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MAXIMAL INEQUALITIES FOR DEGENERATE U-PROCESSES
WITH APPLICATIONS TO OPTIMIZATION ESTIMATORS

BY ROBERT P. SHERMAN

Bellcore

Maximal inequalities for degenerate U-processes of order &,k > 1, are
established. The results rest on a moment inequality (due to Bonami) for
kth-order forms and on extensions of chaining and symmetrization inequal-
ities from the theory of empirical processes. Rates of uniform convergence
are obtained.

The maximal inequalities can be used to determine the limiting dis-
tribution of estimators that optimize criterion functions having U-process
structure. As an application, a semiparametric regression estimator that
maximizes a U-process of order 3 is shown to be /n-consistent and asymp-
totically normally distributed.

1. Introduction. Let Z,,...,Z, be independent observations from a dis-
tribution P on a set S. Let & be a positive integer and F a class of real-valued
functions on S* =S ® --- ® S (k factors). For each f € F, define

Uk = (n)i* Y _f(Zis -, Z3),

where (n), = n(n —1)---(n —k +1), and i}, = (iy,...,ir) ranges over the (n)
ordered k-tuples of distinct integers from the set {1,...,n}. By analogy with
the empirical measure P, that places mass n~! at each Z;, U* can be viewed
as a random probability measure putting mass (n)k‘1 at each ordered k-tuple
(Zi,,...,Z;,). Note that P, = UL. The function f need not be symmetric in its
arguments. Apart from this, U*f is a U-statistic of order k in the sense of
Serfling [(1980), Chapter 5]. The collection {U*f: f € F} is called a U-process
of order k& and is said to be indexed by F.
If, for each f € F,

Pf(sl,...,si_l,-,s,-+1,...,sk)EO, i=1,...,k,

then F is called a P-degenerate class of functions on S*, Uf is called a degen-
erate U-statistic of order £ and {U%f: f € F} is called a degenerate U-process
of order k.

Let p be a positive integer. In this paper, we establish pth-moment max-
imal inequalities for degenerate U-processes indexed by classes of square-
integrable functions. That is, for each p > 1 and & > 1, we obtain a bound for
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the moment

Psup |n*/2Uf|",
f

where P is the probability measure on the space on which the random elements
Z,,...,Z, are defined, {U%f: f € F} is a degenerate U-process of order % and
the class of functions F comes equipped with an £2 pseudometric. We also
state conditions under which these bounds are finite, uniformly in 7.

Notice that a degenerate U-process of order 1 is a zero-mean empirical
process. Pisier (1983) established a first-moment bound for such processes.
Pollard [(1990), Section 7] generalised Pisier’s methods using Orlicz norms to
obtain a bound for the moment

o (sup VAP

where ®(x) = k1 exp(kgx?) for positive constants x; and xy. Nolan and Pollard
(1987) established moment inequalities for degenerate U-processes of order 2.
Implicit in their results is a bound for the moment

1P’<I>(Sl;p InUffl)

where ®(x) = ; exp(kz|x|) for positive constants k; and ks.

The bounds obtained by Pollard for the case £ = 1, and those obtained
by Nolan and Pollard for & = 2 are sharper than the corresponding bounds
established in this paper. However, the methods employed by these authors
do not generalize to cover degenerate U-processes of orders greater than 2.
This paper provides a method flexible enough to cover degenerate U-processes
of arbitrary order.

Independently and almost simultaneously with this paper, Arcones and
Giné (1993) established maximal inequalities for degenerate U-processes of
arbitrary order. Implicit in their results is a bound for the moment

m(sup lnk/2sz|),
f

where ®(x) = x; exp(kg|x|>/*) for positive constants x; and ko. These expo-
nential moment bounds provide a beautiful generalization of the bounds men-
tioned above for the cases 2 = 1 and & = 2. The techniques used by these
authors are similar, but distinct, from those employed in this paper. For ex-
ample, they use a decoupling result for U-statistics established by de la Pefia
(1992) that plays a similar role to the symmetrization inequality established
in Section 3.

Applications in the field of semiparametric estimation provided the origi-
nal impetus for developing maximal inequalities for degenerate U-processes
of orders greater than 2. Cavanagh (1990) proposed a semiparametric rank
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estimator of the regression coefficients in a generalized regression model. His
estimator maximizes a criterion function that is a U-process of order 3. In
Section 7, we show that his estimator is \/n-consistent and asymptotically
normally distributed. Degenerate U-processes enter the analysis through a
simple decomposition of a U-process into a sum of degenerate U-processes.
The uniformity result needed to establish the limiting distribution of the esti-
mator requires the application of a uniform bound for degenerate U-processes
of order 3. This bound is established in Section 6 and is based on a maximal
inequality for degenerate U-processes of order 3 proved in Section 5.

Ichimura (1988) proposed a semiparametric estimator of the regression co-
efficients in another generalised regression model. His estimator minimizes
a criterion function that can be represented as a linear combination of U-
processes of various orders (including those of orders-3 and higher) plus a
process that has no effect on the limiting distribution of the estimator. Klein
and Spady (1993) proposed a semiparametric estimator of the regression coef-
ficients in a binary choice regression model. Their estimator maximizes a cri-
terion function that can be represented as a linear combination of U-processes
of various orders (again, including those of orders 3 and higher) plus a term
which is negligible, asymptotically. Using the maximal inequalities estab-
lished in this paper, Sherman (1994) proved /n-consistency and asymptotic
normality of a generalized semiparametric regression estimator that includes
the estimators of Ichimura and Klein and Spady as special cases.

Applications are not limited to semiparametric regression estimators. Liu’s
(1990) generalized sample median, for example, maximizes a U-process of or-
der &,k > 2. In future work, we hope to establish \/n-consistency and asymp-
totic normality of her estimator, using the results in this paper.

In the next section, we establish a pth-moment maximal inequality for a
general stochastic process. This is done by extending a chaining argument,
due to Pisier (1983), to cover all integer moments. The next two sections pro-
vide the tools needed to specialize these results to degenerate U-processes. In
Section 3, a symmetrization inequality commonly used in proving maximal in-
equalities for zero-mean empirical processes is generalized, and in Section 4,
a moment inequality for kth-order forms is presented. The main results in
the paper, namely, the pth-moment maximal inequalities for degenerate U-
processes, are established in Section 5. In Section 6, we derive some useful
consequences from the maximal inequalities, including rates of uniform con-
vergence. Finally, in Section 7, we apply these results to determine the asymp-
totic distribution of Cavanagh’s rank estimator.

- 2. Chaining inequality. Consider a stochastic process {Z(¢): t € T'}, where
T is an index set equipped with a pseudometric d.

DEFINITION 1. For each € > 0, define the packing number D(¢,d,T) to be
the largest number D for which there exist points my,...,mp in T such that

d(mi,m;) >e fori#j.
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The packing numbers for the pseudometric space (d, T') tell us how big T' is
with respect to d and will appear in the upper bound of the maximal inequality
established below. For convenience, we will express the result in terms of an
LP norm.

CHAINING INEQUALITY. Let ¥ be a convex, strictly increasing function on
[0, 00), with 0 < ¥(0) < 1. Let p be a positive integer and write Uy(x) for U(xP).
Suppose the stochastic process {Z(¢): t € T} satisfies the following:

(i) If d(s,t) = 0, then Z(s) = Z(t) almost surely.

Gi) Ifd(s,t) > 0, then PU,(|Z(s) — Z(t)|/d(s,t)) < 1.
(iii) There exists a point t, in T for which 6 = suppd(t,ty) < oo.
(iv) The sample paths of Z are continuous.

Then

sup |Z(t) - Z(to),

]
<2 [ 41(0) ax
b 0
where D(x) is short for the packing number D(x,d,T).

PROOF. The proof rests on a simple convexity result. Suppose Zi,...,Zp
are random variables and A is a positive real number such that P¥,(|Z;|/A) <
1, for each i. Then

: -1
) ” max |z,|”p < AT;Y(D).
This follows from Jensen’s inequality:

\If]P(miax |Z,~|P/AP) <Y Pu(jZ;P/AP) < D.

The bound will be applied to the increments of Z.
Define §; = §/2!, fori =0, 1,2, ... . Construct a sequence of maximal subsets
T(0),T(1),..., where T(0) = {to}, and, for each i,

d(s,t) > 6; ifs,t € T(i) and s #¢.

By definition of maximality, there exists a map +; from T into T'(i) for which
d(t,yt) < 6;. Note that T'(i) contains at most D(5;) points.

Approximate supy |Z(¢) — Z(¢y)| by maxpgy,) |Z({) — Z(t)| for some positive
integer m. For each ¢ in T(m), define a chain of points leading from ¢ to ¢,

tm =1t, tn-1=Ym-1lm,---» t1 = mty, to = Yot1-

By the triangle inequality followed by a crude bound,

max|2(2) - 2(t)| < iln%(a)x 2(¢) - 2(6:-0)|
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Take £P norms of both sides and apply the triangle inequality once again.
Then apply (1) and the fact that 6; = 2(6; — 6;,1) to get

| max iz - 2(a0) | <Z|| ax |2(t:) — 2(t-1) |
<23 (6 655" (0(6)
<2 / {(D(x)) ds.

Let m tend to infinity, then appeal to monotone convergence and continuity
of the sample paths to complete the proof. O

The basic chaining argument in the proof is due to Pisier (1983). Refine-
ments due to Nolan and Pollard (1987) are incorporated. The extension to any
positive integer p comes from extending (1) to cover all p and then applying
the triangle inequality for £P norms.

In Section 5, the chaining inequality will be applied to a symmetrized ver-
sion of a degenerate U-process, after first conditioning on certain sources of
randomness. The moment inequality presented in Section 4 will provide the
means of verifying condition (ii) for this related process. The other three condi-
tions will be easy to verify. This will give us a pth-moment maximal inequality
for the conditional, symmetrized process. By averaging out over the condition-
ing variables we will obtain a corresponding inequality for the unconditional
process. We will then translate the latter result into a pth-moment maxi-
mal inequality for the degenerate U-process by means of a symmetrization
inequality, which is established in the next section.

3. Symmetrization inequality. Independently, take samples {X;} ; and
{X{}_, from a distribution P on a set S, and a sample {0;}}.;, from the dis-
tribution that assigns probability 1 to each of +1 and —1. Call each o; a sign
variable. Let F be a class of real-valued functions on S*,% > 1. For each f € F,
define

Fli) = F R X) ~FK K, K3) ~ K X )
+ -+ (DX, i,,)'

That is, 7(ik) is a sum of 2* terms, each having the form

(-1fXs,...X3)

with the asterisk equal to either a blank (in which case X} = X;) or a prime
(in which case X = X}), and r is the number of superscripts that are primes.

(2

SYMMETRIZATION INEQUALITY. Let Z,,...,Z, be a sample of independent
observations from P, and F a class of P-degenerate functions on S¥,k > 1. Let
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® be a convex function on [0,00). Then

Z f(z,,...,Z,) ) <P (sup ) .

PROOF. Consider another sample Z),...,Z, from P, where the Z!’s are
independent of the Z;’s. Let P; denote expectatlon over the Z'’s, condltlonal
on the Z;s. Degeneracy implies that f(Z;,, . ..,Z;,) can be replaced by a sum of
2% terms,

20’,1 e Ui/,?(ik)

ir

3) Po (sup

f( LR ) PZf(Zlyzizy- l/,) ]PZf( 11, ":Zik)
( 1)*P+f (Z;,...,2Z,, )

without changing the left-hand side of (3). The pattern is the same as in (2).
The Pz can be pulled out of the sum, then past sup and the ® by virtue of
Jensen’s inequality, increasing the quantity on the left-hand side of (3) to

Z[f(zil,..., W) — o (C1)H(Z,. )] )
Consolidate PPz into P.

ir
Now suppose the Z;’s and the Z’s are constructed in a special way from the
double sample X;,X],...,X;,,X] and the o;s:

@ PP;® ( sup
F

(2:,Z}) = {o: = 1}(X;, X;) + {01 = ~1}(X[, X,),

that is, o; determines the order in which (X;, X!) will be labelled.

Rewrite (4) in terms of the o;’s, X;’s and X’s.

Fix an i;. Concentrate on the contribution from i;. The sum of 2% terms in
(4) can be grouped as a sum of 2*~! pairs

t[f(Z,-.) - F(2h,.)].

Here the terms differ only in the first position. If o;, = 1, replace Z; by X;
and Zgl by X; ; if 0;, = —1, replace Z;, by Xi'l and Z; by X; . The term equals

01 [f (K- ) ~ F (K -)],

that is, (4) is unchanged if we replace Z;, by X;, and Z; by X; ; then compensate
with a o;, factor. In a similar fashion, replace all the other Z by X; and Z; by
X], transforming (4) into

) ' D

Z G, *** Oj, [f(Xh’ lk) T ( )kf( 2" )]

ir

P® ( sup
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Pollard (1982) discovered how to symmetrize using sign variables for the
case k = 1. Nolan and Pollard (1987) developed the technique for & = 2. The
symmetrization inequality gives the general result.

For each f € F, define

Sﬁf = (n)k_l Zail e Jik?(ik)'

Call the collection {Sf: f € F} the symmetrized process. The following corol-
lary is obtained by absorbing a scaling factor into f in (3).

COROLLARY 2. Let F be a class of P-degenerate functions on S*, k > 1. Let
® be a convex function of [0,00). Then

P@(sup |nk/2Uﬁf|) < ]P@(sup ]nk/2Sﬁfl).
F F

Notice that Sf, conditioned on the {X;} and the {X!}, is just a kth-order
form in the sign variables. In the next section, we present a moment inequality
for kth-order forms having this simple structure. This inequality will enable
us to establish condition (ii) of the chaining inequality for the symmetrized
process, conditioned on the two samples.

4. Moment inequality. For 2 > 1, let a(iy,...,i;) be a real-valued func-
tion of k indices, each running from 1 to n, and let o,,...,0, be a sequence
of independent sign variables. Suppose a(iy, ...,i;) = 0 whenever two indices

are equal, and let |lallz denote the ¢2 norm (%;,a(y, .. .,i)?) 2,

MOMENT INEQUALITY. For each positive integer q there is a constant C(k,q)
such that

q
P(z iy - Ui},a(il’ cee 7ik)> < C(k’ Q)"a"g
ik

Bonami [(1970), Chapitre II, Théoréme 6] appears to have been the first
to establish this type of result. She also obtained an explicit bound for the
constant C(k,q). For the purposes of this paper, what is crucial is not the form
of C(k,q), but rather the fact that it does not depend on n. See Sherman (1991)
for a simple proof of this inequality.

5. Maximal inequality. Recall the definition of f(ik) given in (2). For
f.g €F, let h = f —g and define A(i)) = f(i}) — &@). For i = 1,...,n, define
W; =X; and W,,; = X]. Use the fact that A(i;) is a sum of 2k terms, and make
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k applications of the inequality (a + b)? < 2(a? + b2), for real numbers a and b,
to see that

(5) S oh()? <2t > R(Wy, .. W)
ir j
where jj, = ( jl, ..., Jr) ranges over the (2n); k-tuples of distinct integers from

the set {1, ...,2n}.

Let F be an envelope for F. That is, supx |f(-)] < F( ), for all f in F. Write
Ugn for the probablhty measure putting mass (2n)k on each of the (2n),
k-tuples (Wj,,...,W,,). Assume U% F? < co. For f,g € F, define the pseudo-
metric

dys (£.8) = Uk, — &/ ULF?) ",

Note that dUg depends on the envelope F. Since this dependence is not crucial

to what follows, it is suppressed in the notation.

We are now prepared to prove the main result of this paper. We do so
by applying the chaining inequality to the symmetrized process {Stf: f € F},
conditioning at first on the double sample Wy, ..., Wy,.

MAXIMAL INEQUALITY. Let F be a class of P-degenerate functions on S*,
k > 1. Let F be an envelope for F, and let p and m be positive integers. If
P*F? < o0, where P* is the product measure PQ --- ® P (k factors), then

st 1/2mp P
Psup |[n*2U%f|P SI‘]P[T,’,’/ [D(x,dU;",J-'] dx] ,
F 0

where T is a universal constant, 7¥ = \/Uk F2 and 8ktk = sup, /UL f2.

PROOF. Let v denote a constant to be determined shortly. Define
Z(f) =n*283f |73,
U (x) =2 /7,
d(f.g) =du (f.8)-

Write Py for expectation conditional on W = (W3, ..., Wy,). Check condition
(ii) of the chaining inequality (remember that 2 = f — g):

Pwl, (1Z(f) - 2(8)|/d(f.8)) =+~ "Pw (n*/2Skh/ (U, h?)V/2)*"

2mp
=7_1PW(ZUi1"'aika(il: :lk)> ’
ir

where

alin, ..., ix) = [n*/2(2n) 2 (n); B (31)] / (Zh(Wh, ))1/2.
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Apply the moment inequality to bound the last conditional expectation by
v~1C(k,2mp)|ja||Z™. Eventually, n*/2(2n)}/%(n);* is bounded by 2*. Deduce
from this and (5) that ||aflz < 28*. Set v equal to C(k,2mp)2%*)2P to es-
tablish condition (ii) of the chaining inequality. Take £, to be the zero function
to verify condition (iii). The other two conditions are trivially satisfied. Take
pth powers to see that

s 2
Py sup |n*/2Skf/F P < [p/ ['yD(x,dU;.,f)]l/zmpdx] .
F 0

Multiply through by |7*|P, take expectations, and let T = 2Py1/2™ to get

&

. P
]P’sup|n”/23ﬁ]p§1"ll"[f,'f/ [D(x,dUZ,f)]l/zmpdx:l .
F 0

Appeal to Corollary 2 with ®(x) = |x|? to complete the proof. O

6. Consequences. For the maximal inequality to be useful in practice,
there must exist a function that dominates D(x, dU;.» ,F) on (0, 1] and whose
2mpth root is integrable on (0, 1]. Moreover, this dominating function should
not depend on n. When F satisfies a mild regularity condition called a Eu-
clidean condition, these requirements are satisfied.

DEFINITION 3. Let F be a class of real-valued functions on a set X. Call
F Euclidean for the envelope F if there exist positive constants A and V with
the following property: if u is a measure for which uF? < oo, then

D(x,d,,F) <Ax™Y, 0<x<1,

where, for f,g € F,

du(f.8) = [ulf —&*/uF?)">.

The constants A and V must not depend on u. We shall also say that F is
Euclidean (A,V) for the envelope F.

Implicit in the definition is the assumption that the functions comprising
F and the envelope F are u-measurable with respect to a fixed o-field on X.
Simple criteria exist for determining the Euclidean property. Nolan and Polard
. (1987) collect a number of such criteria. Pakes and Pollard (1989) provide
complementary results.

MAIN COROLLARY. Let F be a class of P-degenerate functions on S*, k > 1,
and let P* denote the product measure P ® --- ® P (k factors). Suppose F is
Euclidean(A, V) for an envelope F satisfying P*F? < co. For a given positive
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integer p and 0 < € < 1, choose a positive integer m large enough so that
(1-V/2mp)p >p —e. Then

1/2
Psup |n*/2U%f|” SA{P sup(Ué,,fz)"] ,
F F

where A is a universal constant and o = (1 — V/2mp)p.

PROOF. Substitute Ax~V for D(x, dys , F) in the upper bound of the max-
imal inequality. Integrate, take expectations, and then apply the Cauchy-—
Schwarz inequality. The resulting bound equals

TAY2m [p(U F2) =2 ([P sup(Uk,r2)]"%.
F

Since0<p-a<e<],
P(ULF2)P™* < (P*F?)* < co.
Take A = TAY/2mP(PkF2)e/2 to complete the proof. O

The rest of this section is devoted to drawing useful consequences from the
main corollary.

COROLLARY 4. Suppose the conditions of the main corollary hold. Then the
following hold:

(i) Psupy [n*/2U%f| = O(1);
(i) supy [n*/2Ukf| = Op(1).

PROOF. Apply the main corollary with p = 1. Then 0 < a < 1, and so
Psup (U%.f?)* < P(ULF?)* < (P*F?)~ < oo.
].'

This establishes (i). Chebyshev’s inequality turns (i) into (ii). O

COROLLARY 4A. Suppose the conditions of the main corollary hold and that
p > 2. If, in addition, P*F* < co, then

Psup |[n*2Utf|P = O(1).
F

PROOF. Apply the main corollary again. By the Cauchy—Schwarz inequal-
-ity,

P sup (U, f%)* < [P(Ugnﬁ)za] 1/2.
F
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Since p > 2, it follows that o > 1 and so 2o > 2. Also, P*F% < co implies
PtF4e < o0, Therefore, we may apply Lemma A of Serfling [(1980), page 185]
to get that U% F? converges to P*F? in rth mean, where r = 2c. It then follows
from Theorem B of Serfling [(1980), page 15] that as n tends to infinity,

P(UL F?)** - (P*F?)™ < oo,
from which the result follows. O

We now present a simple decomposition of a U-statistic (process) of order
k into a sum of degenerate U-statistics (processes). This decomposition will
come in handy when we analyze the rank estimator in Section 7.

Recall that P denotes the sampling distribution on a set S. Left F be a class
of real-valued functions on S*, k > 1. Fix f € F. Suppose P* < co, where P* is
the product measure P®---® P (k factors). Then there exist functions f1, .. .,f;
such that, for each i,f; is P-degenerate on S* and

k
(6) Uf = P*f + Pofy + Y Usf:.

i=2
Moreover, for each s € S,
W) fl(s) =f(s,P, ...,P) + ---+f(P,...,P,s) — kP*f.

The notation, f(s,P...,P), for example, is short for the conditional expecta-
tion, under P, of f given its first argument. Special attention is given to f;
because P,f; is the dominant stochastic term in the decomposition when f; is
not identically zero. This fact is crucial to the application in Section 8. The
proof of (6) and (7) is straightforward. Serfling [(1980), pages 177-178] gives
details.

The next result is a straightforward extension of Lemma 20 in Nolan and
Pollard (1987).

LEMMA 5. Let S be a set and F a class of real-valued functions on S*,
for B > 1. Let v be a probability measure on 8. If F is Euclidean for an
envelope F, then the class {vf(s1,...,8i—1, - »Sis15--.,Sk): [ € F} is Euclidean
for the envelope \/V[F(s1,...,Si—1,,Sis1,---, S, i=1,... k.

Refer to (6), and let F; = {f;: f € F}.

LEMMA 6. If F is Euclidean for an envelope F satisfying P*F? < oo, then
F; is Euclidean for an envelope F; satisfying PF2 < co0,i=1,...,k.

PROOF. Fix f; in F; and consider the corresponding f in F. The proof of
(6) given by Serfling [(1980), pages 177-178] shows that f; is a sum of a finite
number of terms, each of which is plus or minus a conditional expectation of f
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given j of its arguments, where j € {0,...,i}. The result follows from repeated
application of Lemma 5 and of Lemma 16 in Nolan and Pollard (1987). O

COROLLARY 7. Let F be a class of zero-mean functions on S*, k > 1. If F is
Euclidean for an envelope F satisfying P*F? < oo, then

sup U] = O, (1/VR).

PROOF. Recall that P, = UL. Deduce from (6) that
k
sup |UX| <> sup |Uif|.
F =1 5

By Lemma 6, F; is Euclidean for an envelope F; satisfying P'PF? < oo. By
Corollary 4(i),

S;I'P |Ulnﬁ| = Op(n_i/z) = 0p(1/Vn). O

The next result applies to a class of functions of the form {f(-,8): 6 € 6},
where O is a subset of R?. It provides a more delicate uniformity result useful
for establishing the asymptotic normality of an estimator defined by optimiza-

tion of a random criterion function of U-process structure. To establish this
result, we must dig a bit deeper into the bound given in the main corollary.

COROLLARY 8. Let F be a class of P-degenerate functions on S*, k > 1.
Suppose F has the form {f(-,0): 6 € ©}, and that 6, is a point in © for which
f(,00)=0. Let P =P® --- ® P (k factors). If (i) and (ii) hold:

(i) F is Euclidean for an envelope F satisfying P*F? < oo;
(i) P*|f(-,00) — 0 as 6 — 6,

then uniformly over 0,(1) neighborhoods of 6,

Unf (-,6) = 0p(1/n*2).

PROOF. Let {¢,} be a sequence of nonnegative real numbers converging
to zero and O, = {6 € ©: |0 — 6y| < &, }. The result is equivalent to

(8) sup In*/2U%f (-, 0)| = 0p(1).

Apply the main corollary with p = 1 to get

1/2
P sup |n*/2Uf(-,6)| < A[P sup (Uén(-,e)z)a] '
e, n
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Since0<a <1,
P sup (U,f(-,0)%)" < [P sup Ué’nf(~,9)2] :
6, ©n

We now show that the bound in the last inequality has order o(1). This,
combined with Chebyshev’s inequality, will establish (8).
Given ¢ > 0, choose a constant M so large that P*F2{F > M} < . Then

Psup Ut f(-,0)% <e+MP sup UL |f(-,0)!.
6, F

Note that {U%,|f(-,0)|: & € ©,} is a U-process of order k. Deduce from (6) that
k .
Paup ULI/(,0)] < sup PHF(,0)] + P sup[Uhuei(-6),
n n i=1 n

where the class of functions {g;(,0): § € ©} is P-degenerate on S'.

Deduce from Pakes and Pollard [(1989), Lemma 2.14 (iii)] that the class
{If¢.,8)|: 6 € ©} is Euclidean for the envelope F. By Lemma 6, the class {g;(-, 6):
6 € ©} is Euclidean for an envelope F; satisfying P'F? < co. Apply Corollary
4(i) to see that

P sup|Up,g:(+0)| = O(n™/2) = o(1).
e

By assumption (ii), supg, P|f(-,0)| = o(1). This proves (8). O
The final result provides rates of uniform almost-sure convergence.
COROLLARY 9. Suppose all the conditions of the main corbllary hold. For

real numbers 6 > 0 and B > 1, let p be a positive integer satisfying p > B/6. If
PEF% < oo, then

sup |n*2~°Ukf| - 0
F
almost surely as n tends to infinity.
PROOF. By Corollary 4A, P sup |n*/2Ukf|P < M < oo. For each ¢ > 0,
P {sup |n*/2=SUf| > s} <P sup |n*/2Ukf|’ [ePntP
F F
<Cn=P

where C = M/e?. Apply the Borel-Cantelli lemma to complete the proof. O
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7. A semiparametric rank estimator. Let Z = (Y, X) be an observation
from a distribution P on a set S C R®R?, where Y is a response variable and
X is a vector of regressors. Han (1987) introduced the generalized regression
model

Y =D o F(X'Bo,u),

where [ is a d-dimensional vector of unknown parameters, u is a random
variable independent of X, F is a strictly increasing function of each of its argu-
ments and D is a monotone increasing function of its argument. Many interest-
ing regression models fit into this framework. For example, take F(x,y) = x+y.
If D(z) = 2, the model reduces to a standard linear regression model; for
D(z) = {z > 0}, a binary choice model; for D(z) = z{z > 0}, a censored regres-
sion model. Transformation and duration models are other special cases.

Let Z,,...,Z, be a sample of independent observations from P. Cavanagh
(1990) proposed estimating 5, with 3, = arg maxg«G,(3), where

©) Ga(8) = (n)5' D _{¥i > V;H{X]B > X; 5}
3
Here i3 = (i,j,k) ranges over the (n)s ordered triples of distinct integers
from the set {1,...,n}. Note that {G,(8): 8-€ R?%} is a U-process of order 3.
In order to motivate the estimator, let {a;,...,a,} be a set of real num-
bers and let R,(a;) denote the rank of a;. The monotonicity of D o F and the
mdependence of the u;’s and X[’s ensure that

a R (P(¥: | X)) = Bu (Xif0),

where possible ties are handled in an obvious way. Let o(1),...,0(n) denote
a permutation of the set {1,...,n}, and note that ¥;ic(i) is maximized when
o(i) = i. This and (10) suggest estimating 3, with the maximizer of

ZR" (Y:)R.(X!B).

The facts R,(Y;) = 5,;{Y; > Y;} and R,(X]B) = %3 {X]8 > X; 8} lead to the pro-
posed estimator 3,. Terms involving ties or equal indices turn out not to matter
and so are discarded from the criterion function in (9).

Notice that G,(8) is a discontinuous function of 8. Standard methods for
determining the asymptotic distribution of an optimization estimator require
some form of smoothness on the criterion function and so do not apply. In
the next subsection, we present a method that is general enough to cover
Cavanagh’s estimator.

“7.1. A general method. Let © be a subset of R™, and let 6, be an element of
© and a parameter of interest. Suppose 6, maximizes a function I'(9) defined
on ©. Suppose further that a sample analogue I',(0) is maximized at a point
0, that converges in probability to 6.
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In this section, we present a general method for establishing that 6, is /n-
consistent for 6, and asymptotically normally distributed. This method has its
origins in a paper by Huber (1967) and has been recast into the form presented
here (apart from minor modifications) by Pollard (1989). The method is em-
bodied in the two theorems that follow. The first of these provides conditions
under which 6, is /n-consistent for 6. The second theorem gives conditions
under which a \/n-consistent estimator is also asymptotically normally dis-
tributed. The proofs appear in Sherman (1993).

For simplicity, we will assume that 6y is the zero vector (denoted 0) in
R™, and that T',,(6y) = I'(6y) = 0. This can always be arranged by working
with T',(6p + t) — T',(6p) instead of T',(0), ['(6y + t) — I'(6p) instead of I'(d) and by
substituting ¢ for 6, where ¢ satisfies 6y + ¢ € ©.

THEOREM 1. Let 6, be a maximizer of T'»(0), and let 0 be a maximizer of
T'(9). Suppose 6,, converges in probability to 0, and also that the following hold:

() There exists a neighborhood N of 0 and a constant x > 0 for which
B F(e) < _K’lelzv

for all 0 in N.
(i) Uniformly over o,(1) neighborhoods of 0,

I,(6) =T(6) + 0,(161/v/n) +°p(|9|2) +0,(1/n).
Then
|6a] = 0(1/V/n).

Once +/n-consistency of 6, is established, we can prove asymptotic
normality provided there exist very good quadratic approximations to I',(6)
within O,(1/+/n) neighborhoods of 0. In the following theorem, the symbol =
denotes convergence in distribution.

THEOREM 2. Suppose 6, is \/n-consistent for 0, an interior point of ©. Sup-
pose also that uniformly over Op(1/+/n) neighborhoods of 0,

1 1
(11) Pn(o) = -2—0,V0 + ﬁe,Wn +Op(1\/—ﬂ),
where V is a negative definite matrix and W, converges in distribution to a
N(0, A) random vector. Then

vnb, = N(0,V-1AV-1).

‘The conditions of the theorems do not require that 6, be a zero of the gradi-
ent of I',(6). Nor do they require that I',(6) be a continuous function of §. This
approach, then, provides a framework within which the asymptotic distribu-
tion of Cavanagh’s estimator can be established.
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7.2. Consistency. Notice that if 5, maximizes G,(3), then so does cf3,, for
any ¢ > 0, since G,(8) = G,(cB) for any ¢ > 0. In order to achieve a unique
parametrization, restrict the parameter space to a subset of {3 € R%: 3; = 1};
that is, assume that one element of 3, is known to be nonzero, and normalize
the parameter space by this value. Let B denote this restricted parameter
space. Rather than introduce new notation, rechristen 3, as the maximizer of
G,.(B) over B.

We now state that assumptions used to prove the consistency of 3,.

Al. The distribution of the regressor X has a continuous density with
respect to Lebesgue measure on RY.

A2. The function H(t) = P({Y; > Yo} | X B =) is strictly increasing.

A3. The parameter space B is compact.

A4. The function G(B3) = P{Y; > Y }{X|8 > X;3} is continuous on B.

These assumptions are much stronger than necessary, but are made to sim-
plify the exposition. Notice that G(3) is the expected value of G,(3).

CONSISTENCY. If A1-A4 hold, then |3, — Bo| = 0p(1).
PROOF. We will show the following:

(1) G(PB) is uniquely maximized at Go.
(ii) SupB lGn(,B) - G(ﬂ)l = Op(l).

Consistency then follows from standard arguments using A3 and A4. [See,
e.g., Amemiya (1985), pages 106-107.]
By symmetry,

(12) G(B) = 3P[H(X150){X15 > X8} + H(X300){X15 < X3}].

If 8 = B, then Al and A2 ensure that the indicators in (12) pick out the larger
of H(X]) and H(X35,) with probability 1. Consequently,

G(Bo) = 3P max (H(X160), H(X360))-

Deduce that G(3) is maximized at 3.
Suppose that, for some 3 # 3y,

(13) G(B) = P max (H(X150),H(X380))-
Deduce from (13) and (12) that

(14) H(Xfo) > H(X3p) when X3 > X;.
Let W = X; — X3. Deduce from (14) and A2 that

(15) W3y >0 when W3 > 0.
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Finally, from (15), deduce that
(16) P{WeD}=0,
where

D={WpB, < O{W'B > 0}.

From Al, the distribution of W has a continuous density with respect to
Lebesgue measure on R? given by

p(w) = [ £l (w+s) ds,

where f is the density function of the distribution of X. Note that p(0) > 0.
From this and the continuity of p deduce that p is bounded away from zero in
a neighborhood of the origin. Since 3 # 3, D is a d-dimensional subset of R?
intersecting every neighborhood of the origin. However, then P{W € D} > 0,
contradicting (16). This proves (i).

We prove a much stronger result than (ii) without extra effort. For each
(21,22,23) in S =S ®S® S and each 8 in B, let

f(z1,22,23,8) = {y1 > y2}{x18 > 238} — G(B).
Then

Gn(8) - G(8) = Unf (-, B).

The class of functions {f(-, 8): 8 € B} is shown in subsection 7.4 to be Euclidean
for the constant envelope 1. Since {UZf(-, 8): 8 € B} is a zero-mean U-process
of order 3, it follows from Corollary 7 that

sgplUif(-»ﬂ)l = 0p(1/vn).

This is more than enough to prove (ii). D

7.3. /n-Consistency and asymptotic normality. Represent each 3 in B as
B(6) = (6, 1), where 0 is an element of ©, a compact subset of R¥~1. Also, write
Bo = B(8y), where 6 consists of the first d — 1 components of 3. Let 6, denote
the first d — 1 components of 3,. The consistency of 3, for §, immediately
implies the consistency of 6, for 6.

For each 6 in ©, write I'(8) for G(3(0)) — G(8(8)). Similarly, write I',(6) for
G.(B(8)) — G(B(6p)). Since G(B) is maximized at [y, I'(f) is maximized at 6.
Similarly 6, maximizes I',(0) over ©. As in Section 2, we shall assume that
6y’ = 0, the zero vector in R?~1, Thus, I',(0) = I'(0) = 0.

For each (21,29,23) in 8% and each 6 in O, define

an h(z1,22,23,0) = {y1 > y2 }{x18(6) > x5(6)}.



456 R. P. SHERMAN

For each z in S and each 6 in ©, define
(18) 7(2,0) = h(2,P,P,0) + h(P,2,P,0) + h(P,P,z,9).

Recall from (7) that h(z, P, P, ), for example, denotes the conditional expec-
tation of A(-,0) given its first argument. The function 7(Z;, ) will be the ith
summand of the empirical process that drives the asymptotic behavior of 4.
Notice that even though A(z1,23,23,) is discontinuous, 7(2,-) can be many
times differentiable provided the distribution of X’((6) is sufficiently smooth.
Write V,, for the mth partial derivative operator with respect to 6, and

Vmlo(8) = 3

iyeenrim

om
26, -6, a(9) ‘

The symbol || - || denotes the matrix norm: ||(ay)|| = (; jaZ)Y/2.

We now state the last assumption used in the normality proof for 6,.
A5. Let NV denote a neighborhood of 0.

(i) For eachz in S, all mixed second partial derivatives of 7(z,-) exist on V.
(ii) There is an integrable function M(z) such that, for all z in S and 6 in N,

V27 (2,0) — Var(2,0)|| < M(2)6).
(i) P|V;y7(-,0)? < co.
@iv) P|V3|r(-,0) < 0.
(v) The matrix P Va7(-,0) is negative definite.

The conditions of A5 are standard regularity conditions sufficient to support
an argument based on a Taylor expansion of 7(-,8) about 0.

ASYMPTOTIC NORMALITY. If A1-A4 hold, then
Vvno, = N(0,V-1AV-1)
where 3V =P Var(-,0) and A =P V17(-,0)[V17(-,0)).
PROOF. We will show that

(19) T.(8) = %e’vo + %0’% +0,(|6%) +0,(1/n),

uniformly in 0,(1) neighborhoods of 0, where W, converges in distribution to
a N(0,A) random vector. Since V is, by A5(v), a negative definite matrix, it
will follow from (19) and Theorem 1 that

(20) 6a] = 0p(1/v).
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The result can then be deduced from equations (19) and (20) and Theorem 2.
Recall the definition of h(zq,22,23,6) given in (17). Define

f(21,22,23,0) = h(21,22,23,0) — h(21,22,23,0).

Since T',(0) is a U-statistic of order 3 with expectation I'(9), we may apply the
decomposition in (6) to write

(21) Tn(0) =T(0) + Pafi(-,0) + UZfa(-,0) + USfs(-,6),
where
fi(z,0) =f(2,P,P,0) +f(P,2,P,0) +f(P,P,z,0)

and, for each 6 in ©, fi(-,) is P-degenerate on S, i = 2,3.
Standard arguments [see, e.g., Sherman (1993)] based on A5, a two-term
Taylor expansion of 7(-,0) about 0 and the fact that P7(,6) = 3T'(§) show that

(22) r(0) = 16'Vo+0(j6)° asf—0
and

1
(23) Pnfl(‘, 0) = 7’—;0,Wn +0p(|0l2):

uniformly over o,(1) neighborhoods of 0, where W, = v/nP, V,7(-,0).
In order to establish (19), it remains to show that

(24) U2fa(-,0) + Usfs(-,60) = 0p(1/n),

uniformly over o,(1) neighborhoods of 0. Corollary 8 will do the job.

We show in the next subsection that each class {f;(-,6): 6 € 8} is Euclidean
for the constant envelope 1. Equation (24) will follow from Corollary 8 provided
the following hold:

@ P?fa(-,0)| —0asd—0;
(i) P[fs(,0)| —~0asf—O0.

We will show (ii). The proof of (i) is similar.
Recall the definition of f(z1, 29,23, 8) given above. It follows form Al that

P*{x;5(0) = x48(0)} = 0.

Deduce that f(z;,22,23,-) is continuous at 0 for P® almost all (2;,22,23). The

proof of (6) given by Serfling [(1980), pages 177-178] reveals that f3 equals
f plus or minus terms, each of which is a conditional expectation of f given
zero, one or two of its arguments. Since f is uniformly bounded in all of its
arguments, a dominated convergence argument shows that f3(21,22,23,) is
continuous at 0 for P8 almost all (z1,22,23). Since f; is also uniformly bounded
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in all of its arguments, another dominated convergence argument establishes
(ii), which, along with (i), proves (24).

Put it all together. Combine (21), (22), (23), and (24) to get (19). This proves
the result. O

COROLLARY. If A1-A5 hold, then
\/’_'r(ﬂn - ,30) = (W: O)'
where W has the N(0,V-1AV 1) distribution from the last result.

7.4. Euclidean properties. Consider the class F = {f(-,8): 8 € B}, where,
for each (21,29,23) in S® and each 3 in B,

f(z1,22,23, 8) = {y1 > y2 H{x18 > x38}.

In this subsection, we show that F is Euclidean for the constant envelope
1. The Euclidean properties of the classes of functions encountered in the last
two subsections can be deduced from this fact and Lemma 6 in Section 6. The
reparametrization in terms of 6 has no effect on the Euclidean properties of
the classes encountered in the last subsection. We assume that the reader
is familiar with the notions of a polynomial class of sets and the graph of a
function as defined in Nolan and Pollard (1987).

Let ¢,7, 71, 72,73 be real numbers. Let §;, 6, and 83 be vectors in R%. For each
(21,22,23) in 83, define

8(z1, 22,28, 1, {1}, {8}) = v+ D_ i+ ) bixi
i i

and
G= {g(" EEIA ";7’{7i}’{6i}): Y% ER, 5i ERd9 i= 19293}

Notice that G is a (3d + 4)-dimensional vector space of real-valued functions
on S ® R. By Lemma 18(ii) in Nolan and Pollard (1987), the class of sets of
the form {g > r} or {g >r} with g € G and r € R is a polynomial class. We
use this fact below to show that the set of graphs of functions belonging to F
forms a polynomial class of sets. The Euclidean nature of F will then follow
from Lemma 19 in Nolan and Pollard (1987).

For each 8 € B,

graph(f(-,8)) = {(21,22,23,t) € SP@R: 0 <t <f(21,22,23,5)}
={y1 —y2 > 0}{x18 — x36 > 0}{t > 1}°{¢t > 0}
={g1 > 0}{g2 > 0}{gs > 1}°{g4 > 0},

for g; € G,i = 1,2,3,4. The graph of f(-, 3) is the intersection of four sets, three
of which belong to a polynomial class, and the fourth is the complement of a
set belonging to a polynomial class. Deduce from Lemma 18(i) in Nolan and
Pollard (1987) that {graph(f): f € F} forms a (subset of a) polynomial class
of sets.
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