has the outlier stability pre-
dicted by this result. That is, if a data point from original data set is moved
toward infinity, then the estimator of the mean shifts at first with the data
point, but then returns to the value it would have had if the point had been
deleted from the data.

6.4. Robustness of the estimator. There is a final, and more difficult, issue
that must be addressed before a complete picture of outlier behavior can be
formed. In particular, we have not addressed the discontinuity in ATyp(e) found
in Figure 1 at ¢ = 0.5. It arises because the disparity measures can have multiple
local minima and so it does not suffice to consider the estimating equations in
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(23) only. Instead we must return to the convergence of the disparity measures
in (21) in order to investigate the conditions under which the global minimum
T(d;) of p(d;, mg) will converge to T(d}).

DEFINITION 16. The strong breakdown point of the minimum disparity es-
timator T'(-) at the density d(x) will be the supremum of those ¢ such that
T(d;) — T(d}) for any outlier sequence.

REMARK I. Since a consequence of the specified convergence is generally
boundedness of the estimator sequence, having a strong breakdown point of *
will imply that the usual breakdown point [e.g., Hampel, Ronchetti, Rousseeuw
and Stahel (1986)] is at least £*. Given the functional nature of our estimators,
strong breakdown seems a natural mathematical object that is more informa-
tive about the actual behavior when large outliers occur.

Recall that under Assumption 10, the following convergence holds:
(24) p(d;,mg) — p(d¥, mp).

Thus it is plausible that, under slightly stronger conditions, the infima of the
left-side terms converge to the infimum of the right. On the other hand, it is
highly implausible that this convergence could hold in complete generality, as
for € near 1, one is moving over half the data to “infinity.” Our result will be as
predicted by Figure 1: the strong breakdown point is ¢ = 0.5 under the right
conditions. We start with some basic concepts and assumptions.

AsSuMPTION 17. It is assumed that p(d j, mg) and p(d}, mg) are continuous
in 3, with the latter having unique minimum at T(d}) = b*.

AssSUMPTION 18. It is assumed that the convergence in (24) is uniform in 3
for any compact set B of parameter values containing b*.

It is easy to see from the proof of Proposition 12 that Assumption 18 holds if

(25) supmg(§;) - 0 as j— oo.
BEB

This corresponds to an intuitive assumption on the model structure that, as ¢;
gets large, it becomes less and less likely to have arisen from a model distri-
bution with 8 near b*. As an example of (25), consider the Poisson model with
mean S, or any other exponential family model with infinite sample space.
With the uniformity of convergence it is readily proved that any sequence
{b#} of values of 8 that minimize p(dj, mg) over 3 in B do converge to b*.
In addltlon the minimized values of p converge to pmin(e,B), the infimum of
p(d,mg) over B. In this context, the main task is to determine whether the
b’; are eventually the global minima. Our plan of attack is to construct a lower
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bound C(e, B®) on the values of p(d;, mg) that is valid for all large j and for
B ¢ B. Suppose we can do so. Then, for any ¢* satisfying

(26) Pmin(é'*,B) < C(S*,Bc),

the global minimum must eventually lie within B and so be bﬁ, in which case
breakdown does not occur for £*. For this plan to work, we must choose B so
that we can construct a good lower bound C.

In order to construct this bound, we employ another assumption.

AssSUMPTION 19. It is assumed that for each 0 < v < 1 there exists a subset
S of the sample space such that (i) d(S) = X, cgd(x) > 1 — v and (i) C :=
{B:mg(S) > ~} is a compact set.

We note that such a subset S will exist for exponential family models: simply
choose S to be a finite set satisfying (i), and the resulting C will be compact,
in the mean value parameter. With this assumption, we can construct a very
good lower bound on the disparity measure that has the striking feature of
depending only on the function G(-).

LEMMA 20. Under Assumptions 10,17, 18 and 19, for every o > 0 there exists
a compact parameter set B, containing b* such that

L ) S Deua
jlfroloﬂlerlggp(d,,mg)_G(e 1)-a

PRrooOF Since the proofis rather long and technical, itis given in Appendix C.

Putting this lemma together with (26), we learn that there can be no break-
down for ¢ satisfying G(e — 1) — & > ppin(e, BS). If the density d(x) is a model
mg,(x), corresponding to an asymptotic strong breakdown point when the con-
tamination model is correct, then we can calculate py;, and so be more precise.

LEMMA 21. For m%(x) := (1—¢e)mg,(x), the global minimum pp;, of p(m}, mg)
occurs uniquely at b* = 3y, where it equals G(—¢).

Proor. The lemma follows from the strict convexity of G and Jensen’s in-
equality (the uniqueness follows from an assumption of identifiability on the
model). O

This leads us to our desired conclusion:

ProrosiTION 22. Under Assumptions 10,17,18 and 19, the asymptotic
strong breakdown point of the minimum disparity estimators is % or larger.

PRrooF. Since b* € B,, from the preceding lemma ppi,(e, BS) = G(—¢) for
every a. For those € such that G(—¢) < G(e — 1), we choose a such that G(—¢) <
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G(e — 1) — o, and we apply Lemmas 20 and 21 to show that eventually the
minimum over § in B, is smaller than for any 8 in B¢. Since G is strictly
decreasing, G(—¢) < G(e — 1) holds true for all ¢ less than 0.5. O

7. Some new disparity measures. Having completed the robustness
analysis, we can turn to the opportunities provided by these ideas.

7.1. Blended chi-squared measures. It is sometimes very simple to mod-
ify a distance measure to create a family of disparity measures with a wide
range of estimation curvatures A,. In a chi-squared distance, one can modify
the “weights” given to the squared discrepancies. To illustrate, for o any fixed
number in [0, 1] and @ := 1 — a, define the blended weight chi-squared disparity
to be

[d(x) — ms@)]”
[ad(x) + amp(x)]

@7 BWCS(e) =3 >

Here Pearson’s chi-squared [see (14)] corresponds to o = 0 and Neyman’s [see
(10)] corresponds to o = 1. Le Cam [(1986), page 47] considered the case o = 0.5,
showing that it is a squared distance satisfying the triangle inequality. The
corresponding residual adjustment function is

s al 6 1°
Asl6) = 1+a5+§[1+a5] '

We note that it is an increasing bounded function of 6, with Ay = 1 — 3.
A second weighting scheme that generalizes Hellinger distance (12) is
the following:

[d@) — mp@)]?
2[o/d(x) + aiy/mg(x) ] '

This family includes NCS, « = 1, and PCS, a = 0, as well as HD, a = 0.5. They
generate the residual adjustment function family:

BWHD,, = )

Al 6) = 8[w®)] " + gs“‘ [w©)] 3,

where w(6) := av/6 + 1 + @. This gives a family with /6 tails, Ay = 1 — 3« and,
for a = %, an estimator for which A”’(0) = 0, a form of third-order efficiency. In
Figure 4, the RAF A(6) for this blended weight Hellinger distance function is
shown. Note that the scale is different from Figure 3 and that, since A"/(0) = 0,
A(6) — 6 does not cross zero in a neighborhood of § = 0; in fact, just as in
Hellinger distance, A(6) < §, so that this disparity measure has the same qual-
itative behavior toward residuals as Hellinger distance, even as it provides
a form of third-order efficiency. Numerical experience in Basu and Lindsay
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Residual Adjustment Functions
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Fi1G. 4. The RAF for the second-order efficient blended Hellinger distance.

(1993a) substantiates the close agreement with maximum likelihood shown in
Figure 4.

REMARK J. One of the mathematically nice features of both disparity mea-
sures BWCS and BWHD is that, unlike the likelihood disparity (13), they are
bounded over all d and mg, so moments of all orders are guaranteed to exist. To
compare these new measures with the power-weighted divergence family, for
which Ay = )\, we note that we can obtain a range of local curvature Ay, includ-
ing second-order efficiency, without creating nonrobust tail behavior or having
difficulties with existence when cells are empty: for A < —1 the power-weighted
divergences become infinite for any empty cell [d(x) = 0]. Further illustration
of the geometric behavior of these estimators is given in Appendix B. Basu and
Lindsay (1993a) use BWHD to illustrate the trade-off between robustness and
efficiency in the normal model.

7.2. Robustness against inliers. 'To this point we have confined attention to
the effect on the estimation procedure of shrinking large positive residuals 6,
ignoring the behavior of the procedures for “inliers,” that is, § near —1. Such an
analysis is relevant if we wish to determine the effect of havmg missing data
in some cells, for instance.

Let us suppose we desire robustness against inliers and proceed by seeking
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FIG. 5. The RAF for NE and HD.

adjustment functions that downweight both positive and negative residuals rel-
ative to maximum likelihood, in the sense that |A(6)] < |§|. Given that A(0) =0
and A’(0) = 1, it is clear that A(6) must cross Ap(6) = § at § = 0, and since
A’(0) = 1 we must have A”(0) = A; = 0, else A(§) would stay on one side of
App(8) is some neighborhood of 0; that is, A(§) must be second-order efficient.
The third derivative A"’(0), if not itself zero, must be negative so that the cross-
ing occurs in the right direction. In order to investigate the implications of this,
we develop such a procedure: If we start with the convex function G(§) := e~ -1,
then we obtain the residual adjustment function

(28) Ang(6) =2 — (2 + 6)e~°.

Thus the negative exponential disparity measure (NE) generates a bounded
(by 2) RAF. Further, since,

A'(§)=(1+6e?, A"B)=—6e"® and A"(6)=(6- 1),

the minimum NE disparity estimator generates a second-order efficient estima-
tor that has the property that it shrinks both positive and negative residuals.
These features can be seen in Figure 5, where the Hellinger distance residual
adjustment function is shown for comparison.

Returning to Example 1, we find that the comparison of the negative expo-
nential disparity and Hellinger distance follows the implications of Figure 5: the
negative exponential has less bias for large positive ¢ and for negative ¢, while
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TABLE 3
Bias with winner in boldface

€ ATyp(e) /ATy p(e) ATNg(e) /AT p(e)

0.005 0.47 0.10

0.001 0.70 0.47

0.0005 0.80 0.72

0.0001 0.94 ' 0.98
—0.0001 1.08 0.97
—0.0002 1.21 0.83

Hellinger distance has less bias for very small positive ¢ and has worse bias
than maximum likelihood for negative ¢. See Table 3, where we find Hellinger
distance has less bias than negative exponential disparity for only one of the
selected values of . :

We note that even though the NE disparity is second order efficient, it has
less bias for contaminations above 0.0003, which is roughly the magnitude
of the cell probability. Also note that the effect of negative “contaminations”
is limited by the lower bound of —mg(¢) for ¢, as smaller values do not yield
nonnegative densities.

REMARK K. Understanding the full implications of using second-order ef-
ficient residual-shrinking residual adjustment functions will require consider-
able empirical investigation. However, it is again feasible to construct flexible
families of such procedures. For example, we can define an RAF based on the
logistic function to be

AN(8) = 4X"1[p(\6) — 0.5],
where ¢(t) := e’ /(1 +¢'), and then we get

A'(6) = 4¢(1 — ¢), A"(6) =4A[¢(1 — $)(1 —29)],
A"(6) = 4)2¢(1 — $)(1 — 6¢ + 6¢2).

Thus we get a flexible family of second-order efficient estimators, with bounded
residual functions and such that they approach the MLE RAF § as ) goes to
zero. The corresponding disparity measure can be found using formula (15).

8. Concluding remarks.

8.1. Computation. Basu and Lindsay (1993b) introduce an iteratively
reweighted estimating function approach to the calculation of the minimum
disparity estimators. Just as in the case of the M-estimator, the weights are a
useful diagnostic to the outlier status of the observations. We offer the basic
outline of the method:

Suppose that one can explicitly solve the maximum likelihood equation, as
in the binomial or Poisson model. The iterative reweighting algorithm arises
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from rewriting the estimating equation (5) so that it is a weighted form of the
likelihood equation, with weights defined by w*(x) := [A(6(x)) —A(-1)]/[1+6(x)]:

> A() Vmate) = Y [A(80) — AG-D)] V()
(29) = Z w*(x)(1 + 6(x)) Vmg(x)
= Z w* (x)d(x)ulx; B).

There is an arbitrary element to the choice of weights in the sense that A(—1) in
w* can be replaced by any other constant without changing the above equalities.
Since A is increasing, using A(—1) forces the weights to be nonnegative. [In Basu
and Lindsay (1993b), it is shown, however, that allowing negative weights can
greatly increase computational efficiency.]

The algorithm is as follows: given current estimate b, create weights w*(x)
and solve for (29) equal to zero with these weights fixed. For example, if mg is
the Poisson model, mean parameter 3, then the algorithm gives a reweighted
mean as the next value of the parameter:

S w*(x)d(x)x
Sw*()d(x)

When the algorithm has converged, the final set of weights w*(x) reflect the
relative influence that the observed cells had in the final solution.

bnew =

8.2. Outlier philosophy. It is thus clear that an outlier-stable estimating
function [say, with A(§) asymptotically /6] will give a large value of §(x) a weight
w*(x) near zero. Thus the philosophical evaluation of the robustness of the
procedure hinges on the desirability of downweighting large Pearson residuals.
These correspond to observations that are surprising, in the sense that they
occur in locations ¢ with small probabilities mg(¢); recall Remark B. This is
distinct from downweighting at those observations which are most influential,
in the sense that their presence or absence causes the largest numerical change
in the maximum likelihood estimator. The latter correspond roughly to large
values of the score function u(¢; 3).

In some models the concepts of surprising and influential overlap. For exam-
ple, in the normal location—scale problem an outlying observation is both influ-
ential on the maximum likelihood estimates and surprising under the model.
On the other hand, in a double-exponential location model, no single observa-
tion has a large influence on the maximum likelihood estimator (the median),
but it is still possible to have a surprising outlying observation, as would arise,
for example, if the true distribution were Cauchy. Since the idea of robustness
hinges largely on stability of the parameter estimates under slight departures
from the model, an approach based on downweighting data points of dubious
authenticity seems quite natural.

In a final note regarding minimum Hellinger distance, we note that, while
it has the nice feature of having just the right tail behavior to deal with large
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outliers, it has some defects with respect to inliers. In addition to the nonrobust
bias properties discussed in Section 7.2, we note that if the true distribution
has zero cells, the fact that A’(—1) = co means the influence function analysis
in Proposition 1 is invalid.

APPENDIX A

Limiting distribution of the estimators. This appendix establishes the
asymptotic distribution theory for the minimum disparity estimators, under
some mild conditions on the residual adjustment function A(-), the model m g(x)
and the true density #(x). This exercise is made more challenging, and therefore
worth documenting, by the infinite sample space, as we must therefore be sure
convergence occurs in a summable fashion. The main tool is a device for switch-
ing the remainders from Pearson residuals to Hellinger residuals. Beyond this,
many of the proofs are familiar Taylor expansion arguments in nature and so
are merely sketched.

We now subscript with n the Pearson residual,

bp(x) = )

H

and we let §;(x) := [t(x) — m(x)] /m(x) be its almost-sure limit as n — oco. The first
goal is to find the limiting distribution of

Fi = vy [A(6:) - A(6:00) | Vg,

and the method will be to show it is asymptotically equivalent to a Taylor
expanded version:

Fan =Y _[62(x) — 6:@)] A’ (6:x)) Vmp(x).

Once this is done, we will have proved the following theorem by an elementary
application of the central limit theorem to Fy,.

THEOREM 23. Under Assumptions 24 and 28 (below), and assuming that
V i= Var [A'(800)u(5; X)|

exists finitely, then
Fy, — N(O,V).

In order to establish the equivalence of F, and Fj,, the approach will be to
bound stochastically the differences in summands:

D,@) = [A(8n@) — A(6®)] - [8®) - &G)] A’ (6G0)
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The infinite sums involved force us to exercise some care that bounds are
summable over x, and so it is advantageous to convert from Pearson residu-
als to Hellinger residuals, as then the techniques of Simpson (1987) can be
used. Here the Hellinger residuals are

ra(x) = [\/d,,(x - \/mﬁ(x)]/\/mg(x).

Let r;(x) be the same, but with #(x) replacing d,(x). Our approach will be to
establish a bound of the following type, for some constant B:

(30) IDn(0)] < Bra) — r@))”.
For this purpose, the following fairly strong assumption suffices.

ASsSUMPTION 24. Itis assumed that A'(6) and A" (6)6 are bounded on [—1, 0o).

REMARKL. This condition is satisfied for the negative exponential disparity
(28) and the blended weight chi-squared disparity measures (27), provided o
is not 0 or 1. Unfortunately, the boundedness requirements fail at § = —1 for
some of our measures, such as the blended Hellinger disparity measures. For
these measures A’(§) — oo as § — —1 and, in particular, the influence function
analysis in Proposition 1 fails if the true density satisfies #(x) = 0 for some
elements of the sample space. We have taken the approach here of increasing
the restrictions on A(6) so as to expand the range of true distributions t for
which the result holds.

LEMMA 25. If A(6) satisfies Assumption 24, then (30) holds.

Proor. It suffices to show that, for all nonnegative r and s,
|A(r2 -1) —A(s2 -1)- (r2 —sz)A’(s2 - 1)| < B(r — s).

We will show that a second-order Taylor series of the function within the ab-
solute values, in r, about s, gives the result. First, the function is zero at r = s,
and its first derivative is 2rA’(r2 — 1) — 2rA’(s?2 — 1), which is zero at r = s. Thus
all that is needed is to show that the second derivative in r is bounded in s and
r. The second derivative equals 4r2A"(r2 — 1) + 2A/(r%2 — 1) — 24/(s? — 1), which
is bounded by Assumption 24. O

Next we need to establish some technical results which enable us to bound
the magnitude of the Hellinger residuals. We here can draw on ideas from
Simpson (1987). Let

Vo) = VA [ra) — re@)]”.

LEMMA 26. For k € [0,2], the following hold:
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(D) E(Yn ()] < E|62(x) — 6;()Fn*/2 < [{#(2)[1 — #(x)]}Y/ 2 /mp(x)1%;
(1) El|6n(x) — 60|l < 2[2x)(1 — #(x))] /mp(x).

ProOOF. The first inequality in part (i) follows from the string
(Vd - Vi)® < |Vd - VE(Vd+ Vi) = |d - ¢.

The second inequality in (i) is just the Liapounov inequality for the Lj- and
Lj-norms, using the fact that 6, is an iid average of Bernoulli variates. Part
(ii) follows from the triangle inequality for the absolute value function, again
writing §, as a sum. O

LEMMA 27. lim, _, . E[Y;®)] =0 forp € [0, 2].

PROOF. First, Y, (x) converges to zero in probability by elementary Slutsky
results. Then, from part (i) of Lemma 26, notice that for each p there exist
k > p, namely, k£ = 2, such that the L;-norm of the sequence is bounded. Now
use Theorem 4.5.2 of Chung (1974). O

These bounds are sufficient for our purposes, provided we make one tail as-
sumption about the summations involving the true distribution and the model.

ASSUMPTION 28. It is assumed that

> ) ulx; B)] < oo.

LEMMA 29. Under Assumptions 24 and 28,
E|Fy, —Fy,| - 0 asn — oo,
and so Theorem 23 holds.

PROOF. From (30), we need only show that L;-convergence to zero of
YY.(x) |[Vmp(x)|. It suffices by the dominated convergence theorem to show
that the expectation of each summand is dominated by a summable function
for all n. However, by Lemma 26, E[Y,(x)] < #(x)}/2/mg(x), so Assumption 28
suffices. O :

AssuMmPTION 30. Given that t(x) is the true distribution, it is assumed that
there exists a unique (; that minimizes the disparity p(t,mg), and that it solves
the minimum disparity equation (5).

For the remaining results, we need to make some assumptions about the
family of models. These are just a slight extension of those used for most proofs
of the limiting properties of maximum likelihood estimators. We will let u;, u;j
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and u;, denote the first, second and third derivatives of log mg(x) with respect
to the 3’s, where the subscripts denote the components of 3 involved.

AssuMPTION 31. It is assumed that the family of models satisfies the regular-
ity conditions in Lehmann [(1983), pages 409 and 429] and, in addition, there
exist M j(x),M;; r(x) and M; ; 1(x) that dominate is absolute value u;j(x; ),
u; j(xc; Bug(x; B) and u;(x; B)u j(x; Bug(x; B), respectively, for all B in a neighbor-
hood w of By, and that are uniformly bounded in expectation Eg for all 3 in some,
possibly smaller, open neighborhood of (3.

ASSUMPTION 32. It is assumed that the expectations in Assumption 31 also
exist for the true density t(x).

THEOREM 33. Under Assumptions 24,28, 30,31 and 32, there exists a con-
sistent sequence of roots (3, to the minimum disparity equation. They satisfy

V(B — Br) — MVN(O,Var(T’(X))),
where Var(T'(X)) is determined by the influence function in Proposition 1.

ProoF. To prove consistency we follow the arguments of Lehmann [(1983),
page 430]. We take a Taylor series expansion of p(d, mg) about 8 = 3; and show
that it behaves locally like a positive definite quadratic, so it has a minimum
in the neighborhood of 3;. We show in outline how one can deal with the terms
of the expansion. Let subscript 0 denote evaluation at 3 = ;.

(Linear term.) 3 A(6,0(x)) Vmg(x). We have the corresponding sum with §; for
80 equal to zero by definition of 3, so it suffices to show that the difference
between the sums goes to zero. Since A’(6) is bounded (say, by C), the absolute
value of this difference is bounded by

D Clno@) — 6:x)| [Vm(x)].

Now use the convergence to zero in expectation of the residual difference, from
part (i) of Lemma 26, for each x, together with the domination bound generated
by part (ii) for a proof like that of Lemma 29.

(Quadratic terms.) A term of the form ¥ {A’(6,0)}u;ujm has the derivative
term bounded by C, so we can take the limit inside. A term of the form
${A"(60) bno}u;u;m can have the limit taken inside (and hence converges to
zero in L) by using

| A"(8,0)8n0 — A'(6)6¢] < | A(6n0)Bn0 — &)| + |8¢(A'(6p0) — A(61)).

Other arguments go similarly.

(Cubic terms.) The arguments are very similar here except that now one
must take account of the evaluation at some b*, not 3;, where b* depends on
the data. Here we need only show that all terms converge, which provides
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some simplifications. For example, consider the term 3 A”(6} )6x2ur ujuym*. The
summand will be bounded in absolute value by |6%(x)|M;, ; 1(x)m*(x), which is
in turn bounded by [d,(x) + m*(x)]M;, ; 1(x). Hence the expectation is bounded.

This completes the outline of the consistency result. The asymptotic nor-
mality result follows from another Taylor series argument without any further
difficulty in the convergence of the second-order terms. Here one uses Theorem
23 to obtain the limiting normality of the leading term. O

The limiting chi-squared distributions of Theorem 6 follows from the same
standard arguments.

APPENDIX B

The geometry of estimation curvature. Our objective here is to demon-
strate geometrically the role of A, in estimation. [For a recent review of differ-
ential geometry in statistics, see Kass (1989).] For discussing estimation cur-
vature in the multinomial model, it suffices to consider the ordinary Euclidean
geometry of the probability simplex of all possible multinomial models, which
we write as S := {p: p-1 = 1,p > 0}. If we hold § fixed (say, 5,) and consider
all potential sample proportions p which have £, as a solution to the likelihood
equation—the Gy-contour of the maximum likelihood function—we obtain the
convex subset of S:

A={p:p-1=1,p-ug =0,p > 0}.

Here ug, is the vectorized score function u(x; 3).

In order to picture this geometry, we let K =2, so that the vectors
P = (p(0), p(1), p(2)) are three-dimensional. The probability simplex then lies
in a two-dimensional hyperplane. In Figure 6, one-half of the simplex is shown,
consisting of all probabilities p with p(2) > p(0). As our model, we consider the
binomial (2, 3) probabilities

mg = ((1- B)%,26(1 - ), 5%).

These vectors lie along the dashed line in Figure 6 for § in the range 0.5 to 1.
For our true value we let 8, = -g- and so the true call probabilities are m, :=
mg, = (3, 5, ).

For this model the set A consists of all points p which yield T'(p) = %— In the
figure, A is a vertical line segment. In fact, for this exponential family model
this is all points p satisfying Zxp(x) = 2 - (2).

First-order efficiency has a geometric interpretation. In Figure 6, the g = %
contours of minimum Pearson chi-square [PCS, equation (14)] and minimum
Neyman chi-square [NCS, equation (10)] are shown, that is, all points p on
the illustrated curves will yield 3 = % as the value of the MDE. One can think
of these contours as describing a curved projection operation from the data
space to the model. The first-order efficiency of these methods corresponds to
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Estimation Contours
P=(0,1,0)

BIN(2,.5)

¥ P=(0,0,1)

P=(.5,0,.5)
BWCS PCS

F16. 6. The half-simplex, with the binomial model and the contours of the MDE’s based on NCS,
PCS, MLE and BWCS. o

the tangency of linear set A to their contours at the model point mg, for each
possible true model gy.

The second-order efficiency of these estimators is related to the curvature
of their contours in a neighborhood of mg,. For minimum disparity estimators,
this curvature is a function of the second derivative A”(0) = Az of the RAF: we
note that the contour of the estimating function in a neighborhood of mg, is
approximately that of its quadratic approximation (in §) there. In our case we
can write this quadratic approximation as

-Vp= Z [6(x) + Ap6%(x)/2] Vm ().

Thus for our purposes A, represents a simple and direct local measure of the
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departure of the estimating function contour from that of the maximum likeli-
hood estimate.

In particular, if Ay = 0, then our MDE contour agrees with that of maximum
likelihood to second order. In Figure 6, the contour of the second-order-efficient
blended weight chi-squared distance (27) is also shown (with o = %). Regarding
the interpretation of second-order efficiency, in the binomial example it should
be noted that for an estimator to be a function of the minimal sufficient statistic
it must have the same contours as the maximum likelihood estimator, so depar-
tures from those contours represent, in a sense, a departure from dependency
on those sufficient statistics.

APPENDIX C
Proof of Lemma 20.

Choose a sample space set S and parameter set C as per Assumption 19,
corresponding to some yet to be determined v. We use S to bound probabilities
of the likelihood ratio set R := {x:d(x) < ymg(x)}. For every § € BS, we have

mg(RC) = mg(R N S) + mg(RC N S°)

(31) _ i
< mg(S) +d(S°)/y < v ++% /7 = 27.

Another inequality we shall need is
(32) dR)=dRNS)+dRNS®) < ymp(S) +d(S°) < 2.

Next, we compute the disparity measure by performing the sample space sum-
mation separately over the three disjoint sets:

E, =R\{{;}; Ez2:={{} Es:=R\{{}

The monotonicity of G and the construction of R gives

(33) S1:=) mp)G(6(x)) > mp(EnG((1 - eyy - 1).
E,

Let S2 be the single term mg(¢;)G(6(¢;)). Finally, for the third summation we
get a lower bound using convexity of G and Jensen’s inequality:

(A-0d®y) )

83 := Zmﬁ(x)G((s(x)) 2 mﬁ(E?‘)G( mg(Eg)

E;

We claim that this last lower bound for S3 can be made as close to zero as
desired: since we assume that G(§)/§ — 0 as § — oo, it suffices to show that,
for j sufficiently large (say, j > J) and for ~ sufficiently small (say, v < I'), that
we can force mg(E3) to be as small as we like, without d(E3) also getting small.
Since d(¢;) — 0 and d(E3) = d(R°\{¢,}), upper bound (32) gives the latter. For
the former, we can apply (31). Thus, we can require that S3 > —a/2.
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Let M := mg(E; U {¢;}). From Jensen’s inequality and the lower bound (33)
for S1, we have

(39)  S1+82>MG(M[(1 - erm(E)+(1-e)d(E)+e] - 1).

Since with v small, M can be made arbitrarily close to 1 by (31), v itself can
be made arbitrarily small and d(¢;) goes to zero, we can make G’s arguments
in (34) as close to ¢ — 1 as we like by choosing v small and j big. The continu-
ity of G then indicates that we can choose I" and J such that, for v < T" and
Jj>J,81+82+83>Ge—-1) - .

Finally, we note that we can always include b* in B, without changing the
lower bound. O
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