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CONFIDENCE INTERVAL ESTIMATION SUBJECT TO
ORDER RESTRICTIONS

By J. T. GENE HWANG! AND SHYAMAL DAS PEDDADA?
Cornell University and University of Virginia

This article deals with the construction of confidence intervals when the
components of the location parameter p of the random variable X, which
is elliptically symmetrically distributed, are subject to order restrictions.
Several domination results are proved by studying the derivative of the
coverage probability of the confidence intervals centered at the improved
point estimators. Consequently, we strengthen the previously known re-
sults regarding the simple ordering and obtain several new results for
other general forms of order restrictions, including the simple tree order-
ing, the umbrella ordering, the simple and the double loop ordering and
some combination of these. These domination results are obtained under
the assumption that ¥ is a diagonal matrix. When X is nondiagonal, some
new intervals are introduced which dominate the standard intervals cen-
tered at the unrestricted maximum likelihood estimator for various types
of order restrictions. Similar results are obtained for scale parameters as
well. Contrary to the location problems, in case of the scale parameters
satisfying the simple ordering we find that the restricted maximum likeli-
hood estimator of the largest parameter fails to universally dominate the
unrestricted maximum likelihood estimator. A similar negative result is
noted for simple tree order restriction.

1. Introduction. When estimating the components of the parameter u =
(1, ptg, - ., pz)', often some additional information regarding the order of the
parameters y; is available to the researcher. For instance, if y; is the average
height of US children of age i, then it is reasonable to assume the simple
ordering, that is,

(1.1 p1 < pg <o- < g
Like the simple ordering, the simple tree ordering, defined as
(1.2) w1 <y, foralli,

arises very naturally in many problems of practical interest. For example,
suppose u; is the average yield of a crop with no fertilizer added and y; is the
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68 J. T. G. HWANG AND S. D. PEDDADA

average yield of the crop when the ith brand of fertilizer is added. Then it is
reasonable to expect u; > u1, for all i, although one may have no information
regarding the relative performance of the various brands. For other types of
order restrictions one may refer to the book by Robertson, Wright and Dykstra
(1988).

There exists a considerable amount of literature on the estimation of param-
eters under order restrictions using isotonic regression [cf. Robertson, Wright
and Dykstra (1988)]. Suppose X = (X3,X3, ...,X;) is an observation vector
whose mean vector is p. Then i is said to be the isotonic regression estimator
of p if it minimizes (X — p)'Q2(X — u), subject to the order restriction on .
Here Q is a positive definite matrix. If X has an elliptically symmetric uni-
modal distribution with mean p and covariance matrix proportional to ¥ and
if € is chosen to be X~1, then the isotonic regression estimator is a restricted
maximum likelihood estimator of u.

When the components of u are estimated simultaneously, the restricted
maximum likelihood estimator is known to perform better than the unre-
stricted maximum likelihood estimator. However, it depends upon the type
of order restriction when one is interested in estimating the individual com-
ponents of p. For instance, when X;,X;, ..., X, are independently normally
distributed, then under simple order restriction the restricted maximum like-
lihood estimator dominates the unrestricted one [cf. Kelly (1989) and Lee
(1981)]. However, in the case of simple tree ordering, as observed by Lee
(1988), the restricted maximum likelihood estimator fails disastrously, espe-
cially when % is large. Recently, Kelly (1990) found some isotonic regression
estimators that stochastically dominate the unrestricted maximum likelihood
estimator under simple tree ordering when & — oco.

As seen in the book of Robertson, Wright and Dykstra (1988), much of the
effort during the past two decades has been expended on the problem of testing
hypotheses under ordered alternatives. It seems very little is known regard-
ing an important companion problem, namely, the estimation of confidence
intervals. For instance, there are only two pages of discussion on this topic in
Robertson, Wright and Dykstra (1988), and the authors remark that “this is
primarily due to the general intractability of these types of problems.”

In this article, as a first step, we focus on the one-dimensional constant
length confidence intervals centered at some improved point estimators, typ-
ically the isotonic regression estimators. When X is a diagonal matrix, we
obtain in Section 2 some derivative formulas of the coverage probability of
the confidence intervals centered at the improved estimators. These formulas
are used to study the domination of the proposed confidence intervals over
the standard confidence intervals. Here and below, standard confidence in-
tervals refer to the interval centered at the unrestricted maximum likelihood
estimator. In the process we strengthen and unify the previously known re-
sults of Lee (1981, 1988) and Kelly (1989) for the simple order and simple
tree order. A new scheme is introduced to construct better confidence inter-
vals for general order restriction problems. The proposed scheme, unlike the
intervals centered at the restricted maximum likelihood estimator, is simple
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to implement and can be used for any general order restriction. It is proved,
under some sufficient conditions, that some of the confidence intervals cen-
tered at the proposed estimator are superior to the standard ones. Extensive
simulation studies suggest that the proposed confidence intervals are signif-
icantly better than the standard ones. Section 3 deals with the case when =
is nondiagonal. Some of the domination results are carried over to Section
3 by considering a simple alternative to the restricted maximum likelihood
estimator. Using the general scheme introduced in Section 2, we develop bet-
ter confidence intervals for general order restriction problems. Here again,
the analytic results and the simulation studies establish that the proposed
intervals are substantially better than the standard ones.

In Section 4 we discuss the problem of estimating the scale parameters
under various types of order restrictions and some partial domination results
are obtained. It is shown that the restricted maximum likelihood estimator of
the smallest parameter in a simple order stochastically dominates the stan-
dard unrestricted maximum likelihood estimator. Surprisingly, however, the
restricted maximum likelihood estimator of the largest parameter fails to dom-
inate the standard one. We also note that the restricted maximum likelihood
estimator of y; in a simple tree order fails to universally dominate X;.

Conclusion of this article along with some open research problems in this
area are given in Section 5.

2. The diagonal case. For a given order restriction on y, the isotonic
regression estimator minimizes (X — x)'2(X — u) under the order restriction.
In this section we assume 2 to be a diagonal matrix with diagonal elements
Wi, W,,..., W, and W = (W, W,,...,W,). Then the isotonic regression estima-
tor can be expressed in a nice form using the minimax formula given on page
23 of Robertson, Wright and Dykstra (1988). To describe the isotonic regres-
sion estimator, we let “<” denote the pair relation between i and j, both in
I= {1 2, ...,k}, such that i <j if and only if it is known that y; < y;. The
minimax formula for estimating y; is

(2.1) fiy = min max Ax(LnU) = Joax  min Ax(LnU),

where U and £ are, respectively, the upper and lower sets of Z. An upper set
U is a set such that if i € & and i < j, then j € U4. A lower set £ is defined
similarly with { < j replaced by j < i. Furthermore, for an arbitrary set S,

Z;es WX
E;es W

The two well-studied order restrictions in the context of isotonic regression
are (i) the simple order and (ii) the simple tree order. For (i), expression (2.1)
redtces to

(2.2) Ax(S) =

(2.3) fi$0 = min max Ax(s:t) = max mlnAx(s t).
i<t s<i s<i
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The notation (s:¢) denotes the set of integers {s,s + 1, ...,¢}. In case of (ii),
expression (2.1) reduces to

ST _ . '
(2.4) A" =min Ax(S),

where the minimization is taken over all S containing 1 and
(2.5) AT = max(p§7,X;), foralli>2.

The results contained in this article are basically driven by the lemmas of
the following type. Although we establish the lemmas for i < &, and 1 < i,
they can be proved for any pair of symbols i,j € Z with i <j. In the next two
lemmas we assume that the pdf of X is f(X — u).

LEMMA 2.1. Leti <Xk, i € I, with i # k, and let c+ be two real numbers,
with ¢ < c,. Then

9

aMP(C— < fii— i <cy)

=/A.../{f(z—p+(p,~+c_)l) —f(Z—M+(Mi+c+)l)}Hde,
£k
where Z = (X;’XE’ e ,X]:_l,y)ly

A={( +,X3,...,X;_1): min maxAx‘([:ﬂu)>0}

ieLl, kgLl icU
and
= — min max W.X*/W,.
Y ikel ieU Z JX’/ k
JELNU, j#k
PROOF.

Ple- < pi—pi < c) =P > c— + pi) — P(fi; > ¢4 + i)
=Q(c- +mi) — Qles + ),

where Q(c) = P(ji;; > c). Performing the change of variables X = X; —c,
one can write Q(c) = P(min;c, max;cy Ax-(L NU) > 0). Note that the event
min;c max;cy Axs (L NU) > 0 is equivalent to

min{ min max Ax.(£NU), min max Ax.(L ﬂu)} >0,
ieL, kgL ieU ikel ieU
which is equivalent to

min max Ax.(£NU)>0 and min max Ax.(LNU) > 0.
IEL kgL icU i,keL ieU
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Observe that the event

min max Ax.(£LNU) >0
ikel iel ‘

is equivalent to

max A (£nU) >0, for every L such that i,k € L.
i

Note that i € U implies that £ € U. The last displayed inequality is equivalent
to Xj > y. Making a transformation of variables ¢, = X} — u3, we write

Q(c)-_-/ / FX7—m+e, ..., iy — por + oty +¢) dty [] dX7.
A L2y~ Uk

Since A does not invoelve yu;, we therefore have

0 *
—Q(c)=[4--'/f(z-ﬂ+01)gd&-

O
This, together with
Ple <y —p<cy) =Q(e— +m) — Qcs + i),
proves the lemma. O

Similarly we have the following lemma.

LEMMA 2.2. If1=ii €I, withi# 1, and if c+ are two real numbers as
before, then

0 .
EP(C— < fi— i <cy)

=/A~~-/{f(Z—u+(m+0—)1)—f(Z—n+(m+0+)1)}HdXz*,

141
where Z = (y,X3,X3, ..., X},

A= {X*: max min Ax.(£NU) < 0}

iU, 1gU el
and
wX*
y = —max min Z V’;,XJ .
l,ieU ieLl jeLriin 1
PROOF. Use the formula
(2.6) f = max min Ax(LNU),

U: ield L:iel

and proceed as in the proof of Lemma 2.1. O
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2.1. Estimation of the nodes of a graph. To motivate the development of
some alternate estimators to the restricted maximum likelihood estimators,
we first consider the estimation of the smallest parameter, 11, in a simple tree
ordering. Under the simple tree order restriction, Lee (1988) proved that the
restricted maximum likelihood estimator (2.4) for u; fails to dominate X; in
the mean squared error sense as & — oco. In the following we note a similar
phenomenon in terms of the confidence interval estimation when & becomes

very large.

THEOREM 2.3. Suppose for i =1,2,...,k,X; are independently distributed
with mean p; and variance o? and with a support (—oc, o). Suppose p; — 1y
is bounded above by B and the c¥’s are bounded below and above by positive
constants as k — oco. Then, for every c_ and c,,

Jim Ple- < 5T —m <ey) =0,
where the weights W; = 1/c2.

PROOF. Let ¢; = (X; — 11;)/0i, and let g2y = min;>q ; and W(g) be the weight
corresponding to £(). Direct calculation shows that

VWier + VWi +B

ST .
—_ < min
b T WL+ W,
VWier + /WEpe)
< +B
W1 + W(g)

<ol g, YV
\/Wl W1+W(2)

Since the W;’s are bounded below and above by positive real numbers, the
coefficient \/W(s)/(W; + W(g)) is bounded below by a constant K > 0. Therefore,
the last term of the last upper bound is bounded above by K¢(g) if £(5) < 0, which
holds almost surely as 2 — oco. These, together with the fact that g — —oco
as k — oo, imply that the last displayed expression approaches —co and hence
the theorem. O

Thus we see that, apart from being complicated to derive, it is not nec-
essary that the restricted maximum likelihood estimator will improve upon
the unrestricted one. Hence, one would like to know if there exists a simple
alternative estimator which dominates the unrestricted maximum likelihood
estimator. The answer to this question is contained in Theorem 2.4, proved
below.

Before proceeding any further, we now develop some useful notation. A pic-
,torial representation of the population parameters denoted by solid circles,
which are joined together by line segments, will be called a graph. For in-
stance, in Figure 1 each of the pictures is a graph, and each solid circle repre-
sents a parameter y;,i = 1,2, ..., k. As examples, graph (a) corresponds to the
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2 3
3 2
1 5
12345 6 4
5
(2) (b) (c)
2 5
2 3
1
(d) 1 6 (e)
4 5 3 6
14 15 17

=t

o /S Se w/ N
N\

6 7 11 1

»

Fic. 1.

simple ordering, (b) corresponds to the simple tree ordering, (c) is umbrella
ordering, (e) is double loop ordering and (f) is a combination of (a)<(d).

We omit writing 4 on the graphs but only write the subscripts. A line seg-
ment joining two circles indicates that the circle to the right is known to
correspond to the larger 4 than the one to the left. Furthermore, y; is said to
be a node if, for any, s, it is known that either

Ms < Wi O fig 2> fi;.

We shall number the means y;’s so that if it is known that y; < pj, then i <.
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Therefore if y; is a node, then
2.7 ps < p; and p; < g, for all s,¢ such that s <i <t.

We now note the following important remark [Proposition 4.1.1 in Tong
(1990)], which plays a crucial role in the subsequent arguments. We shall say
that a probability density function (pdf) is elliptically symmetric unimodal if
it is of the form

2.8) f(x—p)=g((x - p)’="'(x—p)) with g(x) nonincreasing in u.

REMARK 2.1. If X has an elliptically symmetric unimodal pdf then so does
any subvector of X. .

The main theorem of this section is as follows.

THEOREM 2.4. Suppose the pdf of X satisfies (2.8) with diagonal ¥ and
suppose ﬁ‘iso is as in (2.3), where W consists of the diagonal elements of ¥~1.
Then j$0 stochastically dominates X; that is, for all ¢ > 0,

(2.9) P(1a7° — ) <) > P(1X; — pul <),

as long as y; is a node. Moreover, the inequality in (2.9) is a strict one if g(u) > 0
for all u > 0.

PROOF. Assume without loss of generality that u; = 0. We now consider
two cases: () i # k and XW;u; > 0; (ii) i # 1 and Wy < 0. These two
cases exhaust all possibilities. The assertion is obviously true for 1 < i < k.
Furthermore, for i = 1, case (i) applies since by (2.7) u; > ;, for all j, which
implies that “Wju; > 0. A similar argument shows that, for i = k, case (ii)
applies.

Now consider case (i). By Lemma 2.1,

0 AS0
aﬂkP( c< i

if f(Z — p—cl) < f(Z — p +cl), which is true if

—pi<c)<0,

k-1
D WilXy — i —c)* + Wa(y — i —c)?
j=1

(2.10) b1
>N WX — pi+e)?+ Wiy — m +c)?
Jj=1
Note here that
k-1 ij:«
- _ j
y=Rgr Z W,



ORDER RESTRICTIONS 75

Now (2.10) is equivalent to requiring

k-1

D WX — ) + Wa(y — ) <0,
j=1

which is equivalent to

k-1 k-1 k
2 WX} —max > WX} =3 Wiy <0
J= J=s

J=1

This inequality obviously holds for case (i). Letting y; — oo and using (2.3),
we obtain a lower bound for the left-hand side of (2.9), which is itself in the
absence of X, ’

Next, consider case (ii). Lemma 2.2 provides a formula for

iP(—c <0 —p<e).
1

Then, following an argument similar to the preceding paragraph, we conclude
that this derivative is positive. Hence by letting 1y — —oco we obtain a lower
bound for P(|i° — ;| < c), which is itself in the absence of X.

Applying these arguments inductively (& — 1) times, we get the lower bound
for P(|a%° — ;| < c), which is exactly the right-hand side of (2.9) with nonstrict
inequality. Now assume that g(z) > 0 for all u > 0. To argue for the strict
inequality, suppose to the contrary that at every stage of the above induction
process the partial derivatives are zero. Then for 2 = 2 one can verify that
g(u) is constant for sufficiently large u. But since g is a pdf this implies that
the constant is zero, contradicting the assumption that g(z) > 0 for all u > 0.
Hence the theorem follows. O

When the parameters are subject to simple order restriction, through a dif-
ferent argument, assuming normality, Kelly (1989) proved that /; universally
dominates X;. Kushary and Cohen (1989) proved a similar result when % = 2.
Kelly’s result implies Lee’s (1981) result which shows that /; has a smaller
mean squared error (MSE). Theorem 2.4 not only extends both these results
to spherically symmetric distributions, but provides a method for constructing
better estimators for other forms of order restrictions (see Corollary 2.6 and
Section 2.2). ‘

Note that the stochastic domination in (2.9) is equivalent to the universal
domination criterion (with respect to Euclidean error). That is, with respect
to the loss function L(|6 — y;|), where L is an arbitrary nondecreasing and
nonconstant function, the risk of 20 is always smaller than that of X; for every
ui. See Hwang (1985, 1986) for further discussion on universal domination.
In the following discussion we shall use stochastic domination and universal
domination interchangeably.
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The following corollaries for the simple ordering and simple tree order-
ing follow from Theorem 2.4 under the same dlstnbutlonal assumptions of X
stated in the theorem.

COROLLARY 2.5 (Simple ordering). ﬁ?o universally dominates X;, for esti-
mating p;, when (1.1) holds.

COROLLARY 2.6 (Simple tree ordering). f; = 25° universally dominates X;,
for estimating py, when (1.2) holds.

The significance of the above results is that the simple order MLE performs
well for other orderings including simple tree. However, strikingly, under sim-
ple tree, the corresponding MLE (4§7) fails in the sense of Theorem 2.3.

For estimating y;,i > 1,in a s1mp1e tree order restriction we propose the
following estimator:

pi = max(X;, fin).

Qualitatively, the estimator makes sense in that, together with f;, it will
satisfy the simple tree constraint and it also mimics (2.5), except that the
restricted maximum likelihood estimator {7 has been replaced by a more ap-
propriate estimator ;. The following theorem supplies evidence that j; per-
forms well.

THEOREM 2.7. Let i # 1 be fixed. Assume that the pdf of X satisfies (2.8),
and suppose

Zj;éi wiWj
2 Wi
Then, for every ¢ > 0, the coverage probability of the interval [i; + ¢ is no less

than the coverage probability of X; + c. It is strictly larger if gu) > 0 for all
u>0.

(2.11) Mi >

PROOF. We shall show that
(2.12) P(Imax(Xi,ﬁl) —,u,,'l <C)

increases as a function of u;. This will complete the proof since as y; — —oo,
fly = —oo and hence j; reduces to X;.

Write (2.12) as Q(u; + ¢) — Q(u; — ¢), where for any constant c,,Q(c.) =
P(p; < ci). Then Q(c,) = P(X; < ¢.) — P(X; < cx, fi1 > c.). Hence,

o o
9, =—-3 i Il > Cy).
amQ(C.) aulP(X, < Cufi1 >¢4)

Although Lemmas 2.1 and 2.2 do not provide a formula for the differentia-
tion of the right-hand side of this expression, similar calculations yield the
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following formula:
BQ—P(Xi<C*,ﬁ12C‘*)=/ H-/f(Z—'p,+c,.,1)dX§‘~~dX*,
M1 X <0

where

3 Z;=2WIjX; * * ,
Z—(—I:g{l ——Wl———, 2"“’Xk N

and when s = 1 for any a;, ¥}_,a; is defined to be zero. Putting all this together,
the derivative of (2.12) with respect to u; is

/.‘<0'-~/{f(Z—u+(ui—-c)l) ~f(Z - p+ (g +c)1)} dX; dX3 - --dX;.

We can now establish the theorem by showing that this integrand is nonneg-
ative, which holds if

(Z—p+(u =)= HZ~ p+ (4 ~c))
S(Z-p+(u+))SHZ— p+ (i +c)1).
This can be simplified to

s k k
—min SOXW+ Y XKW D (i — )W 20,

- j=2 Jj=2 Jj=1
which follows from the assumption of the theorem. The strict inequalities can
be argued as in Theorem 2.4. O

In a related result, Lee [(1988), Theorem 4.1] proved that z7,i > 2, has
a smaller mean squared error than X; under a condition which is equivalent
to (2.11). In fact, under the same condition his result can be strengthened to
stochastic domination by directly applying our Lemma 2.1. Unfortunately its
companion estimator ﬁfT may be inappropriate, as shown in Theorem 2.3.

When applying f; to a given problem involving simple tree ordering, the
best way is to label the population, according to some prior information or
a guess, so that the y;’s are increasing in i. Corollary 2.6, however, assures
us that ji; will stochastically dominate X; even if the labeling is wrong. The
numerical studies are consistent with this fact. In Table 1, cases (i) and (iii)
correspond to a correct labeling while (ii) corresponds to an incorrect one.

Both £; and /i, dominate X; and X, substantially even though in cases (i)
and (iii) (2.11) is not satisfied. Furthermore it has larger coverage probability
than the interval centered at the restricted maximum likelihood estimator,
namely, 257 +c.
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TABLE 1
Coverage probabilities: Performance of the proposed estimators [i; and the restricted maximum
likelihood estimators ﬂ;.sT in the simple tree ordering problem [graph (b)]. Results are based on
2500 simulation runs generated from 15 normal populations, with the variance of the ith
population being i: case (i) g = 0, ug =0 and, for 3 < j < 15, pu; = 0.1(1 +j); case (ii) py =0, 2 =1
and, for 3 <j < 15, pj = 0.1(1 +); case (iii) py = 0, u2 = 1 and, for 3 <j < 15, 4; = 0.1(10 +)

Nominal Nominal
Case level i ﬁ‘lgT iy ing Case level i izlST fig ﬂgT

@) 0.95 097 0.72 097 0.97 (iii) 0.68 0.74 046 0.76 0.72
(i) 0.68 0.77 031 0.75 0.70 0.90 094 074 094 093
0.90 094 060 094 092 0.95 097 084 097 097

0.95 097 072 097 0.97

In case of the simple tree ordering, Lee [(1988), Theorem 3.1] studied a
modified weight isotonic regression estimator for the control mean p;. He
proved in Theorem 3.1 of his paper that if the weight W; corresponding to y;
is chosen to be sufficiently large, then, under the assumption of normality,
the mean squared error of the isotonic regression estimator is strictly smaller
than the mean squared error of X;. Kelly (1990) also studied a similar kind of
estimator for y; using stochastic domination criterion. No modified estimators
were proposed for other means and neither of their estimators were extended
to other forms of order restrictions.

2.2. Other order restrictions. In general it is not easy to compute the re-
stricted maximum likelihood estimators for any arbitrary graph. Further, as
seen in Theorem 2.3, the restricted maximum likelihood estimator can be dis-
astrous for some types of order restrictions such as the simple tree order. Thus
there is a need to develop a simple scheme to construct improved estimators
for parameters subject to different types of order restrictions. In this section
we shall develop a general scheme, based upon simple order estimators, which
is motivated and justified to some extent by Theorem 2.4. A very fast way of
calculating simple order estimators is PAVA as depicted in Robertson, Wright
and Dykstra (1988).

CASE A (Graphs with at least one node).

Step 1. Estimate the nodal means of the graph. While maintaining the
known inequalities between the means of a graph and guessing the inequal-
ities between the rest of the means, we first estimate the nodes of a graph
using the simple order estimator ﬁiso. Thus, for instance, in graph (e), the
double loop order restriction, we shall first estimate the means u;,u4 and py
while guessing the inequality between p5 and u3 and between p5 and pg. The-
.orem 2.4 assures that the simple order estimators for the nodes so constructed
will stochastically dominate the unrestricted maximum likelihood estimators
of the nodes. The improvements will be more substantial if we guess the cor-
rect orders. However, there is no harm even if our guess is completely wrong.
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TABLE 2
Coverage probabilities: Performance of the proposed estimators of y; and pg under the umbrella
ordering [similar to graph (c)l. Results are based on 2500 simulation runs generated from 15
normal populations, each population having the same variance, 1: case (i)
s =—1,p3 =0,p3 = 0.5 and, for 4 <j < 15, yj = 0.1(10 +); case (ii) py = —1, pg = 0, u3 = 1 and,
for 4 <j < 15, pj = 0.1(10 +j); case (iii) py = —1, g = 0, u3 = 2 and, for 4 <Jj <15, =0.1(10 +)

Case Nominal level j, iy, Case Nominallevel f, fig

@) 0.68 0.74 081 (i) 0.68 0.72 0.75
0.90 094 097 0.90 094 094
0.95 0.97 0.99 0.95 0.97 0.98
(ii) 0.68 0.73 0.79
0.90 094 0.96
0.95 0.97 0.99

For instance, in Table 2 we study the performance of the proposed estimators
of the parameters y; and pp under the umbrella ordering [similar to graph
(c)]. The estimator for up will be depicted in Step 2. There are two branches
to the umbrella, one of them contains py, ug, 13, and the second branch con-
tains py, g, ps, ..., p15. In the construction of fi; we guessed in each of the
three cases (i), (ii) and (iii) that y; < py < --- < py5. Thus in cases (i) and
(ii) we made correct guesses but made a wrong guess in case (iii). In all the
cases the proposed estimators perform better than the unrestricted maximum
likelihood estimators.

Step 2. Estimate the nonnodal means of the graph. To estimate the non-
nodal mean, y;, we remove the smallest number of circles from the graph so
that x; becomes a node in the resulting subgraph G,,. Based on the circles in
Gy; we then construct the simple order estimator for y; using the procedure
described above. It should be noted, however, that some of the circles in G,,,
might have been estimated earlier. For those circles, while forming the simple
order estimator for ; we shall use the estimators as the observations and give
a weight of B to them, where B — . Consider, for example, p in graph (e).
If we delete ug3, then p; is a node in the resulting subgraph G,,. So we shall
construct the simple order estimator for u,, while guessing the inequality be-
tween p5 and ug. Let us suppose that our prior information indicates us < .
Note that y;,i = 1,4 and 7, have been estimated as /; in Step 1. Therefore we
shall construct the simple order estimator ﬁ?O(B) for u; based on the “obser-
vations” {fi1, X3, fi4, X5, Xs, 17} with respect to weights {B, W, B, W5, W, B}.
The recommended estimator iy for us is then limp_, ﬁ‘go(B). Note that this
estimator is the projection of X, on to the interval [fi;, fis). Thus we have es-
timated 1, g, pg and pq by fiy, g, fig and iy, respectively. By eliminating the
second population, u3 becomes a node. Thus, similarly, u3 is estimated using
the Sobservations” ji, fi4, X5,Xs and fi7. Estimators for u5 and pg are similarly
obtained one by one.

It can be argued in general that the estimators constructed this way sat-
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isfy the original constraint. For instance, in the preceding paragraph, since
pSO(B) < pSOB) < pEO(B) and limp_, o, AS9(B) — fi;, for i = 1,4, it follows that
i1 < fig < [ig. In practice, there is no difficulty in evaluating the limits. One
simply chooses a number B which is, say, 10° times larger than the maxi-
mum weight and uses the corresponding 259(B), which should be fairly close
to its limit.

We are thankful to a referee who pointed out correctly that there is an
alternative way to calculate directly our estimators for the nonnodal means
without letting B — oo. Since our problem is indeed equivalent to the bounded
isotonic regression problem where the bounds are formed by the estimators
of the previously estimated parameters, we may consequently use the modi-
fied PAVA algorithm on page 57 of Barlow, Bartholomew, Bremner and Brunk
(1972). This method has been demonstrated to work when the covariance ma-
trix is a diagonal matrix and is recommended for such a case. However, we
are not aware of its validity when the covariance matrix is nondiagonal and
hence a general approach is described as above.

When we apply the proposed method to graph (a), we obtain the same
estimator as 50 of (2.3). Furthermore, its application to graph (b) yields the
estimators recommended in Corollary 2.6 and Theorem 2.7.

CASE B (Graphs with no nodes). Suppose there are no nodes in a graph,
such as graph (f). Then as in Step 2 of Case A, corresponding to each cir-
cle u; we shall remove the smallest number of circles so that y; is a node
in the resulting subgraph G,,. Then among all the subgraphs G,,,,G,,, ...,G,,
select the one which has largest number of circles. Estimate all the nodes
in that subgraph using the simple order estimator /i5°. Due to Theorem 2.4
these estimators will dominate the unrestricted maximum likelihood estima-
tors. Then go on to the subgraph which has next largest number of circles
and obtain the simple order estimator of all the nodes in the subgraph and
proceed this way till all the parameters are estimated. In any subgraph, if a
circle appears that has already been estimated previously, then a weight of B
should be given to that estimator as done in Step 2 of Case A, where B — oc.
As an example, consider the graph (f), where there are no nodes. Note that
Gu = Guss = {1,8,5,6,7,8, 9,10,11,12,13, 15,16, 18} is the largest subgraph
with 14 circles in it. We construct the simple order estimators 259 and 359
using the data on the 14 populations. The next largest subgraph is G, =
{1,2,3,4,5,6, 7,12,13, 14, 15,16, 18}. The node in this subgraph is y;. Since
p12 and u;3 have already been estimated in the last step, we shall replace
the data X2 and X;3 by their estimates fi;3 and fi;3. Thus the “data” used
for estimating p; is {X1,X5,X3,X4,Xs5, X6, X7, fl12, f13, X14,X15,X16,X18} With
Weights {Wl’ W2a W3’ W4’ W53 WG’ W7, B’B, Wl49 Wl5’ Wl6’ WIB}’ where B — oc.
We then construct the simple order estimator ﬁfO(B) for the node y;. Then the
recommended estimator for 4 is fi; = limp_,o, 25°(B). Continue this process
till all the required parameters are estimated.

As described in Step 2 of Case A, the proposed estimators would preserve
the known order restrictions on the parameters.
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3. Nondiagonal case. There are two problems with the restricted max-
imum likelihood estimators when X is nondiagonal. First, they are compu-
tationally quite intensive. One needs to determine which of the 2* partitions
the data X belongs to, and in each determination a calculation of the inverse
of a suitable covariance matrix is required. Second and more important, the
restricted maximum likelihood estimators do not always behave properly even
for the simple ordering. The following theorem exhibits such cases.

THEOREM 3.1. Suppose the pdf of X satisfies (2.8) with ¥ known and the
components of p satisfy the simple ordering, and suppose that f(u) is strictly
decreasing in u. Then there exists a k and a X such that the restricted maximum
likelihood estimator M of u, fails to dominate X; both stochastically and in
mean squared error. In fact, the confidence interval centered at i can have
coverage probability as small as one wishes by choosing k.

PROOF. Without loss of generality, assume X is normally distributed.
Choose a matrix L such that X* = LX is normally distributed with mean
and covariance matrix given by

p* =Lp=(p1,pe —pa, ..., 6 — -1)) and E*=LZL/,

respectively. Under this linear transformation, the simple order restriction in
the parameters u;, po, ..., uz is equivalent to the following:

(P) Estimate p* subject to the constraint u} > 0 for all j > 1.

Now consider a simple tree problem based on Y ~ N(u,D), where % is large
enough and D is diagonal, and that the restricted maximum likelihood esti-
mator fails for u;. Apply a linear transformation M such that

p** =Mp = (p1,p2 — g1, oo e — 1)’
This will transform the problem to Pif ¥ satisfies
=L !MDM'L' ",

since then MY and LX are identically distributed. Since the first components
of u,p* and p** are the same, the restricted maximum likelihood estimator
of u; is the same for all of them. Hence the restricted maximum likelihood
estimator fails for the simple ordering problem too. O

To describe our proposed procedure, let
Ax(S) = WeXs/I'Ws,

whére W5 = (Zs5)"!1 and =5, a submatrix of X, is proportional to the covari-
ance matrix of the subvector Xs when (2.8) is assumed. The vector Xs denotes
the subvector of X consisting of elements X;, i € S. Below, corresponding to a
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dummy vector X* defined in Lemma 3.2, we shall similarly define a subvector
X5. Also below, for a set S that contains 1 (or &), we let X and W, (or X5
and Ws,), respectively, denote X and W with the first (or the last) element
deleted. Further, Ws, or W5, denotes the first (or the last) element of Ws We

will use W to denote Ws when S = Z. With this generalization, let 4= denote
i; given in (2.1). The estimator we propose is

3.1 450 = min max Ax(s: t).
i<t s<t

When X is diagonal, the estimators proposed in this section coincide with their
counterparts given in Section 2.

Similar to Lemma 2.1, we can derive the following lemma, which provides
the derivative formula to study the coverage probability of some confidence
intervals.

LEMMA 3.2. Leti X k,i # k,i € Z, and let ¢4+ be two real numbers, with
c— < c4. Assume that Ws, > 0 for every S that contains k. Then

0 .
a—”kP(c_ <AF-pi<ey)

=/ .--/f(Z—u+(,u,-+c_)1)—f(Z—n+(ui+C+)1)HdX*,
A I£k

where Z=X},X5, ..., X;_1,y),

A={( 5%, X)) jcin, I}lE%xAx*(Lnu)>0}

and

w/ X!
. LUy NLnU
= — min max — &% Yo
iLkel ieuU W(cnu)k

It is unfortunate that we cannot derive a result similar to Lemma 2.2 for
ﬁiz for every X. This is because, unlike in the diagonal case, the estimator
given in (3.1) does not remain the same if the min and max operators are
interchanged. We thank one of the referees for pointing out this fact to us
through a counterexample. In certain cases, such as Examples 3.1 and 3.2, the
min and max operators are interchangeable. We derive the following lemma
similar to Lemma 2.2 for such cases.

LEMMA 3.3. Assume that Ws, > O for every S that contains 1. If 1 = i,
i #1,i € Z, if cx+ are two real numbers as before and if X is such that

(3.2) min L%gAx(Eﬂu) max EnénAx(CﬂL{)
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then
0

B,ulP(c_ <P —p<ey)

=/A.../f(Z—p,+(u,~+c_)l) —f(Z—p,+(u,~+c+)l)HdX*,

I#1

where Z = (y,X3,X3, ..., X},

A= {(X2,X§, X)) jDax  min Ax-(LNU) < O}

and

! * ®
. W(ﬁﬂu)a)x(ﬁﬂu)(n
Yy =—max min .
Lield ieL W(cnu)l

The following are two examples where (3.2) is satisfied.

EXAMPLE 3.1 (Intraclass correlation matrix). Suppose that ¥ = o%{(1 —
p)I + pJ}, where I is the identity matrix, J is the matrix of unities and p is
such that the matrix is a positive definite matrix, that is, —1/(k — 1) < p < 1.
Then observe that Ws = (£5)~11is proportional to the vector 1, with a positive
constant of proportionality. Hence condition (3.2) follows from the fact that it
is satisfied for the diagonal case or specifically for the case where the weights
W; are all 1.

EXAMPLE 3.2 (Estimation of the smallest or the largest mean for a general
). If y; is known to be either the smallest or the largest mean, one of the
operators can be eliminated and hence (3.2) obviously holds for any matrix X.

Next we show how to apply the preceding lemmas to establish domination
results. In the rest of the section we assume that X has an elliptically sym-
metric unimodal density function (2.8) and W = £~11. We shall also assume
that the equation (3.2) holds (with respect to the simple ordering). We first
deal with the case when the u’s satisfy the simple ordering.

3.1. Simple ordering. In the following, a vector V= (V1,Vy, ..., V,) is said
to satisfy the nonnegative backward average property if, for all i,3,V; > 0
and is said to satisfy the nonnegative forward average property if, for all
iyzi'=1‘,j Z 0-

REMARK 3.1. Note that V has a nonnegative backward average property if
and only if V' > p;V'1 for every u satisfying the simple ordering. Similarly,
it has a nonnegative forward average property if and only if V'u < 1 V1 for
every u satisfying the simple ordering.
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THEOREM 3.4. For every s,t,s < i < t, suppose that the first and the last
components of W.;) are positive. Also suppose, for every t > i, W;.; satisfies
the nonnegative backward average property and, for every s < i, W(,.;) satisfies
the nonnegative forward average property. Then ﬁiso’ given in (3.1), universally
dominates the unrestricted maximum likelihood estimator X;. That is, the cov-

oy . "SO . .
erage probability of the interval [i7° + c is as large as that of X; + ¢, for every
¢ > 0. It is strictly larger if gw) > 0 for all u > 0.

PROOF. Without loss of generality assume that u; = 0. As in the proof of
Theorem 2.4, we shall consider two cases: (i) i #k and W/ > 0; (ii) i # 1 and
W u <0. For 1 <i <k, these two cases obviously make up all the situations.
The same can be said for i = 1 or %, as can be established using Remark 3.1
and y; = 0.

Using Lemma 3.2, we have

%P(Iﬁf" -l <e)<0
if
f(Z-p-c)SHZ-p—c1)) <f((Z-p+cl)S7H(Z - p+cl))
or, equivalently, if
83) (Z-p-c)T W Z-p-c)>(Z-p+cl)SHZ-p+cl),
where Z is as defined in the lemma with

! *
y = —max w(s:k)(k)x(s:k)(k)
s<i W(s:k)l.

The inequality (3.3) is equivalent to
—c'SY(Z-p)>0

or W(Z — u) =W'Z — W' < 0, which obviously holds under case (i) since, by
the definition of Z, W'Z < 0. By letting u; — oo, we obtain a lower bound for
P(|i0 — p;| < ¢), which is itself in the absence of Xj.

Next, consider case (ii). One can then pursue the same argument using
Lemma 3.3 and conclude that P(|25° — y;| < ¢) is nondecreasing in ;. Letting
p1 — —oo, we obtain the lower bound for P(|35° — ;| < ¢), which is itself in
the absence of X;.

Arguing inductively and employing Remark 2.1, we establish the theorem
for nonstrict inequalities. The strict inequalities can be argued as in Theo-
rem 2.4. O
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3.2. Other orderings. With the extra assumption that
(3.4) W5 has positive elements VS,

one can establish analytically that the proposed estimators dominate the cor-
responding unrestricted maximum likelihood estimators for estimating the
nodes of a graph.

THEOREM 3.5. Under (3.2) and (3.4), the coverage probability of p3° +c is
as large as that of X; + c, for every ¢ > 0, as long as p; is a node. It is strictly
larger if g(u) > 0 for all u > 0.

PROOF. The proof follows along the lines of the-proof of Theorem 3.4 except
noting that Wsp > 11 W1, for every p satisfying the simple tree ordering, iff
(3.4) holds. O

For other order restrictions such as the graphs (a) through (f), we can con-
struct estimators as done in Section 2, except using Ws = Egll as the weight
vector. The resultant estimators have the same domination property as long as
the assumptions of Theorem 3.5 are satisfied. We provide two concrete cases
that satisfy Theorem 3.5.

EXAMPLE 3.3 (Continuation of Example 3.1). When X is an intraclass cor-
relation matrix, both assumptions of Theorem 3.5 are satisfied.

EXAMPLE 3.4 (Continuation of Example 3.2). For estimating the smallest
or the largest mean, Theorem 3.5 applies as long as W has positive elements.
In addition to the intraclass correlation matrix, this assumption is also sat-
isfied by the M-matrix. Note that if ¥ is an M-matrix, then it follows from
Berman and Plemmons [(1979), Theorem 2.4, page 140] that the inverse of
every principal submatrix has positive elements.

3.3. Numerical studies. Since the intraclass correlation matrix has a spe-
cial significance in statistics, we therefore study this matrix in greater de-
tail. One can construct better confidence intervals for the parameters sat-
isfying any graph as decribed earlier, by following the scheme suggested in
Section 2.2. Extensive simulation studies were performed for simple tree re-
striction and the umbrella restriction. All our studies indicate that the pro-
posed estimators are at least as good as the unrestricted maximum likelihood
estimators and significantly better in other cases. For illustration, in Table
3 we provide results corresponding to the umbrella order restriction. In our
study ¥ = (1 — p)I + pJ. Performance of the proposed estimators of u; and
o are studied. As in Table 2, there are two branches to the umbrella, one
of them contains p, ug, 3, and the second branch contains g, 4, s, - - ., p15-
In the construction of f;, we guessed in each of the four cases (i)—(iv) that
1 < pg < -+ < pgs. Thus in cases (i) and (ii) the guesses are correct, but they
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TABLE 3
Coverage probabilities: Performance of the proposed estimators of py and ug under the umbrella
ordering [graph (c)]. Results are based on 2500 simulation runs generated from 15 normal
populations, each population having the same variance, 1: case (i) p; = —1, ug = 0, ug = 0.5 and,
for 4 <j < 15,p; = 0.1(10 +5) and p = —0.05; case (ii) p1 = —1, g = 0, u3 = 0.5 and, for
4 <j <15, =0.1(10 +,) and p = 0.5; case (iii) py = —1, ug = 3, u3 = 4 and, for
4 <j £ 15,4 = 0.1(10 +) and p = —0.05; case (iv) uy = —1, ug = 3, u3 = 4 and, for
4<j<15,4;=0.1(10+)) and p=0.5

Case Nominal level [, fia Case Nominallevel j, fig

@) 0.68 0.75 0.82  (iii) 0.68 0.68 0.74
0.90 094 097 0.90 0.90 0.93
0.95 0.97 0.99 0.95 0.95 0.97
(ii) 0.68 0.70 0.72  (iv) 0.68 0.68 0.70
0.90 0.90 0.93 0.90 090 091
0.95 095 097 0.95 0.95 0.96

are wrong in cases (iii) and (iv). Although the performance of the proposed
intervals was impressive when p was positive, the gains were much more for
p<0.

4, Estimation of scale parameters. Suppose, fori = 1,2, ...,k, X; is
a nonnegative continuous random variable with a positive scale parameter
u;. We assume in this section that the joint pdf of X;/u;, for i = 1,2, ...,k, is
denoted by f(-). The problem of interest is to estimate the unknown parameter
u; for some i, when the parameters are subject to order restrictions. There are
only a few results available in the literature on this subject. Kushary and
Cohen (1989) and Kaur and Singh (1991) studied this problem when k& = 2 for
some special models. In this article we shall obtain some improved confidence
intervals for the smallest and the largest parameters when the parameters
are subject to order restrictions. We also obtain some universal domination
results.

When n,X;/u;,1 < i < k, are independently distributed according to chi-
square distribution with n; degrees of freedom (df), the isotonic regression
estimator, 250 in (2.3), with weights W; = n; is the restricted maximum like-
lihood estimator for u; under simple order constraint [Robertson, Wright and
Dykstra (1988), page 361.

For a scale parameter p;, the standard confidence interval is given by
X;/cs,X;/c—), where the two positive constants c; are such that c_ < c,.
It may seem that one can apply a logarithm transformation and reduce the
problem to a location problem and then apply the results of Section 2. This
approach, however, cannot be carried out since, after the transformation, the
estimator will be quite different. Therefore we take a more direct approach in
what follows.
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LEMMA 4.1. Suppose W; > 0, for all j. Then

~SO
B—P (c_ < == ad 0 < c+)
U1

Opir
4.1) k=1 x>
/ / Zy(ct fle-mZ) —cif(emZ)) [] ,,J ,
jer

where Z = (X7 /p1,X5 /g, - X _1/te—1,5/112)s
A= {(Xl, 2 ""Xk—l): lSIPSll?._lAX"(].:t) > 1}

and
y={Wa.nl = WX 4-1}, /W
Here, for any real number a, {a}, = max(a,0).

PROOF. Write

Ple- < p3%/m <ey) = Q(me-) — Q(ucy),

where Q(c) = P(i{° > ¢). Then note that Q(c) can be written as

X X\ vy 4X;
Qc) = ---/f(—l,...,—k)H—f.
miny; Ax(1:8)>c H1 P/ g M
Performing the change of variables X;* = X;/c, we deduce
X * +\ -k odX?
Q) = .../ckf(il,m CX)H_L,
ming>; Ags(1:£)>1 M1 e

Performing another transformation, t, = X}/u, and observing that
min;>; Ax-(1:¢) > 1 is equivalent to X; > y intersecting A, we obtain

0 [ (5 )]

By differentiating we obtain

@[ [ (S
3uk p’

which implies (4.1). O

Wi’

ot
&
Dd
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Similarly, we prove the following lemma.

LEMMA 4.2. Suppose W; > 0, for all j. Then
k dx*

—Q—P(c 3 aso <c+> / f “ky(ct f(c-mZ) —ctf(com)) I M'j’

=2

where Z = (Y/#I’Xg/yﬂ» e ’X;/Mk),»
A= {(Xz, X7 Jax Ax-(s:k) < 1}

and

y={Wa.nl-We.nXo.n}, /Wi

Using these lemmas, one can establish some domination results in the sense
of coverage probability. Note that in case of the scale parameters, the size
of a confidence interval is usually measured in terms of the ratio of the two
endpoints of the interval. An advantage is that this measure is invariant under
scale transformations. According to the measure, the following two confidence
intervals have the same size.

THEOREM 4.8. (i) For all p such that puy < p;, for all i, the confidence
interval (50 /c., 50 Jc_) has a coverage probability at least as large as that of
Xi/es,X1/c) if, for all s,1 <s<k,andy >0,

(4.2) ¢ filc—mZ) < cifs(cemaZ),

where f,() is the pdf of X1 /111, ..., Xs/us) and Z and y are as defined in Lemma
4.1 except k is replaced by s.

(ii) For all p such that w; < u, for all i, the confidence interval (35°/c,,
fi59/c_) has a coverage probability at least as large as that of (X /c.,X;/c_)
if, forall s,1 <s<kandy>0,

¢ fi(c-mZ) < &ifs(camZ),

where f;(-) is the pdf of Xs/ s, . - ., Xn/un) and Z and y are as defined in Lemma
4.2 with 1 and 2 being replaced by s and s + 1.

PRrROOF. We will prove only (i), since the proof of (ii) is similar. Note that
(4.2), together with Lemma 4.1, implies that

~S0
aP(c <&<c+)50.
O p1

Therefore by letting u;, — oo, we obtain a lower bound for P(c— < ﬁfo/ n1 < Cy)y
which is itself in the absence of X;. Arguing inductively and dropping all
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X;,j > 1, in this manner, we arrive at a lower bound for P(c_ < ﬁfo /i < ey,
which is exactly the coverage probability for (X;/c,,X;/c_). O

As an example for Theorem 4.3, suppose that u; = n,X;/p;,1 < i <k, are
independently distributed as chi-square random variables with n; degrees of
freedom. Then the pdf of X with y; = 1 is f(X) = Hleﬁ(Xi), where f;(X;) is
proportional to

(4.3) X"/* exp(-nX;/2), Xi>0.
THEOREM 4.4. (i) If the constants c_ and c, are chosen to satisfy
(4.4) (c—/cs)exp(c, —c-) <1,

then the coverage probability of the confidence interval (i5°/c,,p50/c_) is
larger than that of Xy /c.,X1/c-), for all y; > p1,1 <i<k.
(i) If c_ and c, satisfy

4.5) (c—/c.)exp(es —c-) > 1,

then the coverage probability of the confidence interval (f5°/c,, 50 /c_) is
larger than that of (X3 /¢y, Xy /c-), for all pp > p;,1 <i <k.

REMARK 4.1. If nX/p is distributed as a chi-square random variable with
n df, then the equal-tailed confidence interval (X/c,,X/c_) uses the constants
¢+ which satisfy (4.4). This can be proved for n = 2 and when n is sufficiently
large. Exact numerical computations show that for n = 5, 10, 15,20 and for c+
such that the coverage probabilities of (X/c,,X/c_) are 0.55, 0.9 and 0.95, the
inequality (4.4) holds. On the other hand it can be analytically shown, for all
degrees of freedom, that the shortest-width confidence interval (X/c.,X/c_)
uses constants which satisfy (4.5).

PROOF OF THEOREM 4.4. We will prove (i), and (ii) will follow similarly.
Using (4.3), we note that f;(cu1Z) in (4.2) is proportional to

ng/2—-1 * s—1 %\ ni/2—1
(5" (S ()
i

Hs

i=1
where
-1
i=1 i Hs

"~ Hence (4.2) is equivalent to

)3:?:171,-/2 *
(4.6) (c—_) exp ((c+ —c_)S(;( )) <1.
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Furthermore, since p1 < p; and y = (55,n; — $55'n:X?)./ns > 0, one can
establish that S(X*) < ¥f_;n;. Hence (4.6) is true if

o\ Shami/2 s ‘ni
(Z) exp | (cy —c-) Z 3 <1,

i=1

which follows from (4.4). We have therefore established that the coverage
probability of (450/c,,i$0/c_) is at least as large as that of (X;/c,,X;/c-).
The strict inequalities can easily be established. O

Although a direct application of the preceding theorems will not yield the
result, all numerical studies (over 100 different combinations of u;’s,n;’s,c+
and k) indicate that the equal-tailed confidence interval (X;/c,,X;/c_) has a
smaller coverage probability than the interval (350 /c,, 250 /c_).

If one considers reverse simple tree problems, that is, y; < y, for all j, then
the restricted maximum likelihood estimator does not perform well according
to the following theorem, which can be established along the lines of Theorem
2.3. The question then is: what will be an improved confidence interval for
1z? Theorem 4.4(ii) shows that in fact the confidence intervals therein will be
better than the standard intervals even for the reverse simple tree situation.
The same domination is true with any other restriction as long as p; is the
smallest and y;, the largest parameter. Because of this, we can construct better
estimators for the graphs (a) through (f) as in Section 2.

THEOREM 4.5. If, for all i, we suppose u; < u, then as k — oo, any fixed-
length confidence interval, centered at the restricted maximum likelihood esti-
mator of uy, will have a coverage probability converging to 0.

Theorem 4.4 does not yield the stochastic domination results. However, as
demonstrated below, a simple application of Lemma 4.1 to a different interval
will yield the result.

THEOREM 4.6. Under (4.3), the following hold:
(i) p5° universally dominates X1, that is,
4.7 P(Ip5° — w| <¢) > P(|Xy — | <¢), forallc>0,

whenever p; > j11;
(i) ﬁfo fails to universally dominate X3; in fact for every p; there exists a
positive constant ¢ such that

P(Iﬁfo —ukl < C) <P(|Xk —,ukl < C).

PROOF. (i) Consider P(|6 — p1| < ¢), where é represents either ﬁ'fo or X;.
Then we can rewrite this probability as P(c- < §/u3 < ¢,), where c4. = 1+c¢/p;.
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There are two possibilities: (a) ¢ < 0 and (b) c_ > 0. When (a) is true the
problem reduces to showing

P(0 < i$%/u < ¢,) >P(0 <Xy /py <c,), foralle.

However, this inequality is obvious since 259 < X;, where strict inequality
holds with positive probability.

On the other hand (b) implies that d < 1, where d =¢/u;. Hence 0 < d < 1.
We are done if we are able to verify the condition (4.4) stated in Theorem 4.4.

Note that condition (4.4) is equivalent to showing

(1 -d)exp(2d)
isad =t .
When d = 0, the left-hand side of (4.8) is 1. Thus to establish (4.8) it will

be enough to show that the left-hand side is a decreasing function of d. The
derivative of the left-hand side with respect to d yields

—2d? exp(2d)
(1+d)?2 ’

4.8)

which is nonpositive. The result follows now by appealing to Theorem 4.4.

(ii) This part of the theorem is not restricted to gamma distributed random
variables but it is true for general scale families. To prove (ii) it suffices to
find a constant ¢ such that P(|25° — | < ¢) < P(X; — | < ¢). For every u;,
there exists a constant ¢ such that c_ = 1 —¢/u; < 0; then, since X; < 350,
where strict inequality holds with a positive probability,

P(0 < ﬁfo/,uk <ey) < P(O <Xp/mp < c+), where ¢, = 1 +c¢/pp.

Hence the theorem follows. O

Following arguments similar to those in the above theorem, we prove the
following theorem regarding the simple tree order restriction.

THEOREM 4.7. If g < u; for all i, then the isotonic regression estimator ST
of w; fails to universally dominate X;.

REMARK 4.2. This theorem is true for all scale families.

5. Generalizations and open problems. In this paper, derivative for-
mulas for the coverage probability of confidence intervals centered at the iso-
tonic regression type estimators are given. Using these formulas, we strengthen
the results of the previous research and establish many new theorems. In par-
ticular we are able to develop new improved confidence intervals for different
types of constraints on (a) location parameters, both when the underlying ran-
dom variables are uncorrelated and when they are correlated, and (b) scale
parameters.
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In the case of the location problems, we focused on the case when the co-
variance matrix is known. If the covariance matrix is known up to a constant
multiplier 0% and if there is an independent estimator 42, the standard es-
timator which is usually of the form X; + ¢4 can be improved by j; + ¢6 as
long as ji; stochastically dominates X;. This is based on a simple conditioning
argument.

Our framework is also applicable to a linear model with restrictions in-
volving linear combinations such as aju + b; as long as we are interested in
estimating one of the linear combinations. Such restrictions are often reason-
able since the mean responses are of these forms. By renaming a/u + b; as
p; and, working with the least squares estimator X, we can transform the
problem back to our framework with covariance matrix of X* not necessarily
diagonal, a setting studied in Section 3.

5.1. Open problems. Although partial results are available in Section 3,
we are unable to deal with an arbitrary covariance matrix. A technically equiv-
alent question is how to deal with estimation of x4 under an arbitrary linear
restriction Ay < b, where A is a known rectangular matrix and b is a known
column vector, with “<” being a componentwise inequality. It will also be im-
portant to study the situation when the covariance matrix is completely un-
known or has a variance component structure with the variance components
unknown.

Concerning the estimation of the scale parameters, there are several ques-
tions that remain unanswered at this point. The performance of the isotonic
regression estimators (and their modifications) is not completely understood.
For example, when the parameters are subject to simple order restriction we
are unable to study the performance of the isotonic regression estimator of
the i-th parameter y;,1 <i < k.

The intervals studied here have constant length. It would be nice to con-
struct shorter-length confidence intervals with the coverage probabilities above
some nominal level.

It will also be interesting to generalize the results of this paper to the
discrete distributions.

In solving these problems, we feel that the use of the derivative formulas,
such as the ones developed in this paper, are essential.
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