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VALIDITY OF BLOCKWISE BOOTSTRAP FOR EMPIRICAL
PROCESSES WITH STATIONARY OBSERVATIONS

By U. V. NAIK-NIMBALKAR! AND M. B. RAJARSHI

University of Poona

We show that the empirical process of the block-based bootstrap
observations from a stationary sequence converges weakly to an appropriate
Gaussian process, conditionally in probability and almost surely, depending
upon the block length. This bootstrap was introduced by Kiinsch and later
by Liu and Singh. Applications in estimation of the sampling distribution
of a compactly differentiable functional are indicated.

1. Introduction. It is now well-established that, in exchangeable situa-
tions, Efron’s bootstrap offers a very important nonparametric technique to
study the sampling distributions of complicated statistics and pivotals. Ex-
tensions of Efron’s technique to the dependent random variables have been
done by Freedman (1984), Bose (1988) and Rajarshi (1990). However, these au-
thors assume either a semiparametric model such as an autoregressive model
[Freedman (1984) and Bose (1988)] or impose a structure such as a Markovian
character [Rajarshi (1990)]. Carlstein (1986) offers a truly nonparametric
method, based on a subseries technique for estimation of the variance of
a statistic.

Recently, Kiinsch (1989) and Liu and Singh (1992) have developed an inge-
nious extension of Efron’s bootstrap to general stationary sequences of obser-
vations. This technique involves selecting £ blocks by a simple random sample
with replacement, from n — £ + 1 blocks of observations (Xj.1,Xj.2,...,Xj+0),
j=0,1,...,n — ¢, where n denotes the sample size and n = ¢k. Under some
assumptions on the rate of decay of the mixing coefficients of the stochastic
sequence {X,,n > 1}, and by a proper choice of £ = ¢(n), Kiinsch (1989) shows
that the block-based bootstrap correctly estimates the sampling distribution
as well as the asymptotic variance of the sample mean, when n is sufficiently
large. Kiinsch (1989) also studies various jackknife estimators and establishes
their consistency for various classes of estimators. He further demonstrates
that the jackknife and bootstrap procedures work better than Carlstein’s sub-
series technique.

Under certain conditions [see (2.2)], the empirical process of {X;,X5,...,X,}
converges weakly to a Gaussian process Z, sample paths of which are contin-
uous. The covariance kernel of this Gaussian process Z would be typically un-
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known to the statistician. Even if it is known or estimated, applying it to derive
a formula for the variance of a complicated functional (or, more ambitiously, the
sampling distribution of a functional) would ask for a detailed theoretical in-
vestigation compounded by computational complexities. Consider, for example,
the form of the variance of the trimmed mean of a Gaussian process, as derived
by Gastwirth and Rubin (1975). Thus, resampling procedures such as jackknife
and bootstrap have to play a more prominent role in a statistical analysis of
dependent observations than that of independently and identically distributed
(i.i.d.) observations. Further, Kiinsch [(1989), page 1222] rightly remarks that
“with dependence, parametric methods are even more dangerous than in i.i.d.
situations.” It is indeed a very redeeming feature of a bootstrap procedure that
it allows a data analyst a purely computational device to enable her/him to
answer most of the questions of interest.

In this paper, we show that, conditionally on the observations, the boot-
strapped empirical process converges weakly to the process Z in probability or
almost surely depending upon the order of the block size £. Consequently, the
bootstrap estimator of the sampling distribution of a compactly (or Hadamard)
differentiable statistical functional is weakly or strongly consistent. This result
further can be used to estimate the variance (when it exists) of the asymptotic
distribution of a compactly differentiable statistic. Related work for i.i.d. obser-
vations can be found in Bickel and Freedman (1981), Singh (1981), Parr (1985),
Shorack (1982), Swanepoel (1986), Liu, Singh and Lo (1989) and Gill (1989). The
last two papers explicitly deal with compactly differentiable functions. Once
the weak convergence of the bootstrap empirical process is established, our
approach is similar to that of Gill (1989).

In Section 2, we give the notation and assumptions and state our main re-
sults. Section 3 deals with the preliminaries, the main result there being that
the bootstrap estimator of the covariance kernel of Z is strongly consistent,
uniformly in (s,t). In Section 4, we prove the main results.

2. Assumptions and main results. Throughout we assume that {X,,
n > 1} is a stationary, strong or a-mixing process with mixing coefficients a(n).
Let

Ui(s,t) =Ils < X; < ],
Ui(t) = I1X; < ¢,
2.1) F,0)=n"1) U,

i=1
F@t) = P[X; <,

Zn(®) = v/n[Fu(t) - F(t)].

Under the assumptions that X; has a continuous distribution and that
2@ + 12a@)Y2" <oo for 7€ (0,3),itis known [Deo (1973)] that

(2.2) Z,=2Z,
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where Z is a Gaussian process with almost all continuous sample paths; the
symbol => is being used, as usual, to denote the weak convergence in the space
of cadlag functions [cf. Billingsley (1968), Chapters 3 and 4, and Pollard (1984)].
Our assumptions on a(n)’s would imply these assumptions and are described
in Theorem 2.1. In particular, they also imply that the covariance kernel X(s, )
of the process Z is continuous in (s, 2).

The block-based bootstrap formally operates as follows. Let S;,S5,...,S;, be

ii.d. random variables each having a uniform distribution on {0,1,...,n - £}.
Let ,
(2.3) H®) =1y U.j®, j=01,..,n-¢

r=1

Then, a bootstrap distribution function F; is defined by

k
(2.4) Fy=k"') Hg,
Jj=1

One then computes T', a functional on the space of distribution functions, at F:,
by realizing S1,Ss,...,S. The rest of the bootstrap methodology is the same
as that of i.i.d. observations.

As is customary, we let P* and E* denote the conditional probability and the
conditional expectation, respectively, given the data (x;,xs,...,x,). We further

define fv’n and Z; by

n-—4£
(2.5) Fo=E*[F}]=(mn—-t+1)' Y H;
j=0
and
(2.6) Z: = n[F; - F,).

The first main result of the paper is as follows.

THEOREM 2.1. Let the stationary and a-mixing stochastic process {X,,
n > 1} satisfy the following: '

() £+ 1D7a@Y2" < oo, for T €(0,3).
(b) The random variable X; has a continuous distribution on R, the real line.

Let £ =4(n) = O(n'/2-¢), with 0 < € < % Then, for every subsequence {Z’;Lj},
there exists a further subsequence {Z}, ,} such that, for almost all {x1,%2,...},

@.7) {z;,} =2,

conditionally on (x1,xg,...,x,), where Z is as defined by (2.2).
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The above mode of weak convergence of Z* may be described equivalently
as weak convergence in probability, given the sample.
For almost-sure weak convergence, however, a smaller block size is required.

THEOREM 2.2.- Under assumptions (a) and (b) of Theorem 2.1, suppose fur-
ther that £ = O(n'/2-¢), 1 < e < . Then, for almost all {x1,%3,...},

(2.8) AR WA
conditionally on (x1,x3,...,%,).

As in Gill (1989), Theorems 2.1 and 2.2 immediately yield the weak or strong
consistency of the block-based bootstrap procedure for compactly differentiable
statistical functionals.

3. Preliminaries. We start with moment inequalities for sums of strongly
mixing random variables. Let

1, = {E(rr) ),

(3.1
A ) = 364 7o)

i=0
From now on, the C’s will denote constants whose exact values are unimpor-
tant for the discussion and may change from line to line.
LEMMA 3.1.

(a) Let {Y,, n > 1} be a strictly stationary a-mixing sequence such that
E(Y1) =0, |Y1]lm+r < 00 and Ap, (@) < oo for some v > 0. Then,

ZY

where K(o) is a constant which depends only upon the order of moments assumed
and the a-mixing coefficients.
(b) IfE|Y1|**¥ < oo for some v > 0, then

(3.2) < K(@)[|Y1llm+v] 0™/,

n 4
5 [z Y,] < Cn{As, @IVl +As @[T,
i=1

1Ay @Y1l +n[As @) IV, |

PROOF. Part (a) is Theorem 1 [expression (4.1)] of Yokoyama (1980). Part
(b) follows from (4.2), (4.3) and (4.4) of Yokoyama’s paper. O
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We note thatif |Y;| < ¢, for some real ¢, then one may effectively take v = coin
(3.1), that is, the sufficient condition for (3.2) to hold is ¥ + 1)(™/2) ~ 1a(i) < oo,
[cf. Theorem 3.2 of Yokoyama (1980)]. Further, in part (b), one may choose
different v’s in the terms occurring in the upper bound.

The following lemma establishes properties of F,, as an estimator of ', which
will be useful in the sequel.

LEMMA 3.2.

(@) |[F, — Fal| < C¢ — 1)/(n — £ + 1). Consequently, if £/x/n — O,
VA Fy — Fal| - 0.

() If 2G + 1" ~Ya@) < 0o and if £ = O(n1/2-¢), 0 < & < 3, then E[F,@¢) -
FOP1™ < C{t - 1)/(n — £+1)+1/\/n }2™, which is O(n—™).

(¢) Suppose that £ + 12a@)?~™ < 00, 0 <7 < %, £ = 0@Y2-¢), 0 <
€< %, and that X, has a uniform distribution over [0,1]. Then {||F, — F| — 0
in probability. Further, if % <e< %, {||F, — F|| — 0 a.s. Consequently, similar
results hold for F,.

PROOF.
(a) From Kiinsch [(1989), (3.3)], it follows that

F,0-Fu) =) (a.() - n ) U0),
i=1
where a,(i) equals i/[l(n — £+ 1)] fori = 1,2,...,£ — 1, equals 1/(n — £ + 1)
fori = 4,0+ 1,...,(n — £+ 1) and equals n — i + 1)/ll(n — ¢ + 1)] for
i={n — £+ 2),...,n. Thus, the result follows immediately.
(b) We note that

E[F,@) - F&)*"
(3.3) = E[|Fo(®) — Fo(®)] + |Fa®) — FO)*™
<Cle-D/tn—-tL+1)+1/ym)*"

by the Minkowski inequality, part (a) and Lemma 3.1 (a).

(c) Convergence in probability follows easily from the fact that, under the
stated conditions, v/n||F, — F|| = Op(1), [cf. (2.2)]. For almost-sure convergence,
arguing as in Shorack and Wellner [(1986), page 96], we see that ¢||F, — F||
< maxi<i<mm llFnG/M@n) — i/M(n)| + £/M(n). Now we choose M(n) =
Q(nl/2-c+e'y ¢’ > 0, so that £/M(n) — 0. Then for any § > 0,

ZP{ max (|F, >5}
1<i<M@®)

i\ _ i
* (M(n)) M(n)
|F,() —t|®

<CY MmEPE=—"—

eS
< CZM(n)W’
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by Lemma 3.1(a). Thel series converges if one can choose an & > 0 such that
M(n)e8 /n* is O(n=1-%), &' > 0. This is possible if ¢ > 1. O

Our development toward the proof of Theorems 2.1 and 2.2 requires a study
of the bootstrap estimator of the parameter

i=1

o%s,H) = lim Var{ Z [Uits,5) - (F&) - Fs)| /v }

ar[Uy(s,8)] +2 ) Cov[Uy(s, 1), Uis,d)].
i=2

Under the assumptions on the mixing coefficients as stated in Theorem 2.1, it
follows that the above series converges absolutely [cf. Deo (1973), Lemma 2].
Also,if F(t)=t, 0 <t <1,

0'2(s,t) = Z E{ [Ul(s, t)— (- S)] [U1+|,~|(s,t) —@- S)] }

i=—00

<C Z () {E Us(s, ) — (¢ — )] }

i=—00

with p =4/(1 + 27), 2 < p < 4 [cf. Withers (1975), Lemma 1 (f)]. Therefore,
3.4) o%(s,t) < C|t —s|, b=2/p, 1 <b< 1l

Further, it is clear that 02(s, ¢) is the variance of the asymptotic normal distribu-
tion of the mean-like statistic, namely, $Uj(s, #)/n, and that X(s,z) = Cov(Z(s),
Z(t)) is given by the equation

(3.5) o2(s,t) = 0%(0,t) + 0%(0,8) — 2K(s,1).

We note that o(s, ) defines a semimetric on [0, 1].
Let 52(s, t) denote the bootstrap estimator of 02(s, t), that is,

G2(s,t) = Var* [Z;(2) — Z;(s)].
It follows from (3.15) of Kiinsch (1989) that

B - 2
~ l n_t ¢ U'+r(31 t) — (F"'(t) — Fn(S))
(3.6) Galet) = —— Jz:; {; J ¢ |

It is then easily seen that

9 9 _ ¢ n—¢ ‘
3.7) 526,t) ~ E[53(6,8)] = —— [Z_‘a Vis,t) + V(s,t)] ,
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where
¢ 2
Vi(s,t) = {e- 'y [Uj”(s, t)— (F@) - F(s))] }
3.8) =1, 2
r=1
and
~ ~ 2
. Vis, ) = ~(n.— £+ D{ [Fa®) - Fal6)] - [F®) - Fi6)]}

+(0 = £+ DE{ [Fa(®) ~ Fols)] ~ [F0 - Fis)]}

The following result establishes the strong consistency of 52(s,¢). Kiinsch
(1989) gives sufficient conditions under which the strong consistency holds.
Since we aim at proving uniform consistency, our method of proof is somewhat
different than that of Kiinsch. We therefore include a proof here.

LEMMA 3.3. Suppose that the mixing coefficients of the process {X,, n > 1}
satisfy the following conditions:

(@) 6E+1)7a0) < oo
b) X6+ Da@)? < co.

Further,let {(n) = O(n'/2~¢), 0 < & < 3. Then, for every fixed (s,t), G(s,t) —
o2(s,t) a.s.

ProoF. From (3.8) and the Minkowski inequality, we have

E{#36,0 - E[63s,0] )
1/4 4

n—¢ 4
<Pn-t+1)t [E(Z‘G)] + [BOVHMAY
Jj=0

(3.10)

where we write V; and V for Vj(s,¢) and Vs, ), respectively.

To obtain an upper bound for E(ZJ’.';ol Vj)*, we note that the process {V}, j > 0}
is a strictly stationary and strongly mixing process whose a-mixing coefficients
are given by

1, i <Y¢,

“ (l)s{a(i——é), i>e

We use the more precise bound for E(EJ'-‘;O‘ V)4, as given by part (b) of Lemma
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3.1. Thus, we have

n—£ 4
g l 2 VJ] <Cln—t+ ”{AZ, S|Vl +As,@)Vill,,
Jj=0

(8.11)
+ (n -0+ 1) [A4,.,(a*)||V1||‘i+,, + [Az,u(a*)]2||V1||3+u] }

By applying Lemma 3.1(a) to ©¢_,{U:(s,?) — [F(¢) — F(s)]} with m = 16, we get

¢ 16
E { Z (Ur(s,t) - [F®) - F(s)])} <ce.

r=1

Using the Minkowski inequality and simplifying, we get E[V§] < C/e®. Now
choose v = 4 in (3.11) and use | X||, < ||IX||q for p < g. Noting that the first ¢

mixing coefficients of the process {V;, j > 0} are at most unity and after some
simplifying calculations, we have

' n—2¢ 4
(3.12) E[Z VJ] <Cl % n—£+1)2%
j=0

Returning to the second term of (3.7),let W = {[F,,(t)—F($)] = [Fa(?) —F,(s)1}2
Since 0 < W < 1, it follows that E(V4) = (n — £+ 1)*E[W — E(W)]* < (n — £ +
D*{EW?) + 6E(W?)[E(W)]2}. Now, by the Minkowski inequality and Lemma
3.2(b), we conclude that

EW") = E[Fo® - Folo) - (FO - FG)|

-1 11%
< _— = .
—C[n—€+l+ﬁ] , r=1,2and 4

Substituting these bounds above, we get

-1 1]8

4 _ LY e N
(3.13) E(VH<Clh—2+1) [n_e+1+\/,—l

Putting (3.13) and (3.12) into (3.10) and retaining the dominant terms only, we
finally concludp that

4 2
(3.14) E{?i‘,’l(s, t) — E[ai(s, t)]} = O((n _i_,_ 1)2)’

so that the series ¥, E{52(s,?) — E[6%(s, )]} converges uniformly in (s, ¢), pro-
vided 4(n) = O(nt/2-¢)
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Further, if 4(n) = o(n'/2), it follows from Deo [(1973), Lemma 1 (with r; =
ro = 4)] that

a(k)1/2

(3.15) |[E[#26,0] - o, t)H<CZk o

which converges to 0 in view of assumption (b). Also see Kiinsch [(1989), The-
orem 3.2], in this connection. This, combined with the Borel-Cantelli lemma,
completes the proof. O

We now use the above lemma to prove the uniform consistency of 52 (s, t).

THEOREM 3.1.

(a) Let £(n) = O(n'/2-%), 0 < e < . Assume that the conditions of Lemma
3.3 hold and that X; is uniformly distributed on [0, 1]. Then,

|52(s,2) — o%(s,8)|| — O in probability.
(b) Further,if € > Z’ we have

”(/T\%(S, t) — 02(s,t)” —0 a.s.

Proor. This proof is a suitable modification of proofs of the Glivenko—
Cantelli theorem. From (3.8), we have

2 2
(1 Uarls,) —E((zf=lt/}+,<s,t>) )
72
Zf:l {l]j+r(sv t) - (t - 3)}
£
Now consider a grid {¢/M(n), p/M(n)) | i,p = 0,1,...,M(n)} of the unit rect-

angle. Using the above expression of Vj(s,?) and arguing as in Shorack and
Wellner [(1986), page 96], we see that

Vi(s,?) =

—2(t—s)

n—£
ln— L+ 171 Vils, 1)

j=0
n—~2 .
-1 p
(3.16) Sosglz}%xmn fn—t+1) ;;%(M(n) M(n))
= (i i 6¢
+ 8 max b "(M(n)) T M| T Mo
~2 i p-1 9 1 »p
*osﬂ%"MmE{ (M(n) M(n))} E{ (M(n) M(n)>]|
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Now, the continuity of K(s,¢) implies the uniform continuity of 02(s,#) on the
unit rectangle. Thus, for a give,n 6 > 0, there exists an ng so that, for every
n > ng, with M(n) = O(nl/2-¢+¢"), we have, for every 0 < i, p < M(n),

02(4’ P;1> _(,z(i—_l P
M)’ M(n) M(n)’ M(n)

and ¢/M(n) < 6/6.In view of this and the fact that | E(G%(s, ¢)) — 02(s, )| — 0 (as
seen at the end of the proof of Lemma 3.3), the last two terms on the right-hand
side of (3.16) converge to zero, as n — co. The a.s. convergence of the second
term to zero follows from lemma 3.2(c). Further, for n > ny,
5 }
>
in view of (3.12).

n—+¢
-1 b
Un—£+1) ZV(M(n) M(n)>
£2
54(n — £+ 1)2

Thus, the left-hand side of (3.16) converges to 0 in probability, so long as
0<e<i

To prove the part (b), we note that the series £32, [Mn)?/(n — £ + 1)?
converges if one can choose a positive ¢’ such that 4¢ — 2¢’ > 1 for a given
e>0,0<e< 2 This leads to the constraint on ¢, as stated in the statement
of the theorem. Thus, by the Borel-Cantelli lemma, the first term on the right-
hand side of (3.16) converges to 0 a.s. Therefore,

<3
67

P max
(3.17) {OSL',FSM(II,

< CM(n)?

n—=¢
ln— 2+ 171 ViGs,0)
j=0
Now, both part (a) and part (b) follow by using Lemma 3.2(c), (3.7) and
(3.15). O

— 0 a.s.

COROLLARY 3.1. Let X (s, t) denote the conditional covariance kernel of the
process Z%, that is, X(s, t) = Cov*(Z:(s), Z1(t)). Then, under the conditions of the
theorem, ||IK (s,t) — K(s,t)|| — 0in probability or a.s. depending upon the choice

of €.

ProoF. The proof easily follows from the above theorem and an expression
for the bootstrap estimator similar to (3.5). O

Let
(3.18) } = [|5%(s,8) — o%(s,8)||.

COROLLARY 3.2. Under the conditions of the theorem, there exists anr > 0
such that the following hold:
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(a) n"A, — 0in probability;
(b) n"A, —» 0a.s., ife > %.

Proor. We prove (b) only; the proof of (a) follows similarly. Returning to
(3.16) and multiplying each term by n”, we see that arguments made in the proof
of Theorem 3.1 are still applicable: there exist r and &/, r > 0, €’ > 0, such that
()4e—2¢'— 4r > 1,(i) 9 —&’'— 8r > 3, (i) e/ > r, (V) (B/2)(3 —c+€&) —r >0
and (v) r < % — ¢ are satisfied simultaneously, if ¢ > %. Conditions (i)-(iii)
correspond to the first three terms of the right-hand side of (3.16). The last
condition ensures thatn” /¢ — 0 and thus the term arising from the bias, namely,
n"|EG%(s,t)] — o%(s,1)|| — O [cf. (3.15)]. The last term of the right-hand side of
(3.16) is bounded above by the sum of the bias term and

02(_."_ P;l) _02<i—_1 P
M(n)’ M(n) M®n)’ M(n)

The last expression, by the triangle inequality on the semimetric o(s, ) and by
(3.4), is at most equal to 2C(M(n))~ %/2. Thus, n” times the last term converges
to 0, due to (iv) and (v). O

4. Proofs of the main results. To prove tightness of the bootstrap empir-
ical process, we follow the approach based on chaining, as described in Pollard
[(1984), Chapter 7]. [The chaining arguments are based on the work by Dudley,
Le Cam and Giné and Zinn; for references, see Pollard (1984), page 167.]

We first assume that X3, has a uniform distribution on [0, 1]. Let the corre-
sponding limiting Gaussian process of (2.2) be denoted by Y. On T = [0, 1], let
d(s,t) = o(s,t) be the semimetric as defined by (3.5). Let

(4.1) en(b,m) = P*[ sup |Zy(®) — Z3(s)| > 77] )
d(s,t)<é

To prove Theorem 2.2, we need to show that, for every n > 0, there exists a
6 > 0 such that limsup, ¢,(6,7) = 0 a.s. For Theorem 2.1, we need to show
that, for every subsequence, there exists a further subsequence {n;} such that
lim sup,, ¢5,(6,7) = 0 a.s. This is established through the following lemmas,
wherein we use Theorem 3.1, Corollary 3.2 and the fact that convergence
in probability implies that almost-sure convergence holds over subsequences.
For notational convenience, results are stated and proved in terms of the se-
quence itself.

LEMMA 4.1. For every A € (0,1), every n > 0 and § > 0 such that §2/n >
n=¢/(2B~Y(\)) and §% > A,, we have

_ 772()\/2)}
257 [’

provided d(s,t) < 6. [Here, B(-) denotes the function on the right-hand side of
Bennett’s inequality; cf. Pollard (1984), page 192)]. -

P*||Z2@®) - Z2)| > ] < 2exp{
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Proor. We note that

. - N
4.2) ZyO - Zye) =VEy [Hs®) - HS"(S)I/I; [Fn — Fulo) ,
i=1

where S1,8S5,...,S; are i.i.d. random variables. From Bennett’s inequality, we
have

P [|z;';(t) ~Z:s)| > n]
1 7 e
2exp{_§8,%<s, oo (6,%<s,t>>}

1 772 nn— 5
2e"p{ T3 A PG DL (A,, +02(s, t)) }

as 62(s,t) < A, + 0%(s,t) and AB()\) is an increasing function of \.
Further, if 02(s, ) < 62 and A, < 62, the last expression cannot exceed

1 n2 nn-—-a
29"1’{‘5@3(_252 )}
which, in turn, is bounded above by 2exp{-i(n?))/(26%)}, if 6%/n >

n=¢/(2B~1 (\)). The last inequality follows since B(0) = 1 and B is a contin-
uous, decreasing function. O

IA

IN

Let N(6,d,T) be the covering number of T with respect to the §-net of the
semimetric d and let J(6,d,T) be the corresponding covering integral [see
Pollard (1984), page 160 for details].

LEMMA 4.2. The covering integral J(6,d,T) is finite and converges to 0 as
6—0.

PrOOF. From (3.4), we recall that 0%(s,#) < C|t—s|?, 1 < b < 1,for some pos-
itive C. We then note that d;(s, ) = C|t —s|?/2 is also a semimetric, as 3 < b < 1.
The covering number N(5,d1, T) is clearly 1 plus the integer part of (§/C)~2/%,
which, in turn, dominates the covering number N(6,d,T). O

Now we are in a position to apply Theorem VII.26 of Pollard [(1984), page
160] to the process Z*. We take a®> = a2 = A, +n~¢/(2B~1(A\),A=1/4and D =
v/(2/X). In view of the above cited theorem, it remains to establish the following.

‘LEMMA 4.3. Foranyv > 0.

(4.3) lim sup P* [sup |Z;‘;(t) - Z;‘,(ta)| > 1/] =0 a.s.,
teT

n—oo
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where o? = o2 = A, +n~¢/(2B~ () and t, is the member of the a-net of T [with
respect to d(s,t)] which is nearest to t.

Proor. We first observe that, given the sample (xq,x2,...,x,), Z () —Z%(s)
assumes at most (n + 1) values as s and ¢ vary in T'. This is shown as follows.

For any two points ¢ and ¢’ with F,(¢) = F,(t"), we have I[x, < t] =I[x, < #],
forallr =1,2,...,n. Thus, H;(t) — F,(¢) = ¢71%¢_  Ilxiy, <] — £~ W n—£+1)7?

ZJJ.:‘O"' Ef=lI[xj+r <tl=H;¢)- f‘n(t’), forall i=0,1,...,n — £. Hence, for such

two points, Hg,(¢) — Fo(t) = Hs,(#') — F,(¢') for alli = 1,2,. .., k. Consequently,
Zx(t) = Z;(¢'). Since F, assumes only n + 1 different values, the claim follows.
Therefore,

(4.4) P* [sup |Z2(8) — Z3(20)| > u] < (n+ 1) sup P* [|z;;(t) —Z3t)| > y].
teT teT
Since |Hg, () — H,(ta) — (Fo(t) — Fy(to))| < 2 and
~ ~ 2
E* [{Hsl(t) - HSi(ta) - (Fn,(t) - Fn(ta))} ] = A&(ty ta)e— 11

Bernstein’s inequality [Pollard (1984), page 193] and expression (4.2) imply that

1.23,-1
—2'I/ kn }

@8 P20 -2 > v] <2 eXp{_a‘2(t i) 13 Ton=1/2
n\"» 3

As G2(t,t,) < A, + 04t ta) < A, + o2, the probability in (4.5) is bounded
above by

1,2
2exp{ - bid }
A +a2+ 2vtn=1/2

Now, Corollary 3.2, the definition of o and the condition on ¢ imply that, for
somer > 0, [A, +a?+ Zvtn~Y2] = O(n~"). Thus,

p* [sup |Z3(8) — Zx(2a)] > u} < 2(n + 12 exp(—Cn’),
teT

for some constant C. This completes the proof. O

PROOF OF THEOREM 2.1. It remains to show that the finite dimensional
convergence holds almost surely over subsequences. This is done by closely
following the proof of Theorem 3.5 of Kiinsch (1989).

From Corollary 3.1, it follows that, for every subsequence {n;}, there exists a
subsequence {n; } such that ||f)<,‘;j, (s,)-X(s,2)|| — Oas.Let Ty = X% ya:Z; , (2:).
It follows that Var*(T,*,‘j,) converges almost surely to Var(X% ;a; Y(¢;)), the con-
vergence being uniformin #,,#y, . . ., t». Thus, as in Kiinsch (1989), it remains to
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verify the Lindeberg condition for T,’{j, /(Var(S™ ,a;Y(¢,)))*/ 2. This follows easily
from the fact that

m r=j+4£
o nax X;ajzl [U@) - F@t))| < £ las| = o(v/n),

which verifies condition (B3) of Kiinsch (1989). This combined with the a.s.
convergence of ||F, — F|| to 0, implies the Lindeberg condition.

Thus, Z,*;j, =Y.

We now relax the assumption that X; has a uniform distribution on [0,1].
This is done in the following rather routine manner. Here, for convenience, we
deal with the original sequence itself rather than a subsequence. Let G, be a
continuous version of F,, such that |G, — F,|| < 1/n, [cf. Billingsley (1968), page
104]. Since ||G; ! — F|| — 0 a.s., where F is the uniform distribution function,
ZX(G; ') = Y, in view of the continuous mapping theorem. Now, let F be any
continuous distribution function. In view of the continuous mapping theorem
and the fact that |G, —F|| — 0 a.s., we readily see that Z:(G; 1(G,)) = Z} = Y(F)
in the conditional setup of the theorem, Y(F) being distributed like Z of (2.2). O

REMARK 4.1. Strong consistency of the bootstrap estimator of the sampling
distribution of a compactly differentiable statistical functional T' for a subse-
quence follows as in Gill (1989). Further, the limits do not depend upon the
subsequences. This implies the weak consistency of the block-based bootstrap,
that is,

sup
x

P{Vvalr@E) -1(F)] <=} - P{vaire) - 1) <}

— 0 in probability.

PrOOF OF THEOREM 2.2. The proof of Theorem 2.2 follows easily since the
almost-sure finite dimensional convergence now holds (cf. Corollary 3.1), and
Lemmas 4.1-4.3 are applicable to the sequence itself. O

REMARK 4.2. It needs to be pointed out that, when the distribution of
dT(F) - Z is normal, Theorems 2.1 and 2.2 do not imply the consistency of the
bootstrap estimator of the variance of the limiting normal distribution. The con-
sistency of the bootstrap estimator may require further investigations based on
additional assumptions, such as outlined in Kiinsch [(1989), Section 4.1]; also,
see Ghosh, Parr, Singh and Babu (1984) and Rajarshi (1990). However, the
theorem does imply that the interquartile range of the bootstrap distribution
of T(F}) can be used to estimate the standard deviation of the limiting normal
distribution. This suggestion is due to Parr (1985), which is based on the fact
that the interquartile range, unlike the variance functional, is a continuous
functional on the space of distribution functions.
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