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BLOCKWISE BOOTSTRAPPED EMPIRICAL PROCESS
FOR STATIONARY SEQUENCES

By PETER BUHLMANN
ETH Ziirich

We apply the bootstrap for general stationary observations, proposed
by Kiinsch, to the empirical process for p-dimensional random vectors. It is
known that the empirical process in the multivariate case converges weakly
to a certain Gaussian process. We show that the bootstrapped empirical
process converges weakly to the same Gaussian process almost surely, as-
suming that the block length [ for constructing bootstrap replicates satisfies
I(n) =0(n'/2-¢),0 <& < 4, and i(n) — oo.

An example where the multivariate setup arises are the robust GM-
estimates in an autoregressive model. We prove the asymptotic validity of
the bootstrap approximation by showing that the functional associated with
the GM-estimates is Fréchet-differentiable.

1. Introduction. The bootstrap proposed by Efron (1979) has become a
well-established nonparametric method for studying the sampling distribution
of a given statistic. A large class of statistics can be written as statistical func-
tionals of the empirical distribution function. This motivates one to study the
bootstrap for the empirical process. In the i.i.d. setup Bickel and Freedman
(1981) have shown the almost-sure weak convergence of the bootstrapped em-
pirical process to the Brownian bridge, that is, the empirical process and its
bootstrapped process have the same limiting distribution. This implies that
the bootstrap works for smooth statistical functionals.

An extension of the bootstrap for general stationary sequences of observa-
tions has been given by Kiinsch (1989). Instead of selecting single observations
X; from the sample {Xj,..., X,,} with replacement, this extended method se-
lects % blocks of consecutive observations of length I. Here [ is a function of n,
tending to infinity, with /(n) = o(n) and n = kl. Under some assumptions for the
mixing coefficients of the process {X;};cz, Kiinsch shows that the law of the
bootstrapped mean is an asymptotically valid approximation for the limiting
law of the arithmetic mean.

In order to establish the validity of the bootstrap for the large class of statis-
tics given by smooth functionals, one would like to show that the bootstrapped
empirical process converges weakly to the right Gaussian process. This is done
in this paper under a condition on the decay of the strong mixing coefficients
and on the block length /(n). Recently Naik-Nimbalkar and Rajarshi (1994)
have given a similar result for the one-dimensional case p = 1. Our results are
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996 P. BUHLMANN

more general in that we have fewer restrictions on the block length and we
consider also the case of vector-valued observations X; € R?.

For almost-sure weak convergence, Naik-Nimbalkar and Rajarshi (1994)
make the quite restrictive assumption that I(n) = O(n!/2-¢),1 < ¢ < . From
considerations of mean square error of the bootstrap variance, one would like
to have an [ of larger order than n'/4. For l(n) = O(n'/2-¢),0 < £ < 1, they only
get convergence in probability; this means that one has not very good bounds
for the error in the bootstrap approximation, [cf. Gill (1989), Theorems 4 and 5].

The extension to the multivariate case is of considerable interest, because
with time series data one often uses statistics which depend on some finite-
dimensional marginal of the process. In order to bootstrap such a statistic,
Kiinsch (1989) has proposed to consider a block of consecutive original observa-
tions as a new vector-valued observation and to apply the blockwise resampling
technique to these vector-valued observations. In this way vector-valued obser-
vations arise naturally.

Kiinsch (1989) suggested various applications of his procedure. As an ex-
ample we prove that, under some regularity conditions, the bootstrap works
for the robust GM-estimates for the parameters of a stationary autoregressive
model of order p. For this we show that under suitable conditions GM-estimates
can be written as differentiable statistical functionals; this is sufficient for a
valid bootstrap approximation. The finite-sample properties of the procedure
are investigated by a simulation study.

2. Preliminaries and result. In the following we are working in the
framework of strong-mixing (or, equivalently, a-mixing) sequences. The strong-
mixing concept describes some kind of short-range dependence [cf. Ibragimov
and Linnik (1971)]. Let {X; = (X1, ..., Xjp) }icz be a stationary a-mixing se-
quence of stochastic vectors. Having observed realizations Xj,..., X;, one is
often interested in the empirical process based on these observations. However,
instead of {X;}?_, we consider some transformed variables {Y;}?_, given below.

Denote the marginal distribution function of X;; by F’ and assume that F©’
is continuous. Let Y;; = F(f)(Xij), j=1,...,p,andletY; = (Y;1,...,Y,),i € Z.
Denote the distribution function of Y;, by G, that is, G(t) = P[Y; < t],t € E?
where EP = {t;0 < t < 1} is the p-dimensional unit cube. Note that GV(¢) = ¢
and G(t) = 0 if at least one coordinate of t is 0. By the continuous mapping
theorem it suffices to study the empirical process of the random vectors Y (see
the remark at the end of this section).

We set 0 =(0,...,0Y and 1 =(1,...,1) and let 2’ denote the jth component
of a vector z. Moreover, a < b means that o'’ < b, j=1,..., p, and we write
|t — 8| = sup{|t'"” —sV|; j=1,..., p}.

The empirical distribution function of Y3,...,Y, is defined by

G.®)=n"1> liy,<cy, teF,

i=1
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The empirical process {W,(t)}+c z» is then defined by
Wa(t) = n'/2[G,(t) — G®)).

W, belongs to the cadlag space D?[0,1]. We study the weak convergence of
empirical processes as random elements in the space DP[0, 1] with respect to
the (extended) Skorohod /;-topology and denote it by = [see Bickel and Wichura
(1971) and Billingsley (1968)]. It is known that if

aln) = O(n—max{5/2+6,3p/2+6}), §>0,
then W, = W, where W is a Gaussian process with

E[W®)] =0,

EW@W®] = Y. E[(ly,<a - 66) (I, <o — G®) .

k=— 00

[See, e.g., Yoshihara (1975).]
The bootstrapped empirical distribution function of Y;,...,Y, is defined as

Si+l

k
G =k 1Y "' > ly<y, teF
i=1 Jj=8i+1

where n = kl, I = l(n) = o(n) and I(n) — oo (n — 00); S; i.i.d. ~ Uniform({0,.. .,
n — [}) [see Kiinsch (1989)]. In practice, if the sample size is not a multiple of
[, we simply make the last block shorter. The bootstrapped empirical process is
then defined as

Wi(t) = n'/2 [G;;(t) —E* [G;;(t)]], tecEP.

E*,Var® and so on denote the moments under the conditional probability mea-
sure P*, induced by the resampling mechanism. In the following we abbreviate
E*[G; (V)] by p;:(t). We observe that Gj(t) is the mean of £ variables that are
ii.d. under P*.

THEOREM 1. Let {X;};cz be a stationary, strong-mixing sequence with
£ oG + 1)+ 7al/2(j) < co. Assume that X; has continuous marginal distribu-
tions and that l(n) = O(n1/2-¢), £ > 0.

Then W} = W almost surely in the Skorohod J,-topology.

COROLLARY 1. Under the conditions of Theorem 1 we have

Vn(G; — G,) = W almost surely in the Skorohod J1-topology.

PROOF. Since /n(G, —u) = O(In—1/?) [see Kiinsch (1989), (3.14)] and using
Slutsky’s theorem the proof is obvious. O
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REMARK. Theorem 1 and Corollary 1 remain true if the processes W, and
W are defined in terms of the untransformed X;’s with distribution F (instead of
@), the processes being then elements of DP(R). The argument for this assertion
is given in Billingsley [(1968), proof of Theorem 22.1]; the extension to the
multidimensional case is straightforward.

Sections 3 and 4 deal with the proof of Theorem 1.
3. Convergence of the finite-dimensional distributions. We let A,(a)
= ¥ (i+1Y/2~1aV/2(;) and let || - || = E5/?|- |9 denote the L,-norm with respect

to P.

LEMMA 1. Let {X;};cz be a stationary strong-mixing real valued sequence
with mixing coefficients a. Let F° denote the o-algebra o({X;;a < i < b}).

(@) If¢ € F° ., n € F, then
|E(¢n] — EICIE]| < 12|¢|lg; 17l % (),

where 0 < q1,92,93 < 00,q7  +g; ' +g3' =1
(b) IfE[X;] = 0,E|X;|?™*¥ < coand £2,(+ 1)~ la@@)¥/@m+v) < oo for some
v > 0, then

> X
i=1

(c) IfE[X;] = 0 and E|X;|® < oo, then

> X
i=1

2m

E < K, |X1|2™, n™, for K, a constant depending on c.

2m+v

4

E < const.n2{||X1||3A4(a) + ||X1]]§(A2(a))2}.

Proor. (a) The proof is given in Deo (1973). Part (b) is Theorem 1 in
Yokoyama (1980). Part (c) is seen from formula (4.4) in Yokoyama (1980). O

LEMMA 2. Ifl(n) = O(n'/2-¢), ¢ > 0, and Ajg(a) < oo, then
Cov* (W;(s), Wy (t)) = Cov(W(s), W(t)) + Ag ¢(n),
where Agt(n) = 0(1) almost surely, that is, there exists a set A(s, t) with P[A(s, t)]

= 1such that on the set A(s, t) for all k > O there exists an no(k,w) with |Ag ¢(n)| <
K for n > ng, where w is an element of the probability space with measure P.

PrOOF. Let G(s,t) = G(t) — G(s), Ii(s,t) = 1y, < — liy, <4 and py(s,t) =
pa(t) — pn(s).
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We consider

n—1 i+l 2
Var* (Wi (t) - Wi(s)) =ln -1+ D71y lz- 1Y (Iis, ) — s, t))] :

i=0 Jj=i+1
Then
Var* (W;(®) - Wi(s)) — E[Var* (Wy(t) - Wi(s))]
(1) n-1
=ln -1+ Zs,t) - IV(s, 1),
i=0
where

i+l 2

171 Y (Ifs,0) - G(s, 1)

J=i+l

)

i+l 2
Zi(s,t) = |:l‘ 1 Z (I:I(s,t) - G(,t))] -E

J=i+l

Vs, t) = [ui(s,t) — G(s, 1)) — E|ui(s, ) — G(s, O)]2.

In the following we write Z; and V:

EfVar' (Wit - W3(s) ~ E [Var* (Wy(®) - i) ||
4

n-1

S2

i=0

(2

4
< [l(n —1+1)" gV +lE1/4|V|4} .

Note that {Z;}; ¢ z are again stationary, strongly mixing with mixing coefficients

. ax(i—1+1), i>1,
az(®) < {aX(O) <1, i<l
Using Lemma 1(c) and noting that ||Z, ||, < ||Z,||; for p < g, we get
n-1 4
(3) E|) 7| < const.(n—1+1)?00%)|Z]3.
i=0

Using Lemma 1(b) we get E|Z;|® < const./~8. Therefore

n-1 4

£y z

i=0

4) < const.l %(n — I+ 1)%.

On the other hand, we have E|V|* = E|U —E[U]|*, where U = [u(s, t)— G(s, t)]2.
Since U > 0 we have E|V|* < E|U|* + 6E|U|2E?[U]. By the Minkowski inequal-
ity and using Lemma 1(b) we get E|U|" = O(n~"). Therefore

(5) E|V|*=0(n*).
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Putting (5) and (4) in (2) we conclude that

E{Var* (W) — Wi(s)) — E[Var* (Wit - W:;(s))] ]4
=0(2(n —1+1)-2).

(6)

So, by (6),
> E|Var' (W) - Wis)) - E[Var* (W;(®) - W;(s)) | ]4 < o0,
n=1
since /(n) = O(n1/2-¢), ¢ > 0. Therefore
Var' (W) ~ Wi(s)) = E[Var' (W;(® - Wi(s)] + &, em),

where &, ¢(n) = o(1) on a set C(s, t) with P[C(s, t)] = 1.
From Lemma 1(a), it follows that

E[Var* (W) - W;;(s))] = Var(W(t) — W(s)) +0(1) uniformly in s, t
[see also Kiinsch (1989), Theorems 3.2 and 3.4]. This yields
) Var® (Wi (t) — Wi(s)) = Var(W(t) — W(s)) + &, ¢(n) + o(L).
Finally, (7) yields
Cov™ (W (1), Wy(s)) = Cov(W(t), W(s)) + A, ¢(n),
where As,t(n) =1/2(&o,4(n) + &, 0(n) — &, ¢(n)) +0(1). O
LEMMA 8. Ifl(n) = O(n'/27), £ > 0, and Asg(ps1)(a) < oo, then
(Waty), ..., Wi(ta)' —ge (Wk1),...,W(ts)' almost surely,

forall (ty,...,t;) € (BP), foralld € N, that is, there exists a set C,withP[C] =1
such that on C the d*-convergence holds for all (1, . .., t;) € (EP )Y, foralld € N.

Proor. We split the proof into two parts.

(i) We assume first that (ty,...,t;) € (Q°)? N (E?)?, where Q denotes the set
of rational numbers.

Let A := Ny, ; e @rA(t;, t;), where A(4;, t;) is defined via Lemma 2. Then A€ is
still a nullset, that is, P[A] = 1. Let Z} = Zflﬂ c¢;Wi(t), ¢; € R. From Lemma
2 we know that, on A, Var*(Z}) — Var(Z), where Z = Efﬂ ¢;W(t;). So condition
(B1) in Kiinsch (1989) is satisfied. Condition (B3) in Kiinsch (1989) holds since
I(n) = 0(nl/2-¢), ¢ > 0, and 1y, < 1 is bounded by 1. ‘

Then the Lindeberg condition holds for Z*/+/Var(Z) on the set A. So by the
univariate central limit theorem we have Z* —;. Z on A [see Kiinsch (1989)].
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(ii) Assume that (t;,...,tg) € SEp)d. In }emma 11 we prove that W} fulfills
the tightness condition on a set A with P[A] = 1, that is,

(8) lim lim sup P* [ws(W3) > k] =0 Vx>0, on A,
6\,0 n

where ws(x) = sup{|x(t) — x(s)|; s,t € EP,|t — s| < 6}, x € DP([0, 1]). Relation
(8) implies that, for all k > 0, for all n > 0, there exist q; € Q° N EP in a
neighborhood of t; and ny such that

) P*[|Wx(t;) = Wi(q)| > k] <n forn > ny, on the set A.

Define Y}, = E§l= 1¢iW(q;). In order to show Z; —4. Z a.s., we proceed similarly
to proving Slutsky’s theorem. Let @ € R be arbitrary. Then, for any p > 0,

P*[Z; <a] S P*[Yy <a+p| +P*[|Z; - Y;| > p].
Let 02({c;}, {s;}) = Var(T% , ¢;W(s;). Then 0%({c;}, {s;}) is continuous in both

arguments since W € CP[0, 1]. By part (i) we get the following: for every v > 0
there exists n; such that, for n > n; on the set A,

* * at+p axrp
(10) P [Yn §a+p} S@(m) +7S¢(m> +2’Y

(q; can be chosen arbitrarily close to t;).
On the other hand, (9) implies

(11) P*[|Z; - Y;| > p] <~ for n sufficiently large, on the set A.

Relations (10) and (11) yield
P*Z: <d) < <1><__3_L
= )

Analogously, we arrive at

) + 3y for n sufficiently large, on the set AN A.

k [ 77k 2L
Pz <> 8(Sit

Since v and p are arbitrary, we have

) — 3y for n sufficiently large, on the set A NA.

P*[Z}; < a] —><I>( (n — oo) on the set ANA.
g

({Ci; {t:}) )

Therefore Z} —4« Z on A NA.SetC=A ﬂﬁ, and note that P[A NA] = 1.
Finally, the lemma follows by the Cramér-Wold device. O
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4. Tightness of the bootstrapped empirical process. In order to show
weak convergence of Wy to W we have to prove tightness for the W*-process. In
the following we denote by w an element of the probability space with measure
P. It suffices to show that on a set C with P[C] = 1, we have the following:
V&>0,Vn>0,36>0,and 3 no(w) € N such that, V n > ny(w),

(12) P*[ws(Wy) > K] <.

where ws(Wy) = sup{|W,;(t) — Wy(s);s,t € E?, |t — s| < 6}.

Let B = B(by, 6) = {t; by < t < by + 61}. Instead of proving (12), it suffices to
show that for all by, on a set C = C(by) with P[C] = 1, we have the following:
V&>0,Vn>0,360<6<1,and 3 no(w) € Nsuch that, Vn > nyw),

(13) p* [sup|W,f(t) - W, (bo)| > n] < (G(B) + &)n.
teB

We identify the distribution function G with the corresponding probabil-
ity measure. Without loss of generality we assume 6§ € Q,by € QP N EP [cf.
Billingsley (1968), proof of Theorem 8.3]. For condition (13) see Sen [(1974),
formula (2.5)]; note that only a countable intersection of sets C(by) is involved.

In the following we fix the hyperquadrangle B. We consider the following
grid (for a fixed n):

ba(i) = by + 6—’;-n“1/2i, 0<i<m, K>0,

where m, = m,1, m, = [6pén'/2/x] — 1 and, for i with i = m,, + 1, we define
b, i)Y = bf)’ )+ 6, where 2 denotes the jth component of a p x 1 vector z.

LEMMA 4.

W (ba(i + 1)) — Wi (bo)

* —_ * <
fteu; |[W(t) — Wi(bg)| < 30 maz

+n'2 max |uh(bali+ 1) — it (ba(i))

0<i<m,

PRrOOF. Fort € {s;b,(i) < s < b,(i+1)} afew routine steps lead to
[Wa(®) — Wy (b)) | < [Wy (bl + 1) — W (b)) |
+n1/2|u:; (baGi+ 1)) — px (ba(i)) |

[see Billingsley (1968), (22.17)].
This implies the desired result. O

In the next step we will analyze maxg<i<m, |W;(b,(i + 1)) — W(by)| and
prove that, for n sufficiently large,

14 P [oé‘i‘%xmn [W (bali + 1)) — W2 (bg)| > g} < (@B +6F)] as.
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[cf. (13)].

Let H;(n),i = 1,...,N(n), denote a p-dimensional hyperrectangle whose cor-
ner points are points from the grid of B. In the following we identify func-
tions with hyperrectangles H as arguments in the obvious way via the ba-
sic quantity 1iycm. In the spirit of Bickel and Wichura (1971) we first show
E*|WX(H;(n))|¥*2 < [const.u(H;(n)))?,B > 1, almost surely, for an appropri-
ate r € N,y denoting a finite, nonnegative measure in EP (see Lemma 7).

Let Dy(H/n) = 1'% 11y, qrJ = L.,k Then WiHi(n) = n'/%~!
X Ej’i‘:l(Dj (H;(n)) — E*[Di(H;(n))]). Note that D, ..., D, areii.d. under P*. The
key idea is to study the (2r + 2)th moment of W;;(H;(n)) in terms of the sec-
ond centered moment of D;(H;(n)). The main difficulty is to derive a bound for
E*|D1(H(n))— E*[D1(H;n))]|?> which holds uniformly in the index 1 <i < N(n) =
O(n?), where N(n) denotes the number of hyperrectangles H;(n).

LEMMA 5. Assume that l(n) = O(n1/27¢), € > 0, and A1¢(p+1)(@) < 00. Then

nk~1E*| Dy (Hy(n) - E* [D1 (Hin) | ’2 < G(H;(n)) /%P * P (const. + Ay(n)),

where sup; < n, |8:(n)| = o(1) almost surely.

Proor. We split the left-hand side into a centered sum and an expectation,
that is, nk~1E*|D1(H;(n))— E*[D1(H;(n))]|? = R, +E[R,], where R, = l(n—1+ 11!
X EJ'.‘;OI Z;(H;(n)) — IV(H;(n)), where Zj(H;(n)) and V(H;(n)) are defined as in the
proof of Lemma 2, replacing I(s, t) by 1jye #,») and so on. The main difficulty
is to derive the following key inequality:

n—1 2r
(15) E|GHM) Y Y ZiHm)| =0wlT), reN

Jj=0

Then by choosing r large enough we can get a uniform estimate by a Borel-
Cantelli argument. To prove (15), we proceed similarly as in Yokoyama (1980)
using the bound ||Zy(H;(n))||» < const. 'G(H;(n))/®™. Details are given in
Biihlmann (1992). O

LEMMA 6. Assume that {Z;}; ¢z are i.i.d. random variables with E[Z;] = 0
and |Z;| < 1. Let S, = ¥}_,Z;. Then

E|S,|* < Kr{nE|Z1|2 +.-- +n’(E|Z1|2)r}, r € N, K, a constant.
Proor. Since E|Z;|* < E|Z,|? for £ > 2 and using the independence as-
sumption, this lemma is obvious. O

LEMMA 7. Assume that l(n) = O(n'/2-¢), & > 0, and A16(p+1) < 00. Let u(C) =
G(C) + X(C), where ) denotes the Lebesque measure in EP, and C a Borel set in
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EP. Then there exists an r = r(p) € N such that
Wy (Bm)["*? < [(eonst. + cm)u(Em)]”, 8> 1
where sup; < ) [6i(n)| < K almost surely (K a constant).
ProoF. Let 7 = nk~1E*|D1(H;(n)) — E*[D1(H;(n))]|2. Lemma 6 yields

E*|W: (Hy(n) | **

i 2r+2
—p-To 1 an/zk— 1/2{Dj(Hi(n)) - E* [Dj(Hi(n))]}

Jj=1

r+l r+1 .o
<Kk "1 Z(kT)j =K’Z (ln_ 1)r+1_17".

Jj=1 Jj=1

Since A(H;(n)) > const.n?/2 we have, for n sufficiently large, In~1 < \(H;(n))1/?
for i < N(n). Therefore (In~1)P+s < NH;(n))?, By > 1, fori < N(n),s > 1,
n sufficiently large. On the other hand we have, by Lemma 5, r20(p+D+s <
[const.u(H;(n)))?%, B > 1, for alli < N(n) a.s., for s > 1. Take r = 20(p + 1) + p.
This finishes the proof. O

Now we are able to give a bound for

max |W; (ba(i + 1)) — Wi(bo)|

0<i<m,

in the sense of (14).

LEMMA 8. Assume that l(n) = O(n'/2=¢),e > 0, and A1gp+1) < 00. Then
VE>0,Vn>0,36€Q, 0<6<1,and I now) € Nsuch that, ¥V n > ny(w),

p* [ max Wy (b, +1)) — W;(bo)| > %} < (GB)+ 6”)% almost surely.

0<i<m,

Proor. Following Bickel and Wichura (1971), we look at the modulus
M" (Wy). Unfortunately W does not vanish at the lower boundary of B, that
is, there exists a t with t) = bf)’) for some 1 < j < p, such that W}(t)#0. For
this reason we cannot directly apply the fluctuation inequality from Bickel and
Wichura (1971). However, bounds of M give rise to bounds of maxima:
oJaax |7 (bu(i+ 1) — Wiilho)

<@ —DM"(Wy) + > [Wr(u(s)) — Wiibo)),
u(é)

(16)

where u(6) is a corner point of B.
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Using Lemma 7 we can apply Theorem 1 in Bickel and Wichura (1971) (this
theorem remains true in our case although W} does not vanish at the lower
boundary) to bound the modulus M”(W}). The term Zy)|W;i(u(8)) — Wi(by)|
does not involve any maxima; therefore it is much easier to find an appropriate
bound for this term. Details can be found in Biihlmann (1992). O

In the last step we consider n'/2maxg<; <m, [1;(baG + 1)) — p:(b, )| (cf.
Lemma 4). Let y;(t, s) = p(t) — pyi(s), and so on. We have

o max 112 (bali + 1), by(@)|

< max n!2| (b + 1), b)) — Gn(byi + 1), b))

~0<i<m,

+ max n'/2|G,(ba(i+1),b,) — G(bsGi+1),b,d)|
(17) 0<i<m,

+ max n1/2|G(bn(i +1), b,,(i))]
0<i<m,
<0(n~12)+ 0<n;3x n1/2|Gn (bn(i +1), bn(i)) - G(b,,(i +1), b,,(i))|
Si1smy
+ k/3.
Note that we have used

max /214, (byGi + 1), ba(D) = G (bl + 1), b)) = OUn~"2)

0<i<m,

[see Kiinsch (1989), (3.14)]. In order to analyze maxg < ; < m, |Gn(ba(i+1), b, (i)) -
G(b,(i+1),b,(i))|, we establish an extension of Lemma 6 to the a-mixing case.

LEMMA 9. Assumethat {Z;};c 7 is a stationary o-mixing sequence with E[Z]
=0,|Z;| <1,and Ay _9(a) < 0. Let S, = ¥*_, Z; , and let T = E|Z,|?. Then

E|Sal” < Kor[nr2 44 (ar?)],  reN.

Proor. We use Lemma 1(a) with q; = 2, g2 = 0o, g3 = 2 applied to the
sequence {Z;};cz. Then we can proceed in exactly the same manner as in the
proof of Lemma 3.1 in Sen (1974). O

LEMMA 10. Assume that l(n) = O(n'/2-¢), £ > 0, and Agp +1s < co. Then

, max nl/zlu;(bn(i +1)) — i (ba() | < £/3+0(1),

where the o(1) term is almost surely.

P”ROOF. We will show that
(18) max n'/2|G,(by(i+1),b,(0)) — G(bali+1),by(D)| =0(1) a.s.

0<i<m,
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We have
712 (G (bl + 1), ba(@) — G(bali + 1), by (i)

=723 (1 (bati + 1),b(D) — G(bali + 1), b,(0) ),
j=1

I; as in the proof of Lemma 2.
Let Zj(b, (i + 1), ba(i)) = Zi(by(i + 1)), ba (D)) — G(by(i + 1), b,(i)). Then

7 := E|Z;(bn(i + 1), by(0)[” < G(bali +1), by (i)

K
< 3,172 = const.n~1/2,

Applying Lemma 9 to the random variables {Zj(b,Gi + 1), b,(i))}?_, we get
P[n3/2|Go (bali + 1), by(®) — G(bnGi + 1), by(@)| > /]
Sconstp” ¥ [n " Inm V44T ps0
We choose r = 2p + 5. Then
P [n2|Gp (bn(i + 1), by@) — G(bu(i + 1), ba@)| > p| < const.np/2-5/4,

for all i and by, and

P[oé‘i‘?‘mn 12| G (bai + 1), ba(@)) — G (b + 1), ()| > p]
< ¥ P[n1/2|G,, (ba(i + 1), by(@) — G(baG + 1), b, ()| > p]

0<i<m,
< const.mhn~P/2=5/4 = O(n=5/%),

Therefore, for any p > 0,

ZP[ max  n1/2|Gy (bl + 1), b,(@) — G(bali+ 1), by(@)| > p] < .
=1

0<i<m,

This proves (18). Relation (18) together with (17) finishes the proof of the

lemma. O

LEMMA 11.  Assume that l(n) = O(n'/2-¢),e > 0, and A1gp + 1y < 00. Then for
every 0 < by < 1,by € QP NEP, there exists a set C = C(by) with P[C] = 1 such
that on C we have the following: Yk > 0,Yn > 0,36 > 0 and Iny(w) € N such

that, for n > no(w),

pP* [sup |Wy(t) — Wr(bo)| > n} < (G(B)+6P)n almost surely.
teB
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Moreover, the following holds:V x >0, Vn >0, 36 > 0and 3 nyo(w) € N such
that, for n > ngy(w),

P* [w5 (W) > n] <n almost surely.

Proor. The first part is a direct consequence of Lemmas 4, 8 and 10. For
the second part we set C = Ny, c gr ngrC(by). Noting that P[C] = 1, the state-
ment can be proved like Theorem 8.3 in Billingsley (1968) [see also Sen (1974),
(2.5)]. O

By virtue of Lemmas 3 and 11 we have proved Theorem 1.

5. Bootstrapping GM-estimates. We consider a class of robust estimates
for the parameters of an autoregressive model of order p[AR(p)]. The AR(p)
model is

(19) Xi=p1 Xy 1+ +GpXep +6,

where the innovations ¢; are assumed to be i.i.d. with E[e;] = 0, E[€?] = 02 < oo.
The assumption of a known location u = 0 is made to simplify the exposition.
Furthermore, we assume that the AR(p)-process is stationary.

The Mallows variant of the GM-estimate ¢, for the parameter ¢ = (¢y,...,
¢p) (and G, for the nuisance parameter o) [see Bustos (1982) or Martin and
Yohai (1986)] is implicitly defined by

> (&= hiXi1 =+ = pXe )5y (14X [)XE_, =0,
t=p+1

> x(X - $1Xeo1— - — ppXe )57 1) =0,

t=p+1

where ¢: R — R and x: R — R are bounded robustifying psi- and chi-functions,
w: R — R* is a positive weight function and A, is a sequence of nonsingular

p X p matrices; often A, is a robust estimate of (Cov(X?_,))~ /2. We let X0 * 1
(X;,...,X;—p) and let || - | denote the Euclidean norm in RP.

Furthermore, we assume the existence of a nonsingular p x p matrix A with
A, — A = Op(n—'/2). Then the limiting distribution of (¢,,5,) depends besides
%, w and x, only on ¢ and A, that is,

nY2[(¢h, ) — (¢',0)] =a NO,V),  V=V@A,opw,x)
and, moreover,
‘ n2[F — ¢] = NO, V), V=V(A,0;9,w)
[see Bustos (1982), Theorem 2.3].
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The latter shows that treating 5, as fixed o does not change the asymptotic
results. If we do not bootstrap the estimate G, of the nuisance parameter, we
can therefore consider without loss of generality the GM-estimator ¢, defined
by

(20) Z P((X; - Xy 1~ — ngt—p)U_ I)W(IIAX’i_III)Xf_ 1=0.

t=p+1

These estimators can be written after an aiymptotically negligible modification
at the boundary as statistical functionals ¢, = T(F&*') by defining T(F? *1) via

21) / ¥(Xe*, T) dFPL (R0 ) = 0,

where ¥: RP*1 x © — RP,
U(RL9) = (K~ Koo~ — X o~ w(IAKE_ )X,

and F2*! denotes the (p + 1)-dimensional empirical distribution function of

{Xf +1 } ?: p+ 1
The hope is that bootstrapping GM-estimates yields an asymptotically valid
approximation for their true limiting distribution if the associated functional

is differentiable.

LEMMA 12. Let {X;};cz be the stationary AR(p) model (19). Let FP*! be
the distribution function of (X,..., X;.p). Consider the statistical functional
T defined by (21). We assume that T(FP*') = ¢ (Fisher consistency) and
[0UXE*1, 7)/8r dF(X2*Y) is nonsingular at T = ¢. Furthermore, we assume
that v and w fulfill the following conditions:

(a) ¢ is odd, bounded, continuously differentiable.
(b) w is even, bounded, continuously differentiable, w > 0;

w(|x]) < const.|x|* +o(|x]7%), ||l — oo.

Then T is Fréchet-differentiable at FP*1 with respect to the sup-norm.

REMARK. T is Fisher consistent if the innovations ¢ are symmetric
around 0.

PROOF OF LEMMA 12. A straightforward calculation shows that, under the
assumptions of the lemma, the conditions A from Clarke (1983) hold. Since ¥
[¢f. (21)] is of bounded variation, condition (5.1) from Clarke (1983) is satisfied
with respect to the sup-norm. We achieve the proof by Theorem 5.1 of Clarke
(1983). O



STATIONARY BOOTSTRAP FOR EMPIRICAL PROCESS 1009

THEOREM 2. Consider the stationary AR(p) model (19). Assume that the
distribution of the innovation ¢; is dominated by the Lebesgue measure and that
the distribution function F* of X; is continuous . Let ¢, be the GM-estimator for
¢ defined by (20). Assume that the assumptions of Lemma 12 for the associated
statistical functional T hold. Denote by ¢n the bootstrapped GM-estimator, based
on a blocklength | with l(n) = O(n1/2-¢), ¢ > 0.

Then

sup
x €ERpP

P*[Va(B: - 6n) <] - P[VAB, — #) <] | — 0 in probability.

Proor. The assumption about the distribution of the innovation ¢; implies
that {X;}: c z is strong-mixing with geometrically decreasing mixing coefficients
[see, e.g., Doukhan (1992)], that is,the mixing condition in Theorem 1 holds for
any p.

Let T be the functional associated to the GM-estimator. Since T is differen-
tiable at FP*1 (Lemma 12), we have

T(F,f+l*) _ T(Fp+1) = /IF(x;F’”l) dF,{’*l*(x)+o(||F,f+l* _Fp+1||oo),
T(FP*Y) ~T(FPY) = [TF(F?*Y) aFp i@ o(|FE - F2+Y)),

where FP*! and FP** denote the (p + 1)-dimensional empirical distribution
function and its bootstrap, respectively; IF denotes the influence function. Now
the triangle inequality yields

ﬁ(T(Fg“*) - T(Fr,;ﬂ)) =vn / IF(x; FP+ 1) d [FE* Y (x) — FE* 1(x)]
+o(valFgst ~FpY )
ro(VA[[FE*t—F7*1 ).

The last two terms on the right-hand side are of the order op(1) since the em-
pirical process and its bootstrapped process converge weakly. The first term on
the right hand side is the standardized bootstrapped mean based on the vari-
ables IF(XP*!; Fp+1), Since IF is bounded, conditions (B1)~(B3) in Kiinsch (1989)
are satisfied under the assumptions of the theorem (the analogue of Lemma 2
holds, since IF is bounded). Together with Slutsky’s theorem this implies that
V/n (¢n én) converges to the limiting distribution of \/n(¢, — ¢) [¢f. Kiinsch
(1989), Theorem 3.5]. O

We close this section with a small simulation study. Consider the GM-esti-
mators of the AR (p)-model (19). In this study, for simplicity we fit only AR
(1)-models to the data. By Lemma 12 the GM-estimator for ¢ can be written as

22  Ta=(-D 'S IF(XGFY) 4R, Ru=op(n~V?).
t=2
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If the data follow an AR (1)-model, the influence functions are uncorrelated,
that is, E[IF(X?; F?),IF(X2; F2)] = 0 for ¢ #s [see Kiinsch (1984), (1989)]. In this
case the optimal choice for the block length with respect to the mean square
error of the bootstrap variance is [ = 1 (Efron’s bootstrap), but as soon as the
model does not hold we have to increase [ = I(n) with the sample size to get an
asymptotically valid bootstrap approximation.

For our study we generated the data from different models with two sample
sizes, n = 481 and n = 65: (a) from an AR (1)-model with ¢ = 0.8, innovations
€ ~ N(0,1) or & ~ 0.95N(0, 1) + 0.05N(0,10); (b) from an AR(2)-model with
¢1 = 1.372, ¢ = —0.677, innovations, ¢ ~ N(0, 0.4982).

We have chosen the AR-parameters as in Kiinsch [(1989), section 5]. The
lag(1)-correlations in (a) and (b) are approximately equal, whereas the lag(2)-
correlations are considerably different. Moreover, by choosing 02 = 0.4982 in
(b) we obtain that Var(X;) in the AR(2)-model equals Var(X;) in the AR(1)-model
with ¢, ~ N(0, 1). In (a) we fit the right model, whereas in (b) the fitted model
is wrong.

Let 02 = nVar(T,),y, = n®2E(T, — EI[T,])®] (skewness) and «, =
n?E|T, — E[T,]|* — 802 (kurtosis). The true quantities have been estimated
from 1000 simulations; the bootstrap quantities have been computed with 500
replicates and estimated from 300 simulations (for n = 481) or 200 simulations
(for n = 65), respectively. [Computed with ROBETH; (x) = min[max(x, —c), c],
¢ = 1.345,w(x) = ¢(x)/x.] (See Table 1.)

As an overall result we have that for appropriate choices of / > 1 the non-
normality of the true distribution is picked up to a satisfactory extent by the
resampling procedure.

In (a), that is, we fit the right model, Efron’s bootstrap (! = 1) seems to be
the best for estimating the variance. This was to be expected according to the
theory. However, the resampling procedure still works reasonably for l(n) ~
cnl/3, ¢ € [1,1.5]; this is the optimal order [w.r.t. MSE (52)] in the case of the
mean [see Kiinsch (1989)]. Moreover, the estimate for the skewness is far better
with [ > 1. For / too large the procedure is inefficient: Var(2) is large and even
|Bias(52)| is larger than for some smaller /.

In (b), where we fit a wrong model, the blockwise bootstrap clearly out per-
forms Efron’s bootstrap. The bias of 52 decreases with growing block size, agree-
ing with the case of the mean, where Bias(52) ~ const.l~! Var(2) seems to be
fairly stable with respect to /; for n = 65, Var(52) even decreases with bigger
I; for the mean Kiinsch (1989) showed that Var(c2) ~ const.In~!. The optimal
block length seems to be bigger than cn!/2, ¢ ~ 1, which is often a good choice
in the case of the mean.

We wondered if there is a relevant effect due to the nonlinearity of the esti-
mator. We looked at the linear part of the estimator [see (22)]

Toin = (n — D71 ) IF (X F?)

t=2

and computed Var*(T}, ;) [This can be done without any bootstrap replicates
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TABLE 1
E[5] SD.(G3) MSE(2) E[:] SD.Ga) Elrs]  SD(Gn)
AR(1)-model with ¢ ~ N(0,1), n = 481
True 0.53 —0.089 —0.063
=1 056 0.10 0.01 —1.86e — 03 2.21e — 03 2.41e — 03 5.84e — 03
=8 056 0.13 0.02 -0.087 4.54e — 03 0.015 8.44e — 03
AR(1)-model with ¢ ~ 0.95N(0, 1) + 0.05N(0, 10), n = 481
True 0.45 -0.097 0.084
=8 045 0.11 0.01 —0.065 2.97e — 03 0.023 4.97e — 03
=12 0.45 0.12 0.01 -0.072 3.03e — 03 0.019 5.52e — 03
=60 0.41 0.21 0.04 —0.083 0.014 0.015 0.017
AR(2)-model with ¢; ~ N(0, 0.4982), n = 481
True 0.134 —8.17e — 03 7.77e — 04
I=1 0.507 0.057 0.143 3.55e — 04 1.93e —03 —4.76e — 03 3.02e — 03
=8 0.267 0.044 0.020 —9.01e — 03 3.07e — 04 —3.85e — 04 3.31e — 04
1=20 0.189 0.045 5.05e — 03 —8.98¢ — 03 1.64e — 04 8.31e — 04 9.62e — 05
=30 0.170 0.050 3.81e — 03 —7.76e — 03 1.26e —04 —2.60e —04 6.64e — 05
1=60 0.144 0.061 3.79e — 03 —6.21e — 03 1.69¢ — 04 —1.22e — 03 5.70e — 05
" AR(1)-model with ¢ ~ 0.95N(0, 1) + 0.05N(0, 10), n = 65
True 0.54 -0.33 0.28
=1 052 021 0.05 —5.94e — 03 0.01 0.05 0.2
=4 052 0.32 0.10 -0.15 0.06 0.15 0.11
=8 049 0.43 0.19 —-0.20 0.15 0.15 0.37
l=16 041 0.52 0.29 -0.21 0.39 0.16 1.88
AR(2)-model with ¢ ~ N(0,0.4982), n = 65
True 0.18 -0.0273 0.010
I=1 052 0.16 0.14 —7.01le — 03 5.10e — 03 0.031 9.31e — 03
=4 039 0.13 0.06 -0.0140 2.50e — 03 —5.03e — 04 3.34e — 03
/=8 026 0.12 0.02 —0.0237 2.09e — 03 5.44e — 03 1.30e — 03
=16 0.18 0.12 0.01 —0.0227 2.73e — 03 3.03e — 03 1.90e — 03

since T, is an arithmetic mean; see Kiinsch (1989)]. It turns out that the
results for E[52%], S.D. (52) and MSE(&Z) are about the same for T, and Ty

Therefore we believe that the error term R, in the linearization (22) does not
play a relevant role, and thus the optimal block length [w.r.t. MSE(G2)] would
still be l(n) ~ const.n!/3. However, the constant depends on the autocovariances
of IF(X2; F2), which can be quite different from the autocovariances of X;.

The study confirms a nice robustness property. At the right model, there is
not too much loss by choosing a block length I/(n) increasing with the sample
size instead of the optimal [w.r.t. MSE(G2)] | = 1, whereas in a misspecified
model the blockwise bootstrap clearly performs better for many block lengths
l. Nevertheless further research is needed for an adaptive choice of the block
length .
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