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LATTICE SAMPLING REVISITED: MONTE CARLO VARIANCE
OF MEANS OVER RANDOMIZED ORTHOGONAL ARRAYS!

By ArRT OWEN

Stanford University

Randomized orthogonal arrays provide good sets of input points for ex-
ploration of computer programs and for Monte Carlo integration. In 1954,
Patterson gave a formula for the randomization variance of the sample mean
of a function evaluated at the points of an orthogonal array. That formula is
incorrect for most of the arrays that are practical for computer experiments.
In this paper we correct Patterson’s formula.

We also remark on a defect, related to coincidences, in some orthogonal
arrays. These are arrays of the form OA(2¢2, 2q + 1, q, 2), where q is a prime
power, obtained by constructions due to Bose and Bush and to Addelman
and Kempthorne. We conjecture that subarrays of the form OA(2¢2, 2q, g, 2)
may be constructed to avoid this defect.

1. Introduction. Patterson (1954) describes an interesting class of sam-
pling techniques based on randomizations of orthogonal arrays. Most of that
article covers sampling from a space described by two or three discrete vari-
ables, each taking the same number g of levels, but the final section considers
the general case of d variables. The orthogonal array provides some multiple of
q points describing a subset of the ¢? possible settings and enjoying a balance
property described below. Randomization applied to the levels of each variable
may be used as a basis of inference.

While such designs are unwieldy for physical experimentation (e.g., 17 vari-
eties of pig in 17 pens trying 17 diets and 17 antibiotics over 17 time periods),
they are well suited for computer experiments in which, for example, 5 contin-
uously varying inputs are to be examined at 17 levels each. Patterson’s lattice
sampling schemes predate by many years the closely related work on Latin
hypercube sampling [McKay, Conover and Beckman (1979), Stein (1987), Tang
(1993) and Owen (1992a)], which drew its impetus from computer experiments.
Owen (1992b) considers the use of randomized orthogonal arrays for integra-
tion, visualization and computer experiments on functions defined over [0, 1]¢.

Patterson (1954) gives a formula for the variance of the sample average of
a function evaluated at the points of a randomized orthogonal array. Owen
(1992b) uses Patterson’s formula to show how the balance property of orthogo-
nal arrays essentially removes certain low-order terms from the sampling vari-
ance. Patterson’s formula turns out to be incorrect in most of the cases of interest
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for computer experiments. This paper gives the correct variance formula. The
same low-order terms are removed from the corrected variance formula, so the
main point in Owen (1992b) is restored to a firm footing.

Patterson’s formula was also presented assuming that the array is free of a
certain coincidence defect (described below). The variance formula given here
does not require a defect-free array, although absence of defects may greatly
simplify it.

We conclude this section by introducing orthogonal arrays, remarking on the
coincidence defects mentioned above and defining continuous ANOVA’s and
randomized orthogonal arrays. Section 2 gives the formula for the randomiza-
tion variance of the mean of a function evaluated on the points of an orthogonal
array. Section 3 considers some special cases of interest to computer experi-
ments. Section 4 compares randomized orthogonal arrays to equidistribution
methods and mentions some potential applications.

1.1. Orthogonal arrays. Let A be a matrix with elements A’i, rows A; and
columns A/, for i = 1,...,n and j = 1,...,d. Suppose that each A} € @ =
{0,1,...,9 — 1}. A is called an orthogonal array of strength ¢ < d if in each
n-row-by-t-column submatrix of A, all ¢* possible distinct rows occur the same
number ) of times. By counting rows two ways it is clear that n = Aq*. We
denote such an array by OA(n,d,q,t). The d columns are called constraints.
The array in this definition is the transpose of an orthogonal array under the
usual definition, given in Raghavarao (1971). The notation used here is more
natural when one thinks of rows as observations and columns as variables. A
geometric interpretation of the defining property of an orthogonal array is as
follows. Consider plotting an n-by-s, 1 < s < ¢, submatrix of A, using one point
for each of the n rows and one plotting axis for each of the s columns. The plot
consists of a ¢° grid with A ¢’ ~ ¢ “overstrikes” at each grid point.

When asymptotic rates such as O(g~ %) or O(n~2) are given in this paper it
will be assumed that the limiting operation is ¢ — oo with ¢, A and d fixed.
It is assumed that ¢ is tending to infinity through a subsequence of values
for which the corresponding orthogonal arrays exist. In some instances this
subsequence is all sufficiently large integers, in others it might be all sufficiently
large prime powers.

In the above definition of array strength, if A has strength ¢ > 2, then it
also has strength ¢ — 1. The largest integer ¢ such that A has strength ¢ will be
referred to below as the maximum strength of A.

1.2. Coincidence defect. Consider an n-by-t + 1 submatrix of A, where ¢ is
the maximum strength of A. When ) < g, there are fewer than ¢**! rows in the
submatrix. It is desirable for all these Aq’ rows of the submatrix to be distinct,
whatever subset of £ + 1 columns is chosen. Stated another way, the desirable
condition is that “no two rows of A agree in any ¢ + 1 columns.” When there
exist two rows of A that do agree in ¢ + 1 columns, we say the array A has the
“coincidence defect.”
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Some very useful arrays of the form OA(2¢2,d,q,2) are available for
q = p" and d < 2g + 1. Bose and Bush (1952) describe a construction for
p = 2 and Addelman and Kempthorne (1961) give a construction that can be
used for odd primes p. These arrays (at least the ones the author has con-
structed) suffer from the coincidence defect. They contain pairs of rows that
agree in three columns. The question arises: How large can d be for an orthogo-
nal array OA(2q¢2,d, q,2) in which no two rows agree in three columns? One can
construct such an array by taking a subarray of OA(q®,d + 1, ¢, 3), but this does
not lead to very large d. [Bounds are given in Bush (1952).] By computer inspec-
tion, the author has found that one can construct OA(2q¢2, 2q, q, 2) with no rows
matching in any three columns for ¢ € {2,3,4,5,7,9,11, 13} by the method of
Addelman and Kempthorne (1961) and for ¢ € {2,4,8,16} by the method of
Bose and Bush (1952). In each case it turns out that there is one column that is
involved in all the triple coincidences. Removing that column results in an array
of strength 2 with no two rows agreeing in any three columns. We conjecture
that all arrays OA(2¢2,2q + 1,q,2) obtained by the Bose~Bush or Addelman—
Kempthorne constructions have subarrays of the form OA(2¢2,2q,q, 2) free of
the coincidence defect.

1.3. Continuous ANOVA’s. Following Efron and Stein (1981), we define a
continuous ANOVA decomposition for functions on the unit cube [0, 1]¢. The
notation given here is that of Owen (1992b). Let X < [0, 1] be a row vector in
the cube with components X?,..., X¢. Let D = {1,2,...,d} represent the set of
axes of the unit cube.

Let u C D be any subset of the axes of the unit cube. Each u is a “source” of
variation in f. Let |u| denote the cardinality of z. We will define an effect and a
mean square for each source of variation. As in the usual ANOVA, the effects
are orthogonal. They might be set out in an ANOVA table with 2¢ rows, and
columns labeled “source,” “effect” and “mean square.”

For each u C D, let dF, = I, ,dX’ be uniform measure on a |u|-cube [0, 1]/,
We denote this cube [0, 1]“. This notation allows us to distinguish the margins
for u # v with |u| = |v|. Integration with respect to dF, averages over the axes
in u, leaving a function defined over the axes in D — u. Integration with respect
to dF leaves a function unchanged. We use dF = Hj‘.ﬁ lde = dFp to denote
uniform measure on the original cube.

Let f: [0,1]° — R be measurable with [f(X)?dF < co. We may then write
an ANOVA decomposition of f as a sum of effects o, viaf(X) = %, c poy(X) with
JfX?dF = $,cp [ e2(X)dF and [ a,(X)a,(X)dF = 0, u # v. The effects are
defined inductively via

(1.1) Qay =/(f_ Z av) dFp_,,

vCu

where v C u is understood to include only proper subsets v # u. Thus ag =
JfX)dF is the “grand mean,” agjy = [(fX) — ag)dFp _ ; is the main effect
for axis j and so on. We abuse notation somewhat and let «, denote either a
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function defined on [0, 1]* or a function on [0, 1]° which is constant along axes
inD — u. Thus [o2dF, = [o2dF.

1.4. Embedded discrete ANOVA’s. We approximate the continuous ANOVA
by a sequence of discrete ANOVA’s. Let E = E(q) = {g"*(¢+1/2) |i=0,1,...,
g — 1} denote a set of ¢ equispaced points embedded in [0, 1]. Let dG = dG(q)
be a discrete probability measure that puts equal mass ¢~ on every point in
E?. The dependence of E and dG on q is suppressed for convenience below.

Now define measures dG, analogously to dF, above and effects 3, analo-
gously to oy, above, using dG, in place of dF, in (1.1). The embedded ANOVA
closely matches the continuous one, for smooth £.

In a discrete ANOVA decomposition the customary mean square for u is

[
_(_9 2
(1-2) MSu - (q _ 1) /ﬁu dGlh

obtained by dividing the sum of squares of 3, by the degrees of freedom (g — 1)!“I.
This is commonly resolved into variance components o2 via

(1.3) MS, = ) q¢~ Vol

vou

The 2¢ mean squares may be written in natural way as a triangular linear sys-
tem of equations in the variance components. The inverse linear transformation
is also triangular and may be expressed as

(1.4) oZ=qM=2 Y (-1l “MS,.

vou

For finer embeddings, ¢ — oo, and we have [(2dG — [o2dF, MS, —
Jo2dF and 02 = O(g!*I-4). This makes all variance components except o3
vanishingly small as ¢ increases.

1.5. Randomization variance. Owen (1992b) recommends the use of ran-
domized orthogonal arrays in computer experiments, integration and visualiza-
tion. Suppose that one is experimenting on, integrating or visualizing a func-
tion f defined on the unit cube [0, 1]¢. Then one might evaluate f at n points
X; € [0,1]¢ given by X/ = (n;(A)) + 1)/q, where A} are the elements of an orthog-
onal array and r, ..., ny are independent uniform random permutations on Q.
(By uniform, we mean that all q! possible permutations are equally probable
for 7;.) The orthogonal array structure of A is preserved by the permutations.

If one is interested in u = oy = [f(X)dF, a natural estimate is formed by

setting Y; = f(X;) and then i = Y = n~13Y;. Decomposing this sum, one gets

(15) T DD P!

uCD ' i=1
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Each effect o, with |u]| < ¢ is integrated in (1.5) by a product midpoint rule,
which typically has accuracy O(g—2), and each effect o, with |u| > ¢ is inte-
grated with Monte Carlo accuracy O,(n~'/2). See Owen (1992b) for details. The

sampling variance of Y is more easily expressed using the discrete ANOVA

(1.6) i=Y=3 %Zﬁu(Xi).

uCD i=1

The sums (1.5) and (1.6) match, but the individual terms do not ordinarily
match. We will show in Section 2 that Y is unbiased for 4@ = 3, the mean of Y
over the g?-point embedded grid. Typically, u(? differs from x = ay by O(g~2).

Patterson (1954) gives a formula for the Monte Carlo variance of (1.6). Sup-
pose that A is an orthogonal array of strength ¢ without the coincidence defect.
Patterson’s formula (4.3) for V(Y) is

@ Y o1 agt ).

lu| >t

The multiplier 1 — Ag*~ | may be interpreted as a finite sample correction,
reasoning that for effect o, we have a sample of size A\q’ from a population of
size ¢!, Patterson’s other variance formulas are special cases of (1.7).

Formula (1.7) cannot be correct. From (1.4), all components of variance ex-
cept 02 become vanishingly small as ¢ — oc. Therefore, for large g, (1.7) gives
V(Y) ~ 03 /n, but 0} = MSp vanishes if f only depends on the first d — 1 axes.
This implies that adjoining an irrelevant dimension to the domain of f would be
quite advantageous. Each irrelevant dimension reduces the asymptotic order
of (1.7) by a factor of q. (The sequence along which ¢ tends to infinity for such
larger d might be the tail of the corresponding sequence for the smaller value
ofd.)

In Section 2 we find a variance formula that, in Section 3, is seen to match
Patterson’s for some examples with ¢ = d — 1. For t = d — 1, only the largest com-
ponent of variance contributes to the sampling variance of Y and the component
of variance equals the means square, 02 = MSp.

The variance formula given in Section 2 does not require the coincidence
constraint, although it simplifies for matrices satisfying the constraint. The
formula does not match Patterson’s formula given as (1.7) above.

2. Moments. Let A be an n-by-d array with elements A{: €@ ={0,...,
q —1}. Let ¢ be the strength of A as an orthogonal array, taking ¢ = 0 if A is not
an orthogonal array.
Let
i1 N |

where the 7; are independent uniform random permutations on @. Let Y; = f(X;),
where f is a real-valued function defined on [0, 1]. Let D = {1,...,d} and, for
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u C D, let 3, be the effect of u in a discrete ANOVA of f. Let dG be uniform
probability measure on the embedded grid E<.

Recall that, forj € u, [ 8,dGy;; = 0; that, for u #v, [ B.0,dG = 0; and that
By = [ fX)dG. Adopt the shorthand 8,(G) = 8,(X;) and, for u = {ry, . .. yTiul}, let
u(@) denote (X7, ... ,Xir “!), the center of the cell determining the value of 3, for
observation X;.

The estimated mean is

Y =

S EES I IO

i=1 i=1uCD

S|

We will find the first two moments of Y under this sampling scheme.

First we introduce more notation. For each pair of observations 1 <i,j <n
and each source of variation u, let w = w;; = w;;(u) = {re u | Al = A7}, This is
the maximal “subsource”of © on which «(7) and u(j) match. Now, for each z and
eachr=0,1,...,|ul, let

n n
M(u,r) = Z Z 1|w,~,(u)|=r

i=1j=1

count the number of observation pairs that match on exactly r of the axes in u.
We do not need to disaggregate the M(u,r) according to which subsource w of
size r is the maximal match. Note that M(u,r) and w;;(u) are properties of A
that are unaffected by the permutations used to generate X.

THEOREM 1. Using the definitions above, E(Y ) = By and

[ue]

2.2) V@)= 3 Y M -gr [ gidc.

lu| >t r=0
Proor. By the ANOVA decomposition
=135 00-6,+13 Y 46
nilw ’ i il >t ’

since effects 3, with 0 < |u| < ¢ sum to zero over the design.
Now E(Y — Bg) = n715_ 154 > ¢E(B.()) = 0 by uniformity of the m’s, and
this holds even if ¢ = 0. Therefore

2.3) VD =533 S S EGOLG).
: n i=1j=1u|l>t|v|>t

To evaluate E(8,(2)3,())) for all i, j, u, v we consider four cases depending on
whether i =j and on whether u = v.
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For i = j and u = v, we get E(B,(i)3,(i)) = [B2dG. Fori = j and u # v,
orthogonality of effects implies that E(3,()3,®)) = [ 8.8,dG = 0.

For i # j and u # v, there is an axis r in v — u or in u — v. Without loss of
generality take r € v — u. Then, since r € v,

E(B@B) = EBu@D B | 11w 1,71 ma)
= E(ﬁua) / 8, dG{,}) - 0.
For the remaining case i #j and u = v, write
(2.4) E(8@)8.(7)) = E(BOE(Bul) | u(®) ).

The distribution of u(j) given u(i) is uniform over (g — 1)“ ~*! cell centers by
the definition of the 7’s. The cells in question are the ones that match (i) on
all axes in w and do not match «(z) on any axes in u — w.

For v C u, let dH, be counting measure on the ¢!’! cell centers that match (i)
on the axes u — v and may or may not match «(?) on the axes in v. We suppress
the dependence of dH,, on u(Z) from our notation.

By an inclusion—exclusion argument,

E(Bu() | u(i)
=<q—1>-'"-'”'(/ﬁudHu_w -

> [bdHiue

reu—w

+ Z /ﬁudHu—w—{r,s}

r,se€u—w,r¥s

+--~+(~1)"““"/ﬁudG¢>
= (g — Dl w1l -wlg, (5)

since 3, sums to zero over any nonempty set of axes contained in ». Substituting
into (2.4) yields

E(B.08.) =1 -~ [ gidc.
Applying the results of these four cases to (2.3), one finds
VD) =33 S E@68G)

n“ < ;
i=1j=1|u|l>t

L

= -nl—2 > Mu,r)(1—qy / B2dG. ul

lu| >tr=0
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The maximum strength of the array A was not used in the proof of Theorem 1.
An array of strength 2 is also an array of strength 1. For any array A of elements
from @, we have

||

V)= 3 S M- [ o,

[u[>0 r=0

This leads to the following combinatorial identity.
COROLLARY. IfA has strengtht > |u| > 0, then Elul oM, r(1-q)"~ lul = 0,

In many important cases we have the following convenient approximation

2.5) V(¥) = __2/5%:(;

lu| >t

where ¢ is the maximum strength of A, taking ¢ = 0 if A is not an orthogonal
array. The experimental dictum “control what you can, randomize the rest” as
embodied by (2.1) has the consequence in terms of (2.4) that sources |u| < ¢,
controlled by balancing, do not contribute to V; and that sources |u| > ¢, from
which we have a random sample, contribute n~! [ 32dG to V;. The accuracy of
(2.5) will be investigated for some special cases in Section 3.

The result of Theorem 1 extends naturally to cases in which each of the axes
is subdivided at a different scale of fineness. Let @’ = {0, ... ,q;—1}, for positive
integers q;, 1 <j < d. Let 7; be a uniform random permutation on @/, with all
d permutations independent. Let dG, = I1j¢,dGj; where G}, is the uniform
distribution on @/, and define effects 3, as above.

Now let

i1 1
] — J
(2.6) Xi = q,( i (4) + 2)
andY =n~137_, f(X;) as before.
The match counts M(u,r) do not give enough information to allow us to

write the variance. For each source u and subsource v C u, let lef(u v) =
21X 1lwy(w =y count the number of pairs of rows on which the maximal
matchmg subsource of u is v.

THEOREM 2. Let X{ be defined by (2.6) and let Y be defined as above. Then
E(Y)= Bg and

V(Y)—— o> M, [[ a-gp7! /ﬁ%za

lu| >0vCu JjEu—-v
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PROOF. Arguments like those used to prove Theorem 1 show that E(Y ) =

VD=3 Y Y EGOAG)

i=1j=1|u/>0v|>0

= 93) DD PP (AOLA)

i=1j=1u/>0
= 53 Y B(BGEGG) | 1))
i=1j=1u/>0
= ,%ZZ > E(ﬂua)z I1 (1—q,>-1>
i=1j=1u|>0 reu—w;ju)
1 ~
== M(u,v) (1-¢gp~ ! [ B2dG.

Theorem 2 is used in Example 5 of the next section, which combines a
strength-2 array on q levels with a strength-1 array on g2 levels. Another po-
tential use for Theorem 2 is for applications in which some input variables vary
continuously and others are dichotomous. In these settings one might employ
an array with two levels for the dichotomous variables and an even number g
of levels for each continuous variable.

3. Examples. In this section we evaluate the variance formula from Theo-
rems 1 and 2 for various orthogonal arrays. We consider arrays of strength 1 and
2, with A € {1, 2} since these seem to be the most useful in the sort of problems
that motivated this work. Theorems 1 and 2 reduce the variance calculations
to finding the appropriate match counts, M(u,r) and M(u,v). Typically M(u, 0)
or M(u, ®) may be found by subtraction since

||

3.1) > M@u,r) =" Mu,v)=n
r=0

vCu

When (8.1) is solved for one of the match counts, it cannot also be used to
check correctness. Simple inspection by a computer is helpful in establishing
the correctness of a formula.

ExaMmpLE 1 [OA(g,d,q,1)]. For this array we have X! = (r;i — 1) + 1)/q.
The closely related Latin hypercube sample [McKay, Conover and Beckman,
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(1979)] has X{ (i — 1) + UY)/q, where the U? are U[0, 1] independently of
each other and of the ;. This array is espec1ally convenient for computer ex-
periments, since there are no a priori constraints linking the number of rows
and columns. Stein (1987) finds the asymptotic variance of the mean of a func-
tion from a Latin hypercube sample. See also Owen (1992a) for a central limit
theorem, and Owen (1992b) for higher-strength analogues of Latin hypercube
sampling.
For |u| > 1, M(u,|u|) =n =q, Mu,0)=n? —n =q% — q and so

- 1
V(¥)=7 > ((qz—Q)(l—q)"“'+q)/ﬂ3dG

u] >2

1
3.2 = (1+(=Dl(g — 1)~ I« 2 dG
(3.2) - sz + (Dl - 1) [ g

= V1+O(i2>.
n

Compared to V3, the variance V(Y ) has a larger coefficient for f B2 dG with even
|u|, and a smaller coefficient with odd ||. From (3.2) we have V( Y ) < Viq/(g-1),
which may be of use in finding conservative estimates of V( Y).

For d = 2, (3.2) can be shown to reduce to V(Y) = (1/n)(1 — ¢~ 103, which
matches Patterson’s (1954) formulas (2.1, 4.1 and 4.3), which are all special
cases of (1.7). For d = 3, however, we get a contradiction to Patterson’s formulas.

ExAMPLE 2 [OA(\q,d,q,1), 2 < A < gql. This array is formed from X of the
Latin hypercube-like arrays considered in Example 1. Sometimes the coinci-
dence defect is avoidable and the array can be chosen with no two rows agreeing
in any two columns. Usually, one would prefer to use OA()\q,d, \q, 1) since it
allows more distinct values for each input variable. However, if an experiment
based on OA (gq,d, q, 1) has already been run, and one wishes to augment it with
another q runs, then an OA(2q,d, q, 1) design avoiding the coincidence defect is
attractive.

For A = 2, a “diagonal construction” with A} = (i — 1), for 1 < i < ¢, and

Al =(GE-1+(j—1 modg,forq < i < 2q, works. A second construction is to take
the subarray of A = OA(q?,d + 1, q,2) corresponding to the first d columns and
those A\q rows with Af’ +1 < ). Neither construction makes the other redundant.
For example, with g = 10, the diagonal construction works for A = 2 and d < 10,
while the OA construction works for 2 < A < 10 and d < 3, using a set of
two mutually orthogonal Latin squares of order 10. To use the OA construction
for d = 4 and q = 10 would require three mutually orthogonal Latin squares
of order 10. The existence of such squares is still an open problem [Brouwer
(1991) and Dénes and Keedwell (1991)].
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Let us assume that in A = OA()\q, d, ¢, 1), with 2 < A < q, that no two rows of
A agreein anytwo columns. Then, for [¢| > 2, M(u, [u|) =n, M(u,1) = n|u|(A-1)
and M(u,0) =n?2 —n — nju|(A - 1). Therefore

V@) == (n+ nlul\ ~ D(A — )t~
" a2
+(n? —n —nu - D)A —q)"“') /ﬂ& dG

(3.3) % > (1+@-@ (e - 1A - )
u|>2

+Ag—1-[u|(\ - 1)) /ﬁfdG

=|r—l

Z (1+(1—q)‘|“'(—q|u|(/\—1)+/\q—1)>/ﬂ3dG,
u|>2

where V; — V(I_f)_: O(n~2). In the special case A = 2 we have even better
accuracy, Vi — V(Y) = O(n~3). Forq > 4 and A = 2, we have (1 - (¢ — 1))V} <
V(Y) < (1+(g +1)g — 1)73)V;. To illustrate how sharp these bounds are, note
that when g = 8 (so n = 128) we have 0.979V; < V(Y) < 1.027V;.

As in Example 1, we can show that, for the special case d = 2, (3.3) agrees
with Patterson’s formula (1.7).

If A = ¢ and no two rows agree in any two columns, the array must have
strength 2. Appropriately, the coefficient of [ 52dG in (3.3) vanishes for A = ¢
and |u| =

ExXAMPLE 3 [OA(q?,d,q,2)]. For d > 2, OA(¢?,d,q,2) can be constructed
from d — 2 mutually orthogonal Latin squares of order g. (For d = 2 this OA
is trivial.) Bose (1938) shows, using Galois field theory, that for prime powers
q = p” one can construct this array for d as large as ¢ + 1. In the experimental
design literature these point sets are used as fractional factorials denoted by
qgﬁ“) (a-1 The III designates that the designs are of resolution III, mean-
ing that estimated main effects are confounded with interactions but not with

each other.

We need M(u,r) for sources of variation » with |u| > 2. For |u| > 2, the row
pairs i, j counted in M(u, |u|) are those with i = j. Therefore M(u, |u|) = n = ¢2.
For each point i and each of |u| axes in u there are ¢ — 1 points j matching i on
that and only that axis. Therefore M(u, 1) = n(qg — 1)|u|. For no |¢| > 2 and { #j
is |w;j(w)| > 1, so by subtraction M(u,0) =n? —n — n(g — Dlu|.
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Therefore for this design

V(T) = n_lz S (n+ - (nlg - Diu)

[u|>3

+(1-q@) ™ (n?—n—-nlg- 1)|u|)) /ﬂf dG

1 ul - — |u
=% Z (1+ DM~ g - 12~
(3.4) ul23
+ (DG~ 11 ¥I(g +1-[ul)) [ pEdG
% Z (1414 -2q ~ 17~ ¥i(glul ~q - 1)) [ B2dG
u| >3

= V2 + O(n‘3/2).

Moreover, for g > 3, V(YY) < Vy(g/(q — D).
In the special cased = 3, only u =D appears in (3.4), and the result is

(1+q-D*2q-1) [ hdG

3.5) (1+(q-1)%2q 1))( - )MS

== (1 - l)Ms,,,
n q

recovering Patterson’s formula (1.7), since o3 = MSp.

ExXAMPLE 4 [OA(2¢?%,d,q,2)]. These designs are described in Section 1.2. It
is conjectured there that they may be constructed without a coincidence defect
for prime powers g and d < 2q. We assume below that a defect-free array is
used.

These designs often allow one to get a strength-2 array with a smaller number
of runs than would be possible using the standard construction of Example 3.
With d = 21, the smallest design of the sort given in Example 3 requires g = 23
and hence n = 529 runs. The designs in this example can handle d = 21 with
g =11 and n = 242 runs.

For |u| > 8, M(u, |u|) = n, since no distinct rows can agree in three or more
places. For each row A; and each bivariate subsource v C u, |[v| = 2, there is
one j # i with A; and A; matching on v. These must be distinct for differing v,
since otherwise there Would be a triple of axes in u and a row A; matching A;
on that triple. Therefore M(u,2) = ('“') For each row A; and each univariate
subsource v C u, |v| = 1, there are 2q — 1 rows A; with j # i and A; matching A;
on v. Therefore M(u, 1) < n(2q — 1)|u|. The reason for the inequality is that rows
J # i with A; matching A; on two axes have been counted twice in (2¢ — 1)|u|,
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but should not be counted at all in M(u, 1) since they are counted in M (u,2).
Therefore M(u,1) = n(2q — 1)[u| 2n('“) By subtraction M(,0) = n%2 —n —

n(2g — Dlu| +n ().
Substituting in (2.3) and simplifying we find

7y=1 el _ 1)l
LOSEEDY <1+( g - 1)

|u|>3
(3.6) @?(Jul — 1) (ju| - 4) 2
=V, +O(n=3/2),

For ¢ > 4, V(Y) < Vo(1+ (g2 —3q + 1)/(q — 1)®). For d = 3, (3.6) reduces to
Patterson’s formula (1.7).

EXAMPLE 5 [0A(g2,d1,q,2) x OA(g?,d2,q%,1)]. In this example the first d;
columns are taken from a strength-2 design and then dy Latin hypercube, or
strength-1 columns are added. In applications, the variables among which in-
teractions are strongly suspected may be sampled by an orthogonal array of
strength-2, while d; other variables that are either less important or less likely
to interact are sampled by a strength-1 array. This may allow a smaller experi-
ment than would be possible with a strength-2 array with d; + d; columns and
g symbols. Another application is design augmentation: long after some func-
tion of the first d; variables has been computed, it may be desirable to compute
another function that also depends on the next ds variables, perhaps using the
values computed for the first function. Using independent strength-1 columns
in augmentation may be more convenient than trying to find ds more columns
than preserve the strength-2 structure.

We need some extra notation for this example. Let D; = {1,...,d1},
Dy = {d1+1,...,d1 +d2} and D = D; UDy = Dy + D, be the disjoint (hence
the plus sign) union of the two axis sets. For any source u C D, we can find
subsources u; C D; and uy C Dy such that u = u; + us. Where u; and u, appear
below they are understood to be subsets of D; and D, respectively.

It is natural to expect that V(Y') would be approximately equal to

CUNEESS /ﬁgldm- ) /ﬂﬁsz+— 3 /ﬂmw

|u1|>2 lug| >1 |lug| >0
|ug| >0
because the design is balanced with respect to sources |u;| < 2 and |ug| < 1.
We can use Theorem 2 to investigate how accurate (3.7) is. A lengthy argu-
ment based on partitioning the possible u1, uz,v1,v2 subset into cases, carefully
counting each M(u; +us, v +vg) and then applying Theorem 2 verifies that (3.7)
matches the true variance to O(n=3/2).

4. Discussion. Davis and Rabinowitz (1984) say that, for integration over
high-dimensional domains, Monte Carlo and equidistribution methods are best.
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The former are almost always done through pseudorandom number generators,
and the latter methods are often called quasirandom. Quasirandom point sets
are chosen so that the uniform measure on the n points used is suitably close
to uniform measure on the input domain [0, 1]¢. Means over randomized ortho-
gonal arrays may be viewed as a hybrid of pseudorandom and quasirandom
methods. The rows of A are constructed similarly to many quasirandom point
sets and the permutations 7; are ordinarily pseudorandom.

Pseudorandom integration has errors that are O,(n~/2). Randomized or-
thogonal arrays provide a way to reduce the variance of pseudorandom inte-
grals, but do not change the underlying n~/2 rate. Quasirandom integrals can
attain error bounds of O((log n)?~1/n). This is asymptotically smaller than
O(n~1/2), but even for d as small as 10, n» must be impractically large, or the
constants in the rates must be extreme, for this bound to be smaller than the
standard error of a pseudorandom estimate. For instance (log n)°/n > n~/2 for
n =10%,

A practical drawback of many quasirandom techniques is that the accuracy
of the integral is hard to assess. The constant in the quasirandom error bound
depends on the total variation (in the sense of Hardy and Krause) of f and
is not easy to estimate from function values. By incorporating pseudorandom
sampling, one can use statistical techniques to assess the accuracy of an esti-
mated integral.

Various statistical techniques may be used to assess the accuracy of means
over randomized orthogonal arrays. The simplest approach is to use a small
number (say, five) of replicates. All replicates share the same orthogonal array
A, but each replicate has its own independently generated permutations ;.
This provides independent estimates of [ f with bias O(g~2) = O(n~%/t), where ¢
is the maximum strength of A, and variance estimable by the sample variance
over replicates. For low-strength arrays the bias is asymptotically negligible.
The bias may also be reduced to O(g—3) = O(n~3/) by using non-equispaced sets
of ¢ points in [0, 1]. Owen (1992b) uses a Gauss rule for this with even ¢; the idea
also works for odd q. Bias may also be reduced to O(n~2) by using Tang’s (1993)
OA-based Latin hypercube samples. These combine features of strength-1 and
higher arrays. Bias may be eliminated entirely by using X! = q‘l(w(A?) +U)),
where the Uij are independent U[0, 1] random variables.

Variance estimates may be obtained from a single replicate, by estimating
the approximate variance V; given by (2.4). A simple way to use (2.4) is to pick £
basis functions ¢1(X), ..., ¢x(X) that all depend on ¢ or fewer of the components
of X. One then computes

2
1 n
(4.1) — 1Z(Y By — Zﬂ,¢,(X))

Jj=1

where the Ej are estimated by least squares regression of the Y; on ¢;(X;). For-
mula (4.1) will usually have a positive bias as an estimate of V;, since the
functions ¢; will only span a subspace of the effects o, for |u| < ¢. If one has cho-
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sen the % basis functions from a larger set of candidates, by finding which ones
most reduce the sum of squared errors, then formula (4.1) will have a negative
selection bias that may well be larger than the positive bias mentioned above.

For Latin hypercube samples, Stein (1987) discusses both replication and
the basis function method. Replication is also considered in Iman and Conover
(1980). Owen (1992a) considers estimates of V; based on using nonparametric
regressions to estimate each main effect o ;.

Potential statistical applications of randomized orthogonal array integrals
include computer experiments as described in Owen (1992b), Bayesian poste-
rior expectations, simulation studies and the bootstrap.

Some C programs for generating and randomizing orthogonal arrays are
available by anonymous ftp. They are in the directory /pub/oa on the host play-
fair.stanford.edu reachable over the Internet.
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