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FINITE SAMPLE BREAKDOWN POINTS OF PROJECTION BASED
MULTIVARIATE LOCATION AND SCATTER STATISTICS!?

By Davip E. TYLER

Rutgers University

Finite sample breakdown points are obtained for two classes of projec-
tion based multivariate location and scatter statistics: the Stahel-Donoho
statistics and the Maronna-Yohai statistics. The definition of these multi-
variate statistics are dependent on the value of location and scale statistics
for all univariate projections of the data, and consequently their properties
depend on the nature of the corresponding univariate location and scale
statistics used on the projected data. The finite sample breakdown points
of the multivariate statistics, though, are not directly related to those of
the corresponding univariate location and scale statistics. A uniform finite
sample breakdown point concept is needed.

The median and the median absolute deviation about the median
(M.A.D.) are one possible choice for the univariate location and scale statis-
tics, respectively. For sparse data sets in high dimensions, though, it is not
recommended that the M.A.D. be used as the univariate scale statistic for
the projected data since its uniform finite sample breakdown point is shown
to be much less than optimum. A simple modification to the M.A.D., how-
ever, is shown to alleviate this problem.

For various reasons, one may wish to consider univariate location and
scale statistics other than the median and the M.A.D., respectively. A very
broad and natural class of univariate location and scale statistics to consider
for the projected data is the simultaneous M-estimates of location and scale.
New results on their breakdown properties are given in this paper. Implicit
formulas for the breakdown points of monotonic simultaneous M-estimates
of location and scale are known, and they tend to imply rather low break-
down points for smooth choices of the defining weight functions. It is shown
here that this phenomenon does not occur for a large class of nonmono-
tonic simultaneous M-estimates of location and scale. Furthermore, explicit
rather than implicit expressions for the uniform finite sample breakdown
points are given for these nonmonotonic M-estimates.

1. Introduction and summary. In the past decade, there has been con-
siderable interest in the study of affine equivariant multivariate location and
scatter statistics which have high breakdown points regardless of the dimen-
sionality of the data. The first multivariate location and scatter statistics which
were shown to be both affine equivariant and to have breakdown points near
% were independently introduced by Stahel (1981) and Donoho (1982). Subse-
quently, other high breakdown point affine equivariant multivariate location
and scatter statistics have been introduced, with perhaps the most well known
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being Rousseeuw’s (1985) minimum volume ellipsoid estimator (MVE) and its
generalization, the multivariate S-estimator [see Davies (1987) and Lopuhaa
(1989)]. More recently, a new class of high breakdown point affine equivariant
scatter statistics has been introduced by Maronna and Yohai (1989). Both the
Stahel-Donoho and the Maronna-Yohai statistics are projection based statis-
tics. Their definitions depend on location and scale statistics for univariate
projections of the data.

The breakdown point of an estimator or a statistic can be defined in a number
of different ways. As originally defined by Hodges (1967) and Hampel (1968), the
breakdown point was essentially an asymptotic rather than a finite sample size
robustness measure. An increasingly popular and intuitively appealing con-
cept, the finite sample size breakdown point, was introduced by Donoho (1982)
and Donoho and Huber (1983). For the MVE-estimators and the S-estimators of
multivariate location and scatter, both the asymptotic and the finite sample size
breakdown points have been well studied [see Davies (1987), Lopuhai (1989)
and Lopuhai and Rousseeuw (1991)]. However, for the projection based statis-
tics only the asymptotic breakdown points have been previously studied, with
the exception of Donoho’s (1982) results on the finite sample breakdown point of
the Stahel-Donoho statistics when the univariate location and scale statistic is
taken to be, respectively, the median and the median absolute deviation about
the median (M.A.D.).

In this paper, the finite sample breakdown points of the Stahel-Donoho
statistics are obtained in general (Section 3.1), along with the finite sample
breakdown points of the Maronna-Yohai scatter statistics and some extensions
of their approach to multivariate location statistics (Section 3.2). The behav-
ior of projection based statistics depends on the nature of the corresponding
univariate location and scale statistics used on the projected data. Unlike the
asymptotic breakdown points, the finite sample breakdown points of the mul-
tivariate statistics are not directly related to those of the corresponding uni-
variate location and scale statistics. A uniform finite sample breakdown point
concept for the location and scale statistics is needed [see (2.8)].

The median and M.A.D. are one possible choice for the univariate location and
scale statistics. For sparse data sets in high dimensions, however, the M.A.D.
is not recommended to be the univariate scale statistic used on the projected
data since the resulting finite sample breakdown point of the corresponding
multivariate location and scatter statistics is shown to be much less than op-
timum. A simple modification to the M.A.D., though, can be made to alleviate
this problem [see (3.5)].

For various reasons, one may wish to consider univariate location and scale
statistics other than the median and variants of the M.A.D., respectively. A very
broad and natural class of univariate location and scale statistics to consider
for the projected data is the simultaneous M-estimates of location and scale. A
study of their breakdown properties is a major part of this paper (Section 4).
Although the breakdown points of the M-estimates of location-only have been
studied extensively, there is relatively little known for the breakdown points
of the simultaneous M-estimates. This is partially due to the perception that
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scale is often just a nuisance parameter in the univariate setting [e.g., see
Hampel, Ronchetti, Rousseeuw and Stahel (1986), page 105]. However, here,
the scale statistic is instrumental in defining projection based multivariate
shape statistics, that is, functions of the scatter statistic which are invariant
under scalar multiplication of the scatter statistic, and it is often the shape
statistics which are of primary interest in multivariate analysis. There is also
a perception that the simultaneous M-estimates of location and scale may be
less robust than M-estimates of location-only in conjunction with an auxiliary
scale statistic such as the M.A.D. In particular, Huber [(1981), Section 6.6]
gives an implicit formula for the asymptotic breakdown points of simultaneous
M-estimates for which the influence functions of both the location and scale
components are monotone. His results imply that these statistics tend to have
low breakdown points whenever the influence functions of the location and scale
statistics are considerably smoother than the influence functions for the median
and the M.A.D. As shown in Section 4, though, this does not necessarily occur for
certain classes of nonmonotonic simultaneous M-estimates. Moreover, explicit
rather than implicit expressions for the uniform finite sample breakdown points
can be given for a large class of nonmonotonic M-estimates.

Section 2 establishes some concepts and notation. The proof for the main
theorem of Section 4 is given in the Appendix.

2. Equivariance and breakdown. LetX = {x;,...,X;,}represent a point
cloud of n data points in R?. Location and scatter statistics for the point cloud X
are denoted, respectively, t(X) € R? and V(X) € PDS (p), where PDS (p) rep-
resents the set of all p x p positive definite symmetric matrices. The statistics
[t(X), V(X)] are said to be affine equivariant if, for any b € R? and any p x p
nonsingular matrix A,

2.1) tAX+b)=AtX)+b
and
(2.2) VAX +b) = AVX)A’,

where AX +b = {Ax; +b,...,Ax, + b}.

Donoho and Huber (1983) discuss two types of finite sample breakdown
points, replacement and contamination. The concept employed here is the fi-
nite sample replacement breakdown point. Suppose m arbitrary data points
Y = {y1,...,¥m} replace m data points from the original data X = {x;,...,x%,},
producing a corrupted sample Z which consists of a fraction of ¢,, = m/n bad
values. For a given ¢,,, a statistic is said to break down under &,,-corruption if
the difference between the statistic on the original sample X and on the cor-
rupted sample Z can be made arbitrarily large in some sense for varying choices
of Y and of the m replaced data points from X. The finite sample breakdown
point of the statistic at the sample X is defined to be £*(X), the infimum of all
&m causing breakdown.
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More formally, let [t(X), V(X)] € R? x PDS (p) and [t(Z), V(Z)] € R? x PDS (p)
represent location and scatter statistics for the original data X and the contam-
inated data Z, respectively. Assuming [t(X), V(X)] exists, define the maximum
bias caused by ,,-corruption to be

blem,X; t, V) = supy [ma" {“V(X>'1/2{t(X) - 1@},
(2.3)
tr{ VX)WV (2Z)~! + VX)~'V(Z)} }]

provided [t(Z), V(Z)] exists for all possible Z , and b(e,,,X; t, V) = oo otherwise,
where the norm ||t| = (t't)"/2. Note that the maximum bias b(e,,X;t,V) is
invariant under affine transformations, that is,

(2.4) blem, AX +b;t,V) = blen, X;t,V),

for any nonsingular A and any b € R, whenever [t(-), V(-)] is affine equivari-
ant. Breakdown occurs under ¢,,-corruption whenever b(¢,,,X;t,V) = co. This
implies either [t(Z), V(Z)] does not exist for some form of ,,-corruption, ||t(Z)||
can be made arbitrarily large, the largest root of V(Z) can be made arbitrarily
large or the smallest root of V(Z) can be made arbitrarily close to zero. The
finite sample replacement breakdown point of [t(X), V(X)] at X is then defined
to be

(2.5) e X;t, V) = rr}nin{am =m/n | blem,X;t,V) = c0}.

The finite sample breakdown point can be dependent not only on the particular
location and scatter statistics used but also on the nature of the good data X.
As with the S-estimators studied by Davies (1987), the breakdown points of
the projection based statistics turn out to be the same for all point clouds X in
general position. This means that the space generated by any p + 1 vectors in X
equals RP. This occurs with probability 1 when X represents a realization from
an absolutely continuous distribution in R™”. For X in general position, Davies
(1987) gives a strict upper bound for the finite sample replacement breakdown
point for affine equivariant location and scatter statistics, namely,

(2.6) e*X;t,V) < |(n —p+1)/2]/n,

where |k| represents the maximum of zero and the greatest integer less than
or equal to k.

In this paper, general point clouds are considered. In practice, due to possi-
ble rounding or discreteness of the data, the good data may not be in general
position. For general X, the strict upper bound in (2.6) becomes

@2.7) X, V) < |{n—c® +1}/2] /n,
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where ¢(X) represents the maximum number of data points in any (p — 1)-
dimensional hyperplane. When X is in general position, ¢(X) = p and so (2.6)
and (2.7) coincide. The proof of (2.7) is identical to Davies’ (1987) proof of (2.6),
so it is omitted.

A univariate projection of the point cloud X can be represented by

a'’X={a'x;,...,a'x,}.

Let [u(-), 0(:)] represent translation and scale equivariant univariate location
and scale statistics, that is, [u(-),0%(:)] are affine equivariant. For example,
1(a’X) may be the sample median of a’X and o(a’X) may be the sample M.A.D. of
a’X. The definition of the finite sample replacement breakdown point e*(x; y, o)
of [u(+),0%(-)] at a univariate data set x = {xy,...,%,} is simply the univariate
version of (2.5). A stronger concept, however, is needed in later sections when
considering all univariate projections of the p-dimensional data cloud X. For
[1(-), o(-)], define the uniform finite sample replacement breakdown point at X
to be

m
n

(2.8) e*X; p,0) = min {sm = supb(em, a’X; p,0%) = oo},
a

where the supremum is taken over a € RP\{0}. The definition of the maxi-
mum bias function b(e,,, X; i1, 02) is the univariate version of (2.3), applied to
[1(-),%(-)]. By the invariance property (2.4), it is sufficient to let the supre-
mum in (2.8) be taken over a € §,_; = {a € R? | a’a = 1}, the p-dimensional
unit sphere. If x is a univariate data set, then ¢**(x; u,0) and £*(x; u, o) are
equivalent.

A relationship between the uniform breakdown point and the breakdown
points themselves for the univariate location and scale statistics can be obtained
immediately from (2.8), namely,

(2.9) e*X;p,0) < il;lf e*(a’X;pu, o),

where the infimum is over a € RP\{0} or, equivalently, over a € §, _ ;. Equality
can be shown to hold in (2.9) if for any data set Z = {z;, ..., z,} the statistics
w@’'Z) and o(a’Z) are continuous functions of a. Otherwise, equality in (2.9)
does not necessarily hold. A counterexample to equality in (2.9) is given at the
end of Section 3.1.

The same strict upper bound given by (2.7) also holds for e**(X; p, o), that is,

(2.10) e*X; pu,0) < [{n —cX) + 1}/2J /n.

Although this upper bound can be shown directly, it is viewed here as a corollary
to (2.7) and Theorem 3.2 of the next section.
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3. Projection based statistics.

3.1. The Stahel-Donoho statistics. The Stahel-Donoho class of multivari-
ate location and scatter statistics for the data cloud X are defined as follows.
Given translation and scale equivariant univariate location and scale statistics
[u(+), ()], define, for any v € R?,

3.1) r(v,X) = sup {M}

o(a’X)

where the supremum is over a € R or, equivalently, over a € §, _ ;. The value of
r(v,X) is affine invariant, that is, r(v, X) = r(Av+b,AX +b) for any nonsingular
A and any b € R?, and represents a measure of how far the point v lies from
the data cloud X. The Stahel-Donoho statistics are then obtained by taking a
weighted mean vector and covariance matrix which downweights outlying data
points. Specifically, define

Y wix;
(8.2) tX) = =£5——
2i=1Wi

and

- Z?:q wi{x,- - t(X)} {xi - t(X)}'
Z?:l w; !

where w; = wlr(x;; X)] for i = 1,...,n with w: R — R* being bounded and
continuous, and r2w(r) being bounded. Here, R* is the set {w > 0}.

As noted in the introduction, the Stahel-Donoho statistics were the first
affine equivariant statistics to be shown to have breakdown point near % regard-
less of the dimension p. Stahel (1981) shows that the statistics (3.2) and (3.3)
have asymptotic breakdown point 1 at continuous multivariate models when-
ever the corresponding univariate location and scale statistics have asymptotic
breakdown point -21- For a more readily accessible treatment of Stahel’s proof,
see Hampel, Ronchetti, Rousseeuw and Stahel [(1986), Theorem 5.5.3]. When
X is in general position and the corresponding univariate location and scale
statistics are the sample median and the M.A.D., respectively, Donoho (1982)
derives the finite sample breakdown point of the statistics (3.2) and (3.3). His
results are in terms of the finite sample contamination breakdown point, which
when interpreted in terms of the finite sample replacement breakdown point
[e.g., see Davies (1987), page 1288] is

(3.4) e*(X;t,V) = |(n — 2p +2)/2| /n.

Expression (3.4) does not correspond to the finite sample replacement break-
down point of the median and M.A.D., which is |n/2]|/n whenever the “good”
univariate data has no duplications. From Donoho’s (1982) derivation of (3.4),
it can be verified that (3.4) corresponds to the uniform finite sample replace-
ment breakdown point of the median and the M.A.D. The following theorem
establishes a general relationship.

(3.3 VX)
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THEOREM 3.1. For the statistics defined by (3.2) and (3.3), ¢*X;t,V) >
e**(X; i, o) with equality holding whenever e**(X; u,0) = |{n — ¢X) + 1}/2] /n.

ProoOF. Let ¢, < ¢*(X;pu, o) and so there exists a by < oo such that b(e,,,
a’X; u,0) < bpforalla € §, _ ;. Thisimplies the existence of scalars 19, 0o and oy
such that |u(a’Z)| < pp < coand 0 < 0y < 0(a’Z) < 07 < o foralla € §,_; and
all ¢,,,-corrupted data sets Z. For any x; € X, r(x;; Z) must therefore be uniformly
bounded above over all possible Z. By the conditions on w, the denominator in
(3.2) and (3.8) is uniformly bounded away from zero over all possible Z.

Next, consider the numerators in (3.2) and (3.3). For any a € 8, _ 4,

{a'z — u(@'Z)}

! !
|a’z| < o(a’'Z) @)

+ |(@'Z)| < o17(2z; Z) + po.

This implies w{r(z;; Z)]|a'z;| < o1w;r(z;; Z) + pow;, which by the conditions on w
implies the numerator in (8.2) is uniformly bounded above over all possible Z.
Similarly, the numerator in (3.3) is uniformly bounded above over all possible
Z since r2w(r) is bounded above.

The proof is completed by showing that, for any a € §,_1,a’V(Z)a is uni-
formly bounded away from zero for all possible Z. This holds, since other-
wise there must exist (n — m) vectors from X (say, X;) such that, for some
ae8,_1,t € R’ and all x € X, a’(x — t) = 0. This implies (n — m) < ¢(X) and
80 &, > 1 — ¢(X)/n, which contradicts (2.9). The statement concerning equality
follows from (2.7). O

The proof of Theorem 3.1 is similar to Stahel’s proof for the asymptotic break-
down point. A brief technical remark concerning £**(X; i, o) may be instructive
here. As noted previously, e**(X; u,0) is not equivalent to the finite sample
replacement breakdown point of the location and scale statistics. This is in con-
trast to the asymptotic breakdown points considered by Stahel (1981), which are
defined on location and scale functionals and employ the Prohorov distance be-
tween two distributions in measuring bias. At continuous multivariate models,
a breakdown point of ¢* for the univariate location and scale functional implies
the maximum bias of the location and scale functionals is uniformly bounded
above over all marginal univariate distributions when the proportion of con-
tamination is less than ¢*. Empirical distributions though are not continuous,
and replacement neighborhoods are not equivalent to Prohorov neighborhoods.
For discrete distributions, problems arise mostly because different point masses
will coincide for certain projections. The introduction of ¢**(X; u, o) is needed to
account for this effect.

It is not clear whether equality holds in general in Theorem 3.1 without
further conditions on the univariate location and scale statistics. When using
the sample median and the M.A.D. in (3.2) and (3.3), Donoho (1982) proves only
that (3.4) is a lower bound for £*(X; t, V), but notes that it can also be shown to
be an upper bound. A readily accessible treatment of Donoho’s derivation of the
lower bound is given in Huber (1985). Equality in (3.4) follows by noting that if
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m = |(n — 2p + 2)/2] replacements lie in the same plane as p of the remaining
data points, then the M.A.D. = 0 for the univariate projection orthogonal to
that plane, and so (3.2) and (3.3) are not defined.

A sample of size n > 10p — 5, when 7 is odd, and of size n > 10(p - 1),
when 7 is even, is needed for (3.4) to be as large as 0.4, whereas a sample of
size n > 5p, when (n — p) is even, and of size n > 5(p — 1), when 7 is odd,
is needed for the strict upper bound (2.6) to be as large as 0.4. Breaking the
previous statement into different cases is needed since neither (2.6) nor (3.4) is
monotonic in 7, although both are monotonic for even n and for odd n. For data
clouds as sparse as n = 2p, (2.6) goes to % whereas (3.4) goes to zero as p — oo.
The drawback in using the M.A.D. in sparse data sets is due to the proportion
of inliers arising from certain projections of the data. A slight modification to
the M.A.D. can be made to alleviate this problem. Replace the M.A.D. by the
{k + (n + 1)/2}th smallest absolute deviation about the median when n is odd,
and by the average of the (¢ + n/2)th and (% + 1 + n/2)th smallest absolute
deviation about the median when n is even. Together with the median, for Xin
general position,

(3.5) e*X;p,0)=|(n—2p+k+2)/2]/n and Xt V)=c"X;p,0),

fork =0,1,...,p — 1. The proof of (3.5) is analogous to that of (3.4). Ifk =p — 1,.
then the corresponding Stahel-Donoho statistics achieve the maximal possi-
ble breakdown point (2.6). Other location and scale statistics are considered
in Section 4.

To construct a simple counterexample to equality in (2.9), suppose X is in
general position and 7 is odd. Let u(-) be the sample median and define the
scale statistic by choosing o(-) to be the M.A.D. if no data points are duplicated
and to be the { p — 1+ (n +1)/2}th smallest absolute deviation about the median
if the data set has duplicate points. For this example, it can be shown that
e*(X; p,0) = |(n — 2p + 2)/2]/n, that is, the same as if using the median and
the M.A.D., whereas sup, e*(a’X; 1,0) = |(n —p + 1)/2] /n.

3.2. The Maronna-Yohai statistics. Maronna and Yohai (1989) recently in-
troduced the following class of scatter statistics. Given a location and scale
equivariant scale statistic o(-), define

where the infimum is over V € PDS(p) and the supremum is over a € R” or,
equivalently, a € S,_1. Note that if o(-) is taken to be the sample standard
deviation, then V(X) is the sample covariance matrix and a'V(X)a = o%(a’X)
for all @ € RP. For general o(-), as a function of a the quadratic form a’ VX)a
represents an approximation of o%(a’X).

For the scatter statistic (3.6), Maronna and Yohai (1989) show that its asymp-
totic breakdown point is at least £* whenever the corresponding asymptotic

o(a’X)
(a/Va)l/Z

(8.6) V(X) = arginf [sup {‘1 -
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breakdown point of the univariate scale statistic is ¢*. The asymptotic break-
down points here refer to the breakdown points of the scatter and scale function-
als over e-contaminated neighborhoods of the model distribution rather than
Prohorov neighborhoods. The results of Maronna and Yohai (1989) are obtained
at elliptically symmetric continuous models, of which the multivariate normal
distribution is one. Their results on the asymptotic breakdown points have been
extended to general distributions by Maronna, Stahel and Yohai (1992).

Obtaining straightforward results on the finite sample breakdown behav-
ior of the Maronna—Yohai statistics by using (3.6) directly is somewhat prob-
lematic. The problem lies in the asymmetric manner in which departures of
o%(a’X) from a'Va are treated. For a sequence V}, € PDS(p), if a’V,a — 0, then
|1 — o(a’X)/(a;Va)l/2| —» co when o(a’X) > 0, whereas if a’'V,a — oo, then
|1 — o(a’X)/(a’Vza)'/2| — 1. The following modification to (3.6) is easier to an-
alyze. For a given location and scale statistic o(-), define

_ . a%(a’X) ,
3.7 V(X) = arginf [s;lp d{ “Va }},

where d: R* — R is nonnegative, continuous with d(0*) = co and d(co) = co. For
example, d(-) could be taken as |log(-)|. The infimum is again over V € PDS(p).
Curiously, it can be shown that the solutions to (3.6) and (3.7) differ only up to
a scalar multiple, that is, V(X) = V solves (3.7) if and only if V(X) = ¢V solves
(3.6) for some scalar ¢ > 0, if for some xy > 0 the function d(x) decreases for
x < xo and increases for x > x. This relationship was established by Maronna
(1991).

The basic concept behind the Maronna—Yohai approach can be extended
to multivariate location. Given translation and scale equivariant statistics
[u(), a()], define

(3.8) t(X) = arginf {r(t;X)},

where r(t; X) is defined in (3.1) and the infimum is over t € RP. If the univariate
location statistic is taken to be the sample mean, then t(X) is the sample mean
vector and a’t(X) = u(a’X). For general u(-), the linear form a’t(X), as a function
of a, can be viewed as an approximation of u(a’X). The uniform finite sample
breakdown points of the corresponding univariate location and scale statistics
again serve as a lower bound for the finite sample breakdown points of (3.7)
and (3.8).

THEOREM 3.2. For the statistics defined by (3.7) and (3.8), ¢*(X;t,V) >
e**(X; p, 0), with equality whenever e**(X; u,0) = [{n — ¢X) + 1}/2| /n.

ProoF. Leten, < e**(X; u, o). Asin the proof of Theorem 3.1, |u(a’Z)| < po <
oo and 0 < 0p < o(a’Z) < 01 < oo for all a € §,_1 and all ¢,,-corrupted data
sets Z. This implies that, for any fixed t € R?, r(t; Z) is uniformly bounded above
over all possible Z. However, the equivariance and robustness properties of u(-)
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and o(-) imply that infz r(t;Z) — oo as ||t|| — oo, and so ||t(Z)| is uniformly
bounded above over all possible Z.

Consider now the scatter component V(Z). For any fixed V € PDS(p) and
ac Sp ~1,

ol o%(a'Z) < ol
a’'Va~ a'Va ~— a'Va’
for all possible Z. By the definition of d(-), this implies for any fixed V' € PDS(p)

that sup, d{0%(a’Z)/a’Va} is uniformly bounded above over all possible Z since
the supremum can be restricted to a € 8, _ 1. Now by definition of V(Z), for any

fixed V € PDS(p),
oX(a'Z) oX(a'Z)
S‘ipd{aIV(Z)a} < Sﬂpd{ aVa }

and so the left-hand side is uniformly bounded over all possible Z. However,
o%(a’Z) is uniformly bounded away from zero and uniformly bounded above
over all a € §,_, and over all possible Z and so, by the definition of d(.), the
same statement must also hold for a’V(Z)a. O

If one uses the median as the univariate location statistic and a variant of
the M.A.D. discussed prior to (3.5) as the univariate scale statistics, then the
uniform finite sample breakdown point of these statistics is given by the first
part of (3.5) when X is in general position. The second part of (3.5) also holds
for the Maronna—Yohai statistics, that is, e*(X;t,V) = ¢**(X; u, o). This again
follows by noting that if m = |(n — 2p + k& + 2)/2| and the replacements all lie
in the same plane as p of the remaining data points, then the modified M.A.D.
equals 0 for the univariate projection orthogonal to that plane, and so (3.7) and
(3.8) are not defined.

An interesting observation arises when one considers the special case where
u(-) is the sample median and o(-) is the sample M.A.D. For this case, a heuristic
argument suggests that under random sampling from continuous spherically
symmetric models centered at 0, the asymptotic distribution of t(X) is

(3.9 n!/24(X) —4 arginfsup, {|a’t — G(a)|},

where the supremum is over a € §,_; and the infimum is over t € RP. The
process G(a) corresponds to the limiting process of n!/2 median(a’X), which is a
Gaussian process on the unit sphere with zero mean and covariance structure
cov{G(ay), G(ap)} = {1 — (2m)~ ! arccos(a}ay)}/f¢, with f; being the value of any
univariate marginal density at the origin. The limiting distribution (3.9) is the
same as the limiting distribution of another multivariate location statistic pro-
posed by Donoho (1982), namely, Donoho’s deepest depth statistic. The finite
sample breakdown point of Donoho’s (1982) statistic depends on the structure of
X even when it is in general position and is at best % in large samples, whereas
for (3.8) the breakdown point goes to % for large samples. The asymptotic dis-
tribution of Donoho’s deepest depth statistic has been obtained by Nolan (1992)
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using the theory of empirical processes. A rigorous justification of (3.9) is not
given here.

4. M-estimators of location and scale. A natural class of univariate
location and scale statistics which can be used in constructing projection based
multivariate location and scatter statistics are the simultaneous M-estimates of
location and scale. This section considers the finite sample breakdown problem
for these M-estimates. The main theorem of the section, Theorem 4.1, gives an
explicit formula for the uniform finite sample breakdown points for two broad
classes of simultaneous M-estimates of location and scale, namely, the MLE-
type M-estimates and the S-type M-estimates, or S-estimates. Theorem 4.1 is
novel even when applied to the special case p = 1. For this case, it yields explicit
formulas for the finite sample breakdown points of the MLE-type and S-type
M-estimates of location and scale.

For a univariate data setx = {x;; i = 1,...,n} the simultaneous M-estimates
are usually defined as solutions (u, o) of a system of simultaneous equations of
the form

(4.1) ave{y(s;)} = 0,
4.2) ave{x(s;))} = 0,

where s; = (x; — p)/o fori = 1,...,n and ¢ and x are real-valued functions with
1 commonly taken to be odd and x commonly taken to be even. The notation
“ave” refers to the average over i = 1,...,n. By choosing ¥(s) = sign(s) and
x(s) = sign(|s| — 1), the M-estimates correspond to the median and the M.A.D.

For various reasons, one may wish to consider location and scale statistics
other than the median and variants of the M.A.D., respectively. Whenever both
% and x are monotone, though, Huber’s (1981) implicit formula for the asymp-
totic breakdown point of such M-estimates implies that smoother choices of ¥
and  tend to produce M-estimates with considerably lower breakdown points.
This problem, however, does not necessarily arise for MLE-type M-estimates
and for the S-estimates whenever the corresponding v function is not monotone.

The MLE-type M-estimates are defined as a solution (i, 5) € R x R* which
minimizes

(4.3) U, 0;X) = ave{p(siz) } +logo

over all (u,0) € R x R*, where p is some real-valued continuous function and as
before s; = (x; — p)/o. Note that, when exp{—p(s?)} is integrable over R, &(u, o; X)
can be regarded as a negative log-likelihood function of a univariate symmetric
location—scale model and so the MLE-type M-estimates include the maximum
likelihood estimates of such models. If p is differentiable, then any critical point
of (4.3) satisfies (4.1)~(4.2) with v, y(s) = sp(s?) and x,(s) = 2s2p/(s%) — 1.

The S-type M-estimates, or S-estimates, are defined as follows: for 4 € R,
consider the scale 6(u) which minimizes (4.3), that is, define (1) € R* such that

(4.4) £(p, 3(u);x) < £(u,0;5%),
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for all 0 € R*. An intuitively appealing estimate of location and scale is to choose
u so that the scale about u, that is, 5(u), is minimized. Accordingly, for a given
p function, the S-estimates of location and scale are taken to be (&I, 7) € R x R*
such that

(4.5) o =0(p <o(w

over u € R. If p is twice differentiable, then the S-type M-estimates satisfy
(4.1)—(4.2) with x,(s) = 25%0'(s?) — 1 and 9, 5(s) = x,(s).

Whenever 1 or x is not monotone, (4.1)—(4.2) may admit multiple solutions.
For an MLE-type or S-type M-estimate, not every solution to the correspond-
ing equations (4.1)—(4.2) represents the MLE-type or S-type M-estimate, only
those which satisfy the full definition do. The need to define the right solution
rather than considering any solution to (4.1)-(4.2) can be seen from the sim-
pler location-only case. If 1 is strongly redescending, that is, 1(s) = 0 for large s,
then the latter definition would yield a statistic with breakdown point zero since
there are always arbitrarily large solutions to the equation. Such tail solutions,
though, are commonly viewed as wrong solutions. In studying redescending
M-estimates of location-only, Huber (1984) defines the M-estimate of location
to be a solution p which minimizes ave{po(x — p)} rather than a solution to
ave{to(x — p)} = 0, where 1)(s) = py(s).

Throughout, the function p(s) is taken to be continuous for s > 0, but not
necessarily differentiable. Thus the definition of the MLE-type and S-type M-
estimates includes cases which cannot be viewed as solutions to M-estimating
equations of the form (4.1)—(4.2). For the S-estimates of location and scale, finite
sample breakdown points have been previously obtained within the context of
the more general regression model by Rousseeuw and Yohai (1984) and in the
more general multivariate model by Davies (1987), Lopuhai (1989) and Lop-
uhai and Rousseeuw (1991). All previous results assume p to be differentiable
and the corresponding x function to be nondecreasing on R*, left-continuous
and constant for large s. None of these additional conditions are needed here.
The definition of the S-estimates given by (4.4) and (4.5) is thus more general
than earlier definitions of S-estimates of location and scale. The generality of
the conditions on p considered here helps to emphasize the crucial role of the
tail of p on the breakdown point.

For a given p function, the breakdown points of the MLE-type and S-type
M-estimates are the same and depend on p only through its tail behavior, and
in particular its “sill” a,, —00 < @, < 0o, which is defined by

(4.6) a,= sup{a € R|t*/2exp [-p@®)] - 0ast— oo}.

If p(¢) is differentiable for large ¢ and x,(s) converges to a limit as s — oo, then
the sill can be characterized by

4.7) sllngo Xo(8) = a,—1;

see Kent and Tyler [(1991), (2.3)].
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Besides continuity, the following mild tail conditions on p are needed in de-
riving the breakdown points.

ConpITION T.  Let p(t) be continuous for ¢ > 0 with sill a,, and define, for
a € R, hy(2) = t*/2 exp{—p(t)}.

(i) For a <a, and for some ry, h,(t)/h(r) is bounded above over all
t>r>ry.

(ii) For @ > a, and for some ry, hy(t)/he(r) is bounded above for all
t<r,r>ry.

Note that from the definition of the sill, 2,(f) — 0 as r — oo for a < a,.
On the other hand, the definition of the sill and Condition T(ii) together imply
ha(r) — oo as r — oo for @ > a,. This second statement follows since if a > a,,
then from the definition of the sill there must exist a sequence ¢, — oo such that
ho(tr) — co. However, if h,(r) /+ 0o as r — oo, then there exists a subsequence
r, — oo with r, > ¢, such that h,(r;) is bounded and hence h,(t;)/h,(r;,) — oo.
This contradicts Condition T(i).

In general, Condition T simply places a restriction on the variability of p(¢)
in the tail. This is particularly clear when p(¢) is differentiable, in which case
the following lemma provides a simple verification of Condition T in terms of
the tail of x,(s).

LEMMA 4.1. If p(t) is continuous for t > 0, differentiable for large t, and x ,(s)
has a limit as s — oo, then Condition T holds.

PRrOOF. By (4.7), x,(s) = a, — 1 as s — oo. The derivative of logh,(¢) is
{3a — 1 — x,(t*/2)}/t, which for large ¢ is negative for a < a, and positive for
a > a,. This implies for large r that h,(r) is decreasing for a < @, and increasing
for a > a,. Condition T(i) is immediate since the ratio is bounded above by 1.
Condition T(ii) also follows since the ratio is again bounded above by 1 for large
t. Furthermore, if ¢ is bounded above, then A, (¢) is bounded above, whereas h,(r)
is bounded away from zero for larger r. O

The main theorem of this section can now be stated.

THEOREM 4.1. Suppose Condition T holds with a, > n/(n — ¢(X)), and
let $*(X) = min[l1 — 1/a, — ¢(X)/n,1/a,). For both the MLE-type M-estimates
[12(:),5()] and the S-estimates [ji(-),5(-)], the following holds:

(a) If 6*(X) = m/n for some integer m, then either ¢**(X;pu,0) = m/n or
e*(X;p,0) =(m + 1)/n.

(b) If 6*(X) is not of the form m/n for some integer m, then £**(X;pu,0) =
m*/n, where m* = |(né*(X) + 1)|.

The proof of Theorem 4.1 is given in the Appendix. From the proof it can be
noted that the term (1 — 1/a, — ¢(X)/n) in §*(X) is due to inlier contamination,



PROJECTION BASED STATISTICS 1037

that is, by letting all the contaminating data points lie within a hyperplane
containing ¢(X) of the good data. The second term 1/a,, in §*(X) is due to outlier
contamination, that is, by letting all the contaminating data points go to infinity
in one direction. At one extreme, if a, = 0o, then ¢**(X; 1, 0) = 1/n and break-
down can be caused by one outlier. At the other extreme, if a, < n/(n — c(X)),
then the location and scale statistics do not exist for some projection of the good
data itself.

If X is in general position, that is, ¢(X) = p, then the value of §*(X) is max-
imized when a, = 2n/(n — p), giving 6*(X) = (n — p)/(2n). If the first part of
Theorem 4.1 applies whenever a, = 2n/(n — p), then e**(X; u,0) = (n — p)/(2n)
since the other possibility e**(X; u,0) = (n — p + 2)/(2n) exceeds the universal
upper bound (2.10). If the second part of Theorem 4.1 applies, then e**(X; y, o)
also achieves the upper bound (2.10) whenever a, = 2n/(n —p). This is summa-
rized in the following corollary.

CoOROLLARY 4.1. If X is in general position, n > p, and Condition T holds
with a, = 2n/(n — p), then, for both the MLE-type M-estimates and the S-
estimates, e**(X; u,0) = |(n —p +1)/2| /n.

There do exist MLE-type and S-type M-estimates which correspond to solu-
tions of equations of the form (4.1)—(4.2) for which both ¢ and x are monotonic.
Such cases, however, are of little interest here since if the 1 function exists but
does not redescend to zero, then the corresponding X, function is unbounded
and a, = co. At the other extreme, for the MLE-type M-estimates, if the ¢,
function exists and redescends strongly to zero, then a, = 0. However, no re-
strictions on a, are made if the 1 function exists and is strongly redescending
for an S-estimate since v, 5(s) = x/,(s) = 0 for large s simply implies x,(s) is
constant for large s.

Any p function for which 0 < a, < oo can be adjusted so that the correspond-
ing MLE-type and S-type M-estimates of location and scale obtains the maxi-
mal value of e**(X; u, o) for X in general position. This is done by multiplying
the function p by ¢, = a,(n — p)/(2n). The new p function p*(t) = c,p(¢) has
sill 2n/(n — p) and consequently Corollary 4.1 applies. Note that multiplying
p by a constant does not affect the ¢ function in (4.1) for either an MLE-type
M-estimate or an S-estimate. Consequently, given an M-estimating equation
for location (4.1) for which 1 redescends to zero, one can choose a simulta-
neous M-estimate of scale of the MLE-type or of the S-type so that for the
simultaneous location and scale estimate e**(X; u,0) = |(n —p +1)/2]/n for X
in general position. Thus, although a preference for an auxiliary estimate of
scale over a simultaneous M-estimate of scale may be appropriate for mono-
tonic 9 functions, this is not necessarily the case for redescending 9 functions.
For strongly redescending M-estimates of location only, the finite sample re-
placement breakdown point depends on the configuration of X, even when X
is in general position, and can be considerably less than |(n —p + 1)/2]/n [see
Huber (1984)].

As a concluding example, consider the maximum likelihood estimates for
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location and scale arising from a random sample from a location—scale fam-
ily of distributions based on the Student’s ¢-distribution with v > 0 degrees
of freedom. This corresponds to an MLE-type M-estimate with p,(s%) =
(1/2)(v + 1) log(v + s%), for which @, = v + 1. For X in general position, the value
of 6*(X) in Theorem 4.1 is thus 6*(X) = 1/(v+ 1) for v > (n + p)/(n — p), and
(X)) ={v/w+1) —p/n}forp/n—p)<v<(n +p)/(n — p). For v = (n + p)/
(n — p), Corollary 2.1 applies. The breakdown point decreases as v — oo due
to the influence of outliers and decreases as v — 0 due to the influence of in-
liers. One practical drawback to nonmonotone M-estimates in general is the
possibility of multiple solutions to the corresponding M-estimating equations
(4.1)-(4.2). In this example, though, it is known that when v > 1 the likeli-
hood function is unimodal and the maximum likelihood estimates of location
and scale are the unique solution of the likelihood equations [see Copas (1975)
and Markeldinen, Schmidt and Styan (1981)]. A study of other nonmonotone
MLE-type M-estimates for which the corresponding M-estimating equations
have unique solutions can be found in Kent and Tyler (1991).

APPENDIX

Proof of Theorem 4.1. Some lemmas on the existence of the simultaneous
M-estimates are first given. The conditions of Theorem 4.1 are understood to
hold in all statements made here. A sufficient condition on p(s) and on the
univariate data set x = {x1,xy, .. .,x,} for insuring that 4(u, o; x) has a minimum
for some (i, 7) € R x R* is that P,({x}) < 1 — 1/a, for all x € R, where P,
represents the empirical distribution measure for the data set x. This follows
since, as a special case of Lemma 2.2 in Kent and Tyler (1991),

(A1) Up,0;x) — oo if [u| — 00, 0 = 0 or 0 — oo,

under the stated condition. Statement (A.1) implies more than the existence
of MLE-type M-estimates (i, o) for x, as the first part of the following lemma
shows.

LEMMA A.1. Let M(X) represent the set of all (ji,5) € R x R* such that
27, 1;x) < Uu, 0;x) for all (u,0) € R x R*.

(a) If P,({x}) < 1 — 1/a, for all x € R, then M(x) is not empty and M(X) is
bounded away from d(R x R*), the boundary of R x R*.
(b) If P,({x}) > 1 — 1/a, for some x € R, then M(x) is empty.

The second part of Lemma A.1 indicates that the sufficient condition for the
existence of an MLE-type M-estimate is almost necessary. It is a restatement
of Lemma 3.3 in Kent and Tyler (1991).

Analogous results hold for the existence of the S-estimates (fi, &) for the data
set x, as the next lemma shows.

LEMMA A.2. Let S(x) represent the set of all (i,7) € R x R* such that & =
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o(m) < o(u) forall p € R.

(a) If P,({x}) < 1 —1/a, for all x € R, then S(x) is not empty and S(x) is
bounded away from d(R x R*).
(b) If P,({x}) > 1 — 1/a, for some x € R, then S(x) is empty.

Proor.

(a) By (A.1), o(u) € R* exists for all u € R and the set {g(u) | @ < p < b}
is bounded away from 0 and oo for any —c0 < @ < b < oo. Part (a) then fol-
lows by showing (1) — oo as |u| — oo. This can be shown by contradiction.
Suppose there exists a sequence |uz| — oo with o = 7(u) — 0 < 00, and
define L;(0) = exp{l(uz, 0;X) — &g, o; X)}. A contradiction is obtained by not-
ing that L;(|uz]) — 0 and hence o} > |uz| — oo. This follows since Ly (|uz|) =

716y exp{—plby,v2 )}/ exp{—p(v} )}, where by = |l*/0} — oo, v}, =
(i — w)?/pu2 — 1, and so b,t/z exp{—p(bk,vﬁk)} — 0 since a, > 1, while
exp {—p(v?,)} — exp{—p(1)} > 0.

(b) Suppose for some x € R, {i | x; = x} = ¢ with P,({x}) = q/n > 1 - 1/a,.
This implies n > (n — q)a, and so, for some a > a,, n > (n — g)a. For such a,
express

exp{—lx,0;x} = 0~ "=~ DYexp{—gp(0)} T] (e*)*/2exp [—p{(xi—u)2/02}] :

x #x

which is seen to go to infinity as ¢ — 0. Thus, 4(x, 0;X) — —c0 as ¢ — 0, whereas
Up,0;X) > —oo for (u,0) e Rx R*. O

Nonexistence of an MLE-type M-estimates or an S-estimate can essentially
be interpreted as 7 = 0 or & = 0, respectively. Breakdown for a location and
scale statistic [u(-),o(-)] can occur in different ways. It is convenient here to
divide the possible ways in which breakdown can occur into three disjoint cate-
gories: o(-) — oo while |u(-)|/o(-) stays bounded above; o(-) — 0 while |u(.)| stays
bounded above; and |u(-)] — oo and |u(-)|/o(-) — oo. The following lemma, which
is a consequence of Condition T, is central to the derivation of the breakdown
points of the MLE and S-type M-estimates. For any x € R and (u,0) € R x R*,
let

(A.2) gl p,0) = exp[—p{(x - p)z/az}] /exp[—p(xz)].

LEMMA A.3.

(a) If |x| is bounded above, then g(x; u, o) is bounded above.
(b) Suppose 0 — oo and |u|/o is bounded above. If |x| — oo, then o~ *g(x; p, o)
— 0 fora >a,
" (c) Suppose o — 0 and |u| is bounded above. If |x — p| is bounded away from
zero, then o~ %g(x; u,0) — 0 fora < a,.
(d) Suppose || — o and |p|/o — .
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(i) If |x| is bounded above, then {|u|/o}® g(x;p,0) — 0 for a < a,.
(ii) If |x| — oo, then |u|~?g(x; pu,0) — O for a > a,.

ProOF. Lets? = (x — pu)?/0? throughout the proof.

(a) Since x? is bounded above, exp{—p(x?)} is bounded away from zero and
50 g(x; u, o) is bounded above.

(b) Let r = (s2 + 1)/(x? + 1). Since s2/a® = {o~2 — (u/0)x~1}? — 0, Condi-
tion T(ii) implies h4(s?)/h,(x?) is bounded above for a > a,. If s2 — oo, then
r*2g(x; p,0) = {(1 + s72)/(1 + 2~ 2)}*/2h,(s%)/ha(x?) is bounded above. More-
over, it must go to zero since it is bounded above for any a > a, and r — 0. If s
is bounded above, then

ho(s2+1)
ha(x2)

is still bounded above and so again must go to zero. The statement r*/2g(x; 11, o)
— 0 holds in general since by the above results any sequence has a subsequence
which goes to zero. The proof is completed by noting that ro? = {(1 — u/x)? +
02/%x?}/(1 + x~2) is bounded away from zero. Otherwise u/x — 1, 02/x* — 0
and so u2/0? — oo, a contradiction. Thus, o~ %g(x; u,0) — 0 for any a > a,.

(c) The proof of part (c) is divided into two cases, of which any sequence has
a subsequence satisfying one of the two cases.

Case 1(|x| bounded above). For this case s> — oo, and so, fora < a,, hs(s?) —
0 or, equivalently, s%g(x; u, o) — 0 since exp{—p(x?)} is bounded away from zero.
Furthermore, 0~ 25~ 2 = 1/(x — u)? is bounded above and so o~ %g(x; u, ) — 0.

Case 2 (x> — 00). For this case s2/x*> — oco. By Condition T(), for a < a,,
(s2x2)%/2g(x; p, 0) = hy(s?/h,(x?)) is bounded above and hence goes to zero since
it is bounded for any a < a, and s? /x? — oco. Also, 0~ 2(x2/s?) = (1 — pu/x)~ 2 goes
to 1. Thus, 0~ %g(x; u, 0) for a < a,.

(d) (i) As in the proof of Case 1 of part (c), s?g(x; u,0) — 0 for any a < a,. Fur-
thermore (u2/02)s~2 = {1 — x/u}~ 2% is bounded above and so (|u|/o)g(x; u, o) —
Ofora <a,.

(ii) Let R = s2/x2. The proof is divided into three cases. Any sequence of
(1, 0,x) has a subsequence satisfying at least one of the three cases.

Case 1 (R > 1). By Condition TG), R%%g(x; i, o) = hy(s2)/hy(x?) is bounded
above for b < a, and so g(x; 41, o) is bounded above. Thus (u?)~ */%g(x; u,0) — 0
for anya > 0.

Case 2 (R < 1and Ru? > ¢ > 0). By condition T(ii), R*/2g(x; u, o) = ha(s?)/
hq(x?) is bounded above for a >> a,. Thus, (u%)~*/%g(x; 1, o) is bounded above for
any a > a, and consequently goes to zero since 2 — oo.

Case 3 (Ru? — 0). Recall that Condition T(ii) implies Aq(v) — 00 as v — oo
for @ > a,. Thus, x~%g(x; 1, 0) = {ha(1)/ha(x)} exp{—p(s?) + p(1)} — 0. The proof
is completed by noting that Ru? — 0 implies x/u — 1. O

r*2g(e; p, o) = (L+x~2)" 1{ }exp{ —p(s®) + p(s® + 1)}

To prove Theorem 4.1, it suffices to show that breakdown does not occur for
em =m/n < §*(X) and does occur for ¢,, > 6§*(X). That is, the proof is completed
by establishing the following lemma.
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LEMMA A.4. For either the MLE-type M-estimates [j(-),o(-)] or the S-
estimates [[(-), 5(-)], the following hold:

(a) If ey < 6*(X), then sup, b(en, a’X; u,0) < co.
(b) If & > 6*(X), then sup, b(em, a’X; p, 0) = oo.

PROOF. (a) The proof for both the MLE-type and S-type M-estimates is by
contradiction. If sup, b(e,, a’X; p1, 0) = 00, then there must exist a sequence a;, €
8, -1 and a sequence of corrupted data Z; such that |uz| — o0, op — 0 or o —
0o, where (14, 03) = [(a},Zy), 5(a,Z)] or (uy, 03) = [1(ayZy), (@, Zy)] depending
on whether the MLE-type or S-type M-estimate is being considered. Lemmas
A.1(a) and A.2(a) assure that (u, o}) exist. Without loss of generality, it can be
assumed that Z, = X, U Y;, where X, consists of any (n — m) fixed elements
of X (say, Xo = {X1,..-,Xn—m}) and Y = {y1,2, ..., ¥m,+}). Furthermore, it can
be assumed that a, — a € §,_; and a,y; , — y; with —co < y; < oo for
i =1,...,m. Define the index set J = {j < m | |y;| = oo} and let mo, = #J.
Consider separately now the MLE case and the S case.

(MLE-type.) Let G(u,0;x) = exp[—{€(u,0;x) — £0,1;x)}], and so

(A3)  Gu,o;a,Z) = a“"{ I e@ixi; p, a)}{ [12@4y;,25 1 a)}.

i=1 Jj=1

The proof consists of showing that G(u,0;a,Z) = 0. This implies {¢(uz, o%;
a,Z;) — £0,1;a,Z;)} — oo, which contradicts the assumption that (uz, o) min-
imizes &(u, o; Zy,). The assumption || — 00, 0 — 0 or o}, — oo is divided into
the three cases corresponding to Lemma A.3(b)—~(d).

Case 1. Suppose o, — oo and || /oy, is bounded above. For this case factor
G(ug, or; a,Zy) = Hy 1 Hy 1, where

n—m
Hy, = { 11 g(a;zxi;ﬂkvo'k)}{ Hg(aZYj,k;llk,Uk)}

i=1 J€J
and

Hy = 0;;'”{ Hg(a;eyj,k;“ksak)}~

JjEJ

By Lemma A.3, (a) and (b), Hy ; is bounded above and Hy ; — 0 provided
n/me > a,, which holds since ¢, < 1/a,.

Case 2. Suppose o, — 0 and |ug| is bounded above. Without loss of gen-
erality, assume p, — p. Define J = {i < n — m | a’x;#u} and note that
#J > n — m — ¢(X). Factor G(uy, o; a'Zy) = Hy Hy 1, where

Hj ;= { Hg(aixi;uk,dk)}{ Hg(a;;Yj,k;NksUk)}

i¢3J jed
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and

Hyy = ok"‘{ Hg(azxi;uk,ak)}{ Hg(a;ij,k;Nk,Uk)}-

ied JeJ

By Lemma A.3(a) and (c), H3, is bounded above and Hy; — O provided
n/(n —m —c(X) + mo) < a,, which holds since &, < 1 — 1/a, — c(X)/n.

Case 3. Suppose |u;| — oo and |ug|/or — oo. For this case, partition
G(pr, ox; a,Zy) = Hy ,Hg , where

nn—m
k
Hsp = (-l*g—l) T et@ixi; e, on) [ g@lyis s, 00)
k7 jgd
and

Hep = |l ™ [ ] 2(@byi, b5 1, o).
Jjed

By Lemma A.3(d), Hs,;, — 0 and Hg ;, — 0 provided n/(n — mo) < @, < n/meo,
which holds since ¢, < 1—1/a, — c«(X)/n and ¢,, < 1/a,.

(S-type.) From the definition of the S-estimates, for the same p function,
a(-) < (), and so the case 0, — oo can be discounted since the MLE-type M-
estimator does not break down.The proofis divided into three remaining cases.

Case 1 (0, — 0 with || bounded above). It can be shown that G(0, oy;
a,Z, — ;) — 0, where G is defined by (A.3). This implies {Uur, on; 2, Zy) —
U ur, 1;a,Z;)} — oo, which contradicts the assumption that o}, minimizes #(u;, o;
a,Z;). The proof that G(0, 03; a;Z;, — 1) — 0 is identical to the proof for Case
2 for the MLE-type M-estimate after changing (i, a},Z) in the former proof to
(Oa a;azk - /J,k),

Case 2 (0, — 0 with |uz| — o0). This proof is also obtained by arguing
that G(0,0x;a;,Z;, — ) — 0. To show this, assume without loss of generality
Ly r— —yj,with —co <y* <ocoforj=1,...,m,andletJ*={j=1,...,m|
¥; #0} and m* = #J*. Factor G(0, o3; a,Z;, — ) = M1 My, where

My = [] e@iyjn — 130,00
JjédJ*
and

n—m
My, = o‘"{ 11 s@ix: — w0, Uk)}{ 1 &@iy;e — w0, ak)}.

i=1 JjEJ*

By Lemma A.3(a), M, ; is bounded above. By Lemma A.3(c), M3 , — 0 provided
n/(n —m+m*) < a,, which holds since n/(n —m + m*) < 1/(1 — &) < a,.
Case 3 (Juz| — oo with o, bounded away from zero and infinity). It is to
be shown that, for v = |u|, GI0,0%/v;v; (@, Zk — )] — 0. This implies
{€pr; on; ayZy) — g, 13 2, Z,)} — oo, which contradicts the definition of oy.
Without loss of generality, assume (a,y; , — )/ — yJQ, with —c0 < yj‘? <
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0, j=1,...,m,andletJ = {j=1,...,m | |y?| = co} and m® = #J°. Partition
G0, 01 /3, (@} Zp — )] = M3 My 1, where

/ . —
Ms s = Hg{(akYJ,k ﬂk);o ﬁ}

igdo Yk Tk
and
n—m
- (agxi — ) (@,¥), 6 — 1)
My, = (op/) "{ Hg{-———k e };0,% Hg{————kyJ’k a };0,-0—k :
Py Yk ") e Ve Yk

By Lemma A.2(a), M3 1, is bounded above. By Lemma A.2(c), My, — 0 provided
n/(n — m +m°) < a,, which holds since n/(n —m +m® < 1/(1 — em) < a,.

(b) (MLE-type.) Ifen > 1—1/a, —c(X)/n, consider Y = {y1,...,yn} such
that y; = x; for j = 1,2,...,m. Without loss of generality, suppose for some
a € 8,_; that the size of the set D = {i | a’x; = a'x,} is c(X). If Y replaces m
values in X with none of these m values x; € D, then Lemma A.1(b) implies
[fi(a’Z), 5(a’Z)] does not exist. Thus, sup, b(em, a'X; u, o) = co.

Ife,n, > 1/a,, consider the sequence-Z;, = X, U Y, where Xo = {X1,..,Xn-m}
and Yy = {¥1,4,---,¥m,x}, With y; , = yj for j=1,...,00, and X, = la’y)| — oo
for some a € §, _ ;. If breakdown does not occur under this sequence, a contra-
diction arises by showing Gy, = exp{€(uz, Ax; a'Zy) — £py, op; &'Zp)} — 0, where
e = f(a'Zy) and oy, = o(a’'Zy). To show this, express Gy, =, "g™(vs; 0, vi)Hp,
where v = 03 /M, — 0, v = O — )/ A — 1, and Hy, = I} "8(vi, 5 0, %) with
v, = (@%; — w)/\ — 0. By Lemma A.3(a), Hy is bounded above and so, by
Lemma A.3(c), G, — O since n/m =1/en, < a,.

(S-type.) The proofis analogous to the proof for the MLE-type M-estimates.

m}
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