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BLIND DECONVOLUTION OF LINEAR SYSTEMS WITH
MULTILEVEL NONSTATIONARY INPUTS

By Ta-HsiN Li!

Texas A & M University

A method is proposed to deal with the problem of blind deconvolution
of a special non-Gaussian linear process, in which the input to the linear
system is a real- or complex-valued multilevel random sequence that
satisfies certain regularity conditions. The gist of the method is to apply a
linear filter to the observed process and adjust the filter until a multilevel
output is obtained. It is shown that the deconvolution problem can be
solved (with only scale/rotation and shift ambiguities) if the output
sequence of the filter contains a subsequence that converges weakly to a
multilevel random variable. A cost function is proposed so that any
minimizer of the cost function provides a solution to the deconvolution
problem. Moreover, when the process is parametric, it is shown that a
consistent estimator of the parameter can be obtained by minimizing an
empirical criterion. The estimation accuracy is shown to depend on the tail
behavior of the inverse system, which in many cases decays exponentially
as the sample size grows. Special consideration is given to applications in
the equalization of digital communications systems.

1. Introduction. Let us consider the linear process {Y},} as defined by

(1) Y, = Z 5; X _;.
j=—w

In this expression, .¥:= {s,} is an unknown deterministic sequence or a
linear time-invariant system and {X,} is the system’s input consisting of
unobservable independent random variables. The blind deconvolution prob-
lem in general is to simultaneously estimate the system . and its input {X,}
from the observed process {Y,} alone. Throughout the paper, we assume that
7 satisfies the following conditions:

C1. The inverse of #, denoted by ¥~ ! := {s; !}, exists so that Ls;spl; = 8y,
where 6, = 0 for £ # 0 and §, = 1.

C2. Both & and ! are stable, that is, {s,},{s; !} € [;, where [, is the set
of all absolutely summable sequences.

Several methods exist in the literature for blind deconvolution. In particu-
lar, the classical technique of linear prediction can be employed if .% is
minimum phase and {X,} is stationary [e.g., Brockwell and Davis (1991)]. For
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nonminimum phase systems, some procedures are also available that utilize
higher-order moments (cumulants, polyspectra, etc.) of the observed data to
estimate the phase information that cannot be recovered from the second-
order moments [e.g., Benveniste, Goursat and Ruget (1980), Donoho (1981),
Lii and Rosenblatt (1982), Giannakis and Mendel (1989), Cheng (1990),
Shalvi and Weinstein (1990)]. These procedures usually assume that the X,
are i.i.d. or higher-order stationary, and many of them require the moments
of {X,} to be available.

Although the blind deconvolution problem can be encountered in a variety
of engineering and scientific applications, the present paper focuses on a
special problem of blind deconvolution in which {X,} is known a priori to be a
multilevel random sequence that takes on values in a common finite alpha-
betical set. This problem stems from an application in digital communications
[e.g., Feher (1987)], where {X,} stands for the transmitted digital signal, .%*
for the linear system that characterizes the distortion introduced by the
communication channel (e.g., telephone lines) and {Y,} for the signal observed
at the receiver. The problem is also known as blind equalization of communi-
cation channels, especially for on-line implementation [e.g., Shalvi and Wein-
stein (1990)].

For the simplest case of binary inputs and real systems, a blind deconvolu-
tion method was recently proposed by the author [Li (1992)]. This method is
able to handle nonminimum phase systems and nonstationary inputs, with-
out utilizing any distributional information of {X,} other than binariness and
independence. Furthermore, if . is a parametric system that can be charac-
terized by a finite dimensional parameter, the proposed method leads to a
consistent estimator for the parameter on the basis of a finite number of
observations, and when .% is an AR system in particular, it was shown [Li
(1993a)] that the true parameter values can be obtained without error, at
least with probability tending to unity, as the data length increases. All these
results are generalized and extended in this paper to real- and complex-val-
ued multilevel random sequences as well as to real- and complex-valued
linear time-invariant systems.

In addition, the present paper also investigates the issue of estimation
accuracy for parametric systems under some more general conditions. It is
shown in particular that the estimation error for a parametric system de-
pends on the tail behavior of the true inverse system which in many cases
decays exponentially as the data length increases. This confirms, from a
different perspective, the recent results of Davis and Rosenblatt (1991),
claiming that a “super-efficiency”—a convergence rate higher than the usual
reciprocal of square root of the sample size—can be achieved for system
estimation if the distribution of the input sequence possesses singularities.

Following the same ideas as in the binary case [Li (1992)], we apply a
linear filter #:= {h,} to the observed process {Y,} and obtain the output

o

(2) Zk = Z ijk—j'

j= — 0
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Let {¢,} be the impulse response of the cascaded system 7 := #* %, namely,

[«

tk = Z h jsk —j
j= —
Then the output sequence {Z,} can be written as a convolution of {X,} with
{t,}, that is,

Jj=—®
Thus the deconvolution problem can be solved by seeking a filter Z € [, so
that t, = r§,_g for some r # 0 and K. If this can be done, one would obtain

(4) h,=rs;ly and Z, =rX,_x forall k,

which simply means that # is identical to ™! and {Z,} to {X,}, except for a
possible multiplier r» and a possible shift K. Therefore, the objective of blind
deconvolution is to find such a filter on the basis of {Y,} and partial statistical
information of {X,}.

2. General results. In this section, a general situation is considered
where the knowledge about {X,} is limited to the cardinality of its common
alphabet. The main results are stated separately for real and complex sys-
tems. In both cases, stationarity is not a requirement, so that the marginal
distribution of X, may depend on k and could even be unknown. This
relaxed requirement on {X,} is one of the features that distinguish the
present method from many others, and its impact on deconvolution results
can be found in Li (1993b).

2.1. Real systems. Consider the case where both {X,} and {s,} are real-
valued. Suppose that {X,} is a multilevel sequence, taking on discrete values
in a finite real alphabet A = {a(u), u € S,}, where the a(u) are distinct real
numbers and S, is a finite set of integers. The cardinality of A, denoted by
|A|, is defined as the number of elements in A. It is always assumed in the
sequel that 0 € S, and |A| > 2. It is further assumed that A satisfies the
following regularity condition that can be easily satisfied by many signal
constellations in digital communications systems [e.g., Korn (1985)].

DEFINITION 1. A real alphabet A = {a(u), u € S,} is said to be regular if
there exists a real number y, > 0 such that
(5) a(u) =a(0) + yu YVues§,,

namely, if A is a finite subset of the lattice a(0) + y,Z, where Z is the set of
all integers.

For any real alphabet C = {c(u), u € S}, let M(C;p) denote the probabil-
ity distribution of a real-valued multilevel random variable X for which
p = {p(w),u € S;} and p(u) = pr{X = c(w)}. As a convention, once the nota-
tion M(C;p) is employed, it always implies that p(u) > 0 for all u € S,
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(symbolically denoted by p > 0) and L p(u) = 1. The shorthand notation
P = ¢ is also used to represent p(u) > ¢, V u € S.. Note that if C is regular,
M(C; p) is known as the lattice distribution [Feller (1971)].

With this notation, one can write X, ~ M(A;p,) for some p, = {p,(u),
u € S,}, where the p, are assumed to be unknown functions of k. To further
generalize the situation, the alphabet A is assumed unknown except for its
regularity and its cardinality |A|. Under these mild conditions, the following
results can be obtained.

THEOREM 1. Let the real-valued random sequence {X,} be independently
distributed according to X, ~ M(A;p,) for all k, where A is regular and
P = & for some &> 0 and for all k. If a real-valued filter # € 1, with # + 0
can be found such that a subsequence of {Z,} converges in distribution to
M(B; q) for some regular B with B| < |A|, then there exist an integer K and a
real number r # 0 such that t, = rd,_g.

PRrROOF. Since B is regular, one can write B = {6(v), v € Sp} with b(v) =
b(0) + ygv for all v € Sg. Let ,(A) and ¢,(A) be the characteristic functions
of X, and Z,, respectively, that is, ,()) = E{exp(iX,\)} and ¢,()) =
Efexp(iZ, M)}. Then the assumption that X, ~ M(A;p,) leads to ¢,(A) =
L p,(w) exp{ia(u) A}. For notational simplicity, let the convergent subsequence
in the theorem be denoted by {Z,} itself. Then the continuity theorem of
characteristic functions guarantees that

(6) lim ¢,(X) = #(2) = La(v)exp(ib(v) A}

for any A, where q = {q(v), v € Sg}. On the other hand, since # € [, and thus
g ={t,} € 1, the infinite sum in (3) converges in mean square. Using the
continuity theorem along with the independence of {X,}, one further obtains
¢, (V) =TI, _(¢;A) for all & and A, so that (6) becomes

@) ,}1_1)1010 nlﬁk—j(tj)‘) = ¢(A).

Now, it is crucial to note that [¢(Ay)l = 1 with A, :== 27/, as ensured by
the regularity of B. This, combined with (7), implies that

®) Jim Tl (t00)] = 1

Since |¢,_ (M| < 1 for all , j and A, then, for any fixed j, the product on the
left-hand side of (8) can be bounded above by w), = |,_;(¢;A,)l. Moreover, for
any fixed j, the bounded sequence {p,_ j} contains convergent subsequences.
Therefore, with j being fixed, one can assume for simplicity that {p,_} itself
is convergent and p,_; — p == {p(w), u € S,}. Since p, > £ > 0 for all &, it

.follows that p(u) > 0 for all u € S, and X p(u) = 1. This, coupled with (8),
implies that

(9) lim w, = [W(A)] = 1,

where () is the characteristic function of M(C;p) with c(u) = a(w)t;. Since
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[ (M) < 1 for any A, it follows from (9) that |¢(Ay)| = 1. Invoking Lemma 2
with u, = 0 proves that there exist integers n J(u) such that n(u) =
(va/7vp)ut; for all u € S, and all j, implying that ¢; = (yg/ )1, (u)/u for all
uesS, w1th u # 0. Therefore, by fixing u; € S, Wlth U, #* 0 one obtains
= Bn;(u,) for all j, where B = (yz/v4)/u,. Since I € [, the integer se-
quence {n (1)} contains at most a finite number of nonzero elements, and so
does the sequence {¢;}.
To proceed with the proof, let J be the collection of j for which tJ # 0. Then
J is a finite set of integers, and thus on the left-hand side of (7) is actually a
finite product for j € J. Since for each j € J the bounded sequence {p,__;} has
convergent subsequences and J is a finite set, there must be a single
subsequence of k that converges for all j € J. Assume, without loss of
generality, that p,_; = q; = {g;(w), u € S} for all j € J. Then it follows
from (7) that

(10) Y q(w)exp{ia(w) A} = &(A),

where w = {u;, j € J} with u; € §,, a(w) = La(uyt; and g(w) = l_IqJ(u )
> 0. Since Zq(w) =1, the functlon on the left-hand side of (10) is the
characteristic function of a discrete random variable taking on values in the
alphabet {a(w)}, whereas the function ¢(A), on the right-hand side, is the
characteristic function of a B-valued random variable. According to the
uniqueness theorem of characteristic functions, these two random variables
must have the same distribution, and hence {a(w)} = B. Furthermore, for any
given k, k' € J with & # k', consider a subset of {a(w)} corresponding to a
special choice of w for which u, = u, u,, = v’ and u; = 0 for j # k, k'. In this
case, a(w) can be written as a(w)t, + a(u')t,. + ¢, where ¢ = a(0)Z; .} 4t
and hence {a(w)t, + a(u)t,. + c: u,u’ € S,} € B. By Lemma 1, ¢, and ¢,
cannot both be nonzero. This, together with the fact that 7 # 0, ensures the
existence of an integer K such that ¢, = 0 for all £ # K and r := tx # 0. The
proof is thus complete. O

REMARK 1. Since the p, may depend on % and hence the X, may have
different marginal distributions, Theorem 1 only requires that the X, be
independent and have a common regular alphabet. In this sense, the theorem
holds for nonstationary multilevel random sequences. Examples can be found
in Li (1993b) that demonstrate the advantages of this method over some
existing procedures in dealing with nonstationary inputs.

REMARK 2. In the special case where some k can be found such that
Z, ~ M(B;q), Theorem 1 remains valid without assuming p, > & > 0 for all
“k, since, in this case, it is no longer necessary to consider convergent
subsequences of {p,_;} in the proof. The theorem thus reveals a characteriza-
tion property of multllevel random variables: If a nontrivial linear combina-
tion of infinitely many independent multilevel random variables with a com-
mon regular alphabet A is also regular with an alphabet B that satisfies



DECONVOLUTION AND SYSTEM IDENTIFICATION 695

B| < |A|, then there must be one and only one nonzero coefficient in the
combination.

2.2. Complex systems. Consider the case of complex-valued input X, =
X + iX] and assume that . = {s,} and # = {h,} are also complex-valued so
that ¢, can be written as ¢, = ¢F + i¢/. In this case, one obtains Z, = ZF + iZ]
with
(11) zf= Y (¢fXE; -¢/X[ ;) and Z{= ¥ (¢/X7;+t}X] ).

j=-= j=-
Let A = {a(u,v), (u,v) € S,} be the complex alphabet of X,, where the
a(u, v) are distinct complex numbers and S, is a finite set of integer pairs
(u, v) that includes the pair (u, v) = (0, 0). As in the case of real systems, it is
assumed that |A| > 2 and that A satisfies the following regularity condition.
[Examples of regular complex alphabet in digital communications can be
found in, e.g., Korn (1985).]

DEFINITION 2. A complex alphabet A is said to be regular if there exist
real numbers v > 0 and vy, > 0 such that

(12) a(u,v) —a(0,0) = yfu + iylv V(u,v) €8y,

namely, if A is a finite subset of the two-dimensional lattice (ap + BrZ) +

The distribution of a multilevel random variable X = X, + iX; with alpha-
bet C = {c(u,v), (u,v) € S;} is denoted by M(C;p), where p = {p(u,v),
(u,v) € S¢}, p(u,v) = pr{Xy = cxu,v), X; = ¢;(u,v)} and c(u,v) = cx(u,v)
+ ic;(u,v). Assume that p(u,v) >0, V (x,v) €S, and Ip(u,v) =1
Equipped with these assumptions, the following theorem extends the results
in Theorem 1 to the complex case.

THEOREM 2. Let the complex-valued random sequence {X,} be indepen-
dently distributed with X, ~ M(A;p,) for all k, where A is regular and
P, = & > 0 for all k. If there exists a complex-valued filter 7 € 1, with # + 0
such that a subsequence of {Z,} converges in distribution to M(B;q), where B
is regular with B| < |A|, then (4) holds for an integer K and a complex number
r+0.

PROOF. As in the proof of Theorem 1, it is convenient to assume that {Z,}
itself converges weakly to M(B;q), where B = {b( u, v), (u, v) € Sz} and
q = {g(u, v), (u, v) € Sz}. Due to (11) and the independence of {(Xf, X/)},
the characteristic function ¢,(Ag, A;) of Z, can be written as

(13) ¢k(AR’ AI) = Hd’k—j(th)‘R + thAI’ thAI - thAR)7

where ¢,(Ag, A;) is the characteristic function of X,. The convergence of
{Z,}) implies that ¢,(Ag, A;) = d(Ag, A)) = Lq(u, v) explibp(u, vIA; +
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ib;(u, v)A;} for all A, and A; and the regularity of B further implies that
|p(A%, 0 = |0, AD| = 1 with A} = 27/yF and A} :=2m/y{. Combining
these results leads to

(14)  lim TT[w (%, —¢/2%)] = lim TT[wn ()20, £/49)] = 1.

For any given j, assume p,_; - p. Then, by the same argument as in the
proof of Theorem 1, it can be shown from (14) that |¢r(A%)] = [¢;(AD)] = 1,
where z(\) and ;(A) are the characteristic functions of M(Cp;p) and
M(C;; p), respectively, with Cp = {az(u, v)th — a/(u, v)th} and C;:=
{ag(u, v)tf + a;(u, v)tf}. By Lemma 2, there must be integers m(u,v) and
nj(u,v) such that

m;(u,v) = (’yARtJRu - 'yf{tfv)/'yée and
nj(u’v) = ('YARthu + ’YAItJRv)/’YB{

for all (u,v) €S, and for all j. Moreover, for any fixed (u,v) € S,, the
integer sequences {m(u,v)} and {n(u,v)} are absolutely summable, so that
the set J = {j: m3(uy,vy) + n?(uy, vy) > 0} is finite for any fixed (1, vo) € Sy
with u2 + vZ > 0. On the other hand, solving (15) for ¢} and ¢/ yields
tf = m(uy, vo)ag + njug, v9)Br and &/ = myu,, vo)ay + nug, vo)By,
where “ap = y{yFue/o, Bp = ViYsve/0, @ = —YYEVe/O, Br =
vEyiu,/o and o= (yfuy)? + (y{vy)®. This, combined with (15), implies
that J is identical to the collection of j for which ¢; # 0, so the product in (13)
can be considered only for j € J. Assuming p,_; = q; = {g;(&,v), (1, v) € S,}
for all j € J leads to

(16) Y q(w)exp{iag(W)Ag + ia; (W)A;} = ¢(Ag, Ar),

where W = {(uj’ vj)’ j [ J}, (uJ, vj) e SA’ aR(W) = E{aR(uJ’ vJ)tJR —
aI(uj’ vj)tjl}’ aI(w) = Z{aR(uJ., vj)tjl + al(uj’ vj)th} and q(w) = HQj(uj, Uj) >
0. The rest of the proof is analogous to that of Theorem 1. O

(15)

REMARK 3. In addition to Remarks 1 and 2, one should also note that for
complex systems the undetermined multiplier r in Theorem 2 could be a
complex number. This means that in addition to the scale and shift ambigui-
ties, as in Theorem 1, it is also possible that the deconvolution results be
subject to an unknown rotation. Because of the regularity requirement on B,
however, the number of possible angles of rotation is finite and limited to
those that yield regular alphabets.

3. Applications. In this section, the general results of deconvolution are
+ applied to two special cases of practical interest. The first case, typical in
digital communications, assumes that the alphabet A is completely known.
With this assumption, the problem is simplified to that of minimizing a cost
function that measures the deviation of a random sequence from being
A-valued. The second case further assumes that the system % is parametric
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(e.g., ARMA). In this case, an empirical criterion is designed to produce a
consistent estimator for the parameter. It turns out that in many situations
the convergence rate of the estimator can be much higher than the usual
reciprocal of square root of the sample size, thanks to the utilization of the
discreteness in the input distribution.

To remove the ambiguity of r in the previous theorems, assume in the
sequel that the value of Ls, is available and nonzero. Without loss of
generality, let ©s, = 1, and denote by [? the totality of absolutely summable
sequences that possess this property.

3.1. Case of known alphabet. When A is known and Ys, = 1, one can
introduce a “cost function” J(#) so that the deconvolution problem becomes a
problem of minimizing J(#) with respect to .# € [?. For brevity, let A = {a(u),
u© € S,} be used to represent both real and complex alphabet. With this
notation, one can define

(17) g(2) =T11Z - a(w)|* with L(Z) = E{g(Z2)},

where the product is over u € S, and Z is a random variable of finite
moments up to the order 2|A| It is evident that L(Z) > 0 for any Z and
L(Z) = 0 if and only if Z is a B-valued random variable for some B C A. A
cost function can be defined by

(1) J@#) = _inf L(Z(#)),

where Z,(%) is given by (2) and written explicitly as being a function of %
Clearly, J(#) attains its minimum value zero with #=.%"! (or any shifted
version of .~ 1) since L(Z,(% ') = L(X,,) = O for all k. The converse state-
ment is guaranteed by the following theorem that extends some earlier
results for binary sequences [Li (1992)].

THEOREM 3. Let {X,} be a real-valued (or complex-valued) independent
random sequence satisfying the conditions in Theorem 1 (Theorem 2). Assume
in addition that A is known and Ls, = 1. If there exists a real (complex)
filter # € 1Y such that J(#) < J(#') for any real (complex) #' € 1?, then (4)
holds with r = 1 and some integer K. An equivalent requirement on # € 19 is
that J(7) = 0.

Proor. The equivalence is trivial. To prove the rest of the assertion, it
suffices to note that if J(#) = 0, one can always find, by (18), a subsequence
of {L(Z,)}, denoted by {L(Z,)} itself for simplicity, that converges to zero,
where Z, = Z,(#). Using Chebyshev’s inequality, it is easy to show that
g(Z,) —»p 0. Further, since {Z,} is almost surely (and hence stochastically)
bounded, one can always find a subsequence from {Z,} that converges weakly
to a random variable [Feller (1971), Theorem 1, page 267]. Denoting the
convergent subsequence by {Z,} itself for brevity and its limit by Z, one
obtains Z, — Z in distribution. This in turn implies that g(Z,) - g(Z) and
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hence g(Z) = 0, in distribution. Since L(Z) = E{g(Z)} = 0, then Z must be a
B-valued random variable for some B C A. The proof is complete upon
invoking Lemma 3. O

REMARK 4. If A is not rotation-invariant, that is, if 7A = A with |r| =1
implies r = 1, then the same result in Theorem 3 can be obtained without
assuming s, = 1. In this case, it suffices to search for # # 0 in [, (not in 1?)
that minimizes J(Z).

3.2. Case of parametric systems. Suppose .¥:=.10) is a parametric sys-
tem characterized by a real-valued parameter vector 6 == [6,,..., 6,,17. Given
a finite time series {Y,, k=0, + 1,..., + 2n}, the deconvolution problem
becomes the estimation of the true value of 6, denoted by 6*, that generates
the Y, and the reconstruction of {X,} using the estimated system.

For simplicity, the parameter 6 is constrained in a neighborhood @ = {0:
16 — 6%l < p} of the true value 6*. Assume further that S16) satisfies the
following conditions:

C3. The system is normalized so that (8) € I{ for all 6 € ®, and the
parameterization is unique so that s,() =s,_x(6') for all & implies
K=0and 6= 6"

C4. The series Ll|s; '(8)| converges uniformly in 6 € ©.

C5. The sequence .~ '(8) = {s; ()} has continuous and absolutely sum-
mable derivatives up to the third order.

C6. The sequences ﬂp?‘l(()*) (p=1,...,m) are linearly independent,
where J, stands for the partial differentiation with respect to 6,.

Under these conditions, 8* can be estimated by minimizing the empirical
criterion

n

> g(Zk(o))

J =
A(0) 2n+1,7~,

with respect to 6, where g(-) is given by (17) and Z,(0) =X _,,5;2(0)Y;.
Note that {Z,(6)} depends solely on the observed time series {Y,, £ =0, +
1,...,+ 2n}.

Denote by §, the minimizer of /,(8) in a closed neighborhood ®, C @ of

0*, that is, ,
(19) 6, = argmin{jn(o): 0e @0}.

The existence of én is ensured by the fact that J,(6) is continuous in 6. The
computation of 6, usually relies upon solving the system of (nonlinear)
. equations

(20) 9,J,(0)=0, p=1,...,m,

by, for example, Newton—-Raphson-type algorithms. Asymptotic behavior of @,,
as an estimator of 8* can be summarized in the following theorem.



DECONVOLUTION AND SYSTEM IDENTIFICATION 699

THEOREM 4. Suppose that the conditions in Theorem 3 and the additional
assumptions C3-C6 are satisfied. Then the estimator 6, in (19) has the
following properties.

(i) There exists a neighborhood ©, = {0: 1|6 — 6*|| < po} in which 0,, is, with
probability tending to unity as n — «, the unique minimizer of J .(0) and
the unique solution to (20). It also converges to 6* in probability.

(i) If {X,} is stationary;, then 0 is almost surely the unique solution to (20)
in O, for sufficiently large n and converges to 0™ almost surely as n — .
(iii) There exists a constant ¢ > 0 such that

(21) 16, — 6"l <e X lsi " (%)

|k|>n

with probability tending to unity as n — « (or, in the stationary case, almost
surely for sufficiently large n).

ProoF. The proof of (i) and (ii) is omitted since it closely follows the lines
of Lehmann [(1983), Chapter 6] for maximum likelihood estimators and of the
proof of Theorem 3 in Li (1992). The following facts are found to be helpful to
note:

(a) The difference between o/, (6) and oJ,(6) tends to zero almost surely up
to the second denvatlves.

(®) 4, J,(0%) =

© The th_lrd der1vat1ves of J .(6) are bounded.

(d) As ensured by Lemma 4(111) the Hessian matrix of ,(0) is uniformly
positive definite in a suitable neighborhood ®, € 0.

(e) The consistency is ensured by Lemma 4(i) and the fact that oJ (0 ) - 0.

To prove part (iii) of the theorem, it is sufficient to consider at 6* the
second-order Taylor expansion of the gradient vector, denoted by V.J .(0), of
J ,(8). Since Ve (0 ) =0 and 0 — 0*, as guaranteed by parts (i) and (i) of
the theorem, it is easy to show that

(22) 3.(6, — 0%) = —VJ,(6%),

where i is an m-by-m matrix such that i -3, -p Owith 3, =0, + ®,
and &, =[¢,, ] is an m-by-m matrix with ¢p q deﬁned by (26) in Sectlon 4
To evaluate VJ (0%, let f(Z) == T{Z — a(u)} and W =f (Zk(o*)) 9, Zk(o*)
Then it follows that

5, 9,(0%) - W, F(2(09) ~ F(Zu(0))],

where Z,(6) is defined by (24) in Section 4. Due to the boundedness of Z Z,(6),
) Zk(o) and hence f’(Zk(O)) one can find constants ¢; > 0 and ¢, > 0 such
that W,,| <c, and |F(Z,(6%) — A(Z,(69)] < ¢,]Z,(6%) — Z,(6%) almost
surely for all n, & and p. The boundedness of Y, further implies the
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existence of a constant c; > 0 such that

12,(0%) — Z,(6%) < c; X Isi (6% <c5 X Is;(6%)

|lj—kI>2n lil>n

almost surely for any |k| < n and for all n. Combining these results yields

(23) IV, (6¥) < ¢, Y Is;y(6*)] almost surely for all n,

|k|>n

where c, = 2c¢;c,c3. On the other hand, since Lemma 4(iii) guarantees that
12,06, — 09Il = Ayll6, — 6% with probability tending to unity and since
I3, — 3|l »p 0, it follows from (22) that [|V/,(6) = A,[18, — 6*| with proba-
bility tending to unity for any 0 < A, < A,. This, combined with (23), yields
(21) with ¢ = ¢,/A;. A similar argument applies to the stationary case. O

_REMARK 5. Part (iii) of the theorem claims that the estimation error
6, — 6% depends on the tail of the true inverse system .#~'(6*). When
A6%) is an ARMA filter, for example, the right-hand side of (21) approaches
zero exponentially as n — =, so that the estimation error becomes O(") for
some 0 < o < 1. Recall that a typical error of maximum likelihood estimation
is only O(n~1/2). The higher-order accuracy, or “super-efficiency” as denoted
by Davis and Rosenblatt (1991), of the estimator 6, is entirely due to the
utilization of the discreteness of {X,} in the method. When S(6*) is an AR
system, in particular, the right-hand side of (21) vanishes for large r, leading
to the conclusion that pr{, = 6*} > 1 as n — « [see also Li (1993a) for the
binary case].

4. Lemmas.

LEMMA 1. Let B and C = {c(u), u € S¢} be finite real (complex) alpha-
bets with |C| > B| > 2. If there exist real (complex) numbers t and t' such
that {c(w)t + c(u)t’' + c: u,u’ € Sy} € B for some constant c, it is impossible
for both t and t' to be nonzero.

PROOF. By contradiction. Let both ¢ and ¢’ be nonzero and let C(u) =
{c(u) t + c(u)t’ + c: u' € S} for any fixed u. Then C(x) € B for any u € S¢.
Since |C(x)| = |C| and B| < |C|, then C(z) = B for any u € S.. In particular,
for fixed u,,u, € S; with u, # u,, one obtains C(z,;) = C(u,) and hence
c(ut + cwt’ = c(uy)t + c(v(u))t’ for all u € S, where {v(w), u € S;}is a
permutation of S;. This implies that (c(v(w)) — c(w)t’ = (c(u,) — c(uy))t for
all u so that c(v(w) =c(u) + ¢, for all u € S;, where c;:=(c(u,)—
c(u,)t/t'. Adding up the quantities on each side of the expression gives

‘Te(v(w) = Ze(u) + ICley, which in turn yields ¢, = 0 and hence c(u;) = c(u,).
This contradicts the assumption that u; # u,. O

LEMMA 2. Let ¢()) be the characteristic function of M(C;p), where C =
{c(uw), u € S.} is a real alphabet. If |y(Ay)l = 1 for some real number A, then
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for any u, € S there exist integers n(u) such that (c(u) — c(ug)A, = 27n(u)
forall u € S;.

Proor. The result is trivial if A, = 0. When A, # 0, since |¢(Ay)| =1,
there exists a real number 9 such that ¢(Ay) = exp(i®), where i == V- 1.
Applying Lemma 3 of Feller [(1971), pages 500-501] to the random variable
X — 9 with X ~ M(C;p) yields c(u) = 3 + m(u)n for all u € S, where the
m(u) are integers and n := 2m/A,. In particular, c(z,) = 9 + m(uy)n and
hence c(u) — c(uy) = (m(w) — m(uy))n for all u € S;. Taking n(w) = m(u)
— m(u,) completes the proof. O

LEMMA 3. Let {X,} be a real-valued (complex-valued) independent ran-
dom sequence satisfying the conditions in Theorem 1 (Theorem 2). Assume in
addition that A is known and Ls, = 1. If a real-valued (complex-valued)
filter #< 1% can be found such that a subsequence of {Z,} converges in
distribution to M(B; q) for some B C A, then (4) holds with r = 1 and some
integer K.

PrOOF. Since a subset of a regular alphabet is also regular, B C A implies
that B is regular with |B| < |A|. The assertion follows from Theorem 1 and
Theorem 2 along with the fact that r = £¢t, = (Ch,)Xs,) = 1. O

To investigate the asymptotic behavior of j,,(o), it is helpful to introduce

(24) Zy(0) = ¥ sil(0)Y,

j= —

By assumption C4, it is easy to show that 2k(0) converges to Z,(6) almost
surely and uniformly in both |k| <n and 6 € ©. This in turn implies that
J (0) — J(6) — 0 almost surely and uniformly in 6, where J(0) = @2n +
1) 1yn_ _ng(Zk(O)) is the counterpart of o, (6) with Z,(6) in place of Z,(6).
The following lemma presents some properties of o, () that are found to be
useful in the proof of Theorem 4:

LEMMA 4. Suppose that the conditions in Lemma 3 and the assumptions
C3-C6 are satisfied. Then J,(6) has the following properties.

(i) Asn — o sup{lJ~ 9) — E{j (8)}: 6 € ®} > 0 in probability. The limit
exists almost surely if {X,} is stationary, that is, p, = p for all k.

(i) For any m > 0, there exists a constant o > 0 such that J (0) > o for
all 6 € Q, with probability tending to unity as n — », where Q ={0 e 0O:
o — 6% = 7).

(iii) Let A (0) be the smallest eigenvalue of the Hessian matrix of J,(6).
Then there exist constants Ay > 0 and p, > 0 such that A,(0) > A, for all
0 0, ={0:10— 0*| < p;} € O with probability tending to unity as n — .

If {X,} is stationary, (ii) and (iii) hold almost surely for sufficiently large n.
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Proor oF (i). It suffices to show that sup|l,(8)| > 0 in probability (or
almost surely), where

L) =557 Z zrorzie) - EZp(0)Zi(0)]

and p,q =0,1,...,|Al To this end, write I,(6) = L7 (8){ (W) =L, .p +
Yowepn = TH0) + Ty(0), where w = {i(1),...,i( p); j1),..., j(q),

1
L) = gy B L) - Ela )],

& (w) = H X iy U Xy jowy»

n L(u>(0)l_1 (v)(e) 8 (0) = Z Sjﬁl(o)skfj(O*)

u=1 Jj=—®

and D =Dy :={w: [i(w) <N, |j(v)I<N,V1<u<p,1<v<q}. For fixed
w, it is easy to show that E|{,(w)|®> = O(1/n) and hence {,(w) —, 0. Since
7,(6) is uniformly bounded, it follows that sup|T,(6)| =, 0 as n — = for any
ﬁxed N. This implies that

(25) lim lim sup|7Ty(0)| = 0 in probability.

N-ox n—-o© 9c®

'UH

Tw(0) :

Further, since | {,(w)] < ¢ for some constant ¢ > 0 and all n so that |T,(8)| <
en(0) =cX, . plt,(0)| for all n, and since cy(6) - 0 uniformly in 6 as
N — «, then

lim limsup sup|7,(0)l = 0 almost surely.

N-o» .0 g0
This, coupled with (25), proves sup|l,(8)| -, 0. If {X,} is (strictly) stationary,
so is {&,(w)}. By the strong ergodic theorem [Karlin and Taylor (1975)],
£,(w) — 0 a.s. so that (25) holds almost surely and sup|/,(6)| = 0 a.s. O

PROOF OF (ii). Let ,(0):=E{J (0)) =@n + 1)"'L}__ I1(Z,(60)). Then,
in the stationary case, (()) = L(Z,(6)) and the uniform convergence in part
(i) implies that 1nf{J (0) 0 Q } - inflL(Z,(0)): 0 Q } almost surely.
Since L(Z,(6)) is continuous in 6, the infimum of L(Zy(0)) can be attained by
some 6, € (), , and by Theorem 3, the minimum must be strictly positive. In
the nonstationary case, it suffices to show, according to part (i) of the lemma,
that there exists a constant o, > 0 such that J,(0) > o, for all € Q, and
for sufficiently large n. The assertion is valid, since otherwise one could find
0, € Q, and {k(N)} with £(N) - = as N — = such that L(Z, y,(6,)) — 0,
and this would lead to J(6,) = inf{L(Z,(6,))} = 0, which contradicts Theo-
rem 3. O

ProoF OF (iii). Let 3, =[g2 J,(6%)] be the Hess1an matrix of J,(6%).
Then it is easy to verify tha E =®, + &, where O, =[¢,,]is an Herml—
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tian matrix with

1
(26) ¢pq = Zn Z gpk qk> p,q=1,...,m,
k"—n

= f'(X,) 9,Z,(6*) and f(Z) = TH{Z — a(w)). In addition, since 32 ,(0)]

= E + O(ll6 — 6*|) almost surely and uniformly in 6, it suffices to show that
the smallest eigenvalue of ®,, denoted by A , is bounded below by a positive
constant. To this end, let tp = X(4,s; 1(9 Ds,_(0%) so that 3,Z,(6%) =
YtpjXi-j. For any complex-valued vector vy = [y ..., ¥,]7, consider
HE((I) )y=02n + 1)'122,_nElUk| where Uk =L 1Y€ = XV, V,
=L7X,_;jand 7, := L7 lyp i Slnce (X > a for some constant « > 0

and for all &, then EIUkI > a var(V,) = aZ:ITjI var( X, _j). Moreover, since
p,>¢e>0, it follows that var(X,) > B> 0 for some B and all £ so that
EIU,‘,,I2 > af ZIT |2, It can also be shown under assumption C6 that Z|TJ|2 is a
positive deﬁnlte quadratic function of y [Li (1992)] so that }:IT 12 > )11”’)/” for
some constant A; > 0 and for all y. Combining these results y1e1ds yHE(®))y
> A, for all y with |lyll = 1, where A, == aBA; > 0. Since ¢, — E(®,) -, 0
(or almost surely in the stationary case), the assertion follows from the
identity A, = y7®,y, = yH{®, — E(® )}y, + vFE(®,)y,, where vy, is the
unit-norm eigenvector associated with A,. O
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