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EXACT ASYMPTOTICS FOR SOME PROBABILITY
DISTRIBUTIONS ON COMPACT MANIFOLDS!

By DoNALD ST. P. RICHARDS
University of Virginia

Let M be a compact, smooth, orientable manifold without boundary,
and let f: M — R be a smooth function. Let dm be a volume form on M
with total volume 1, and denote by X the corresponding random variable.
Using a theorem of Kirwan, we obtain necessary conditions under which
the method of stationary phase returns an exact evaluation of the charac-
teristic function of f(X). As an application to the Langevin distribution on
the sphere S?~ !, we deduce that the method of stationary phase provides
an exact evaluation of the normalizing constant for that distribution
when, and only when, d is odd.

1. Introduction. Let M be a compact, smooth, orientable manifold
without boundary, and let dm be a given volume form on M. We assume that
dm has a total volume 1 so that we may view dm as a probability distribution
on M; we then denote by X the corresponding random variable. Given a
smooth (i.e., C*) function f: M — R, we consider the problem of deriving
asymptotic expansions for the characteristic function of f(X),

(1) f(¢) = /Mexp(itf(s)) dm(s),

as t — oo,

An example of this problem arises when M = S¢~ !, the unit sphere in R¢;
dm(s) is the normalized surface measure on S?!; and f(s) = (v,s),s €
S?~1 for some fixed » € S¢~1, In this case it is well known that (1) may be
written in terms of the classical Bessel functions. Another example stems
from the choice M = O(n), the group of orthogonal n X n matrices; dm(s) is
the normalized Haar measure on O(n); and f(s) =trUsVs™ ! s e O(n),
where U and V are n X n, real symmetric matrices. In this case f(¢) =
oFo(itU, V), where ( F, is a hypergeometric function of two matrix arguments
[Muirhead (1982), page 262].

One procedure used to derive asymptotic expansions of (1) is the method of
stationary phase [Barndorff-Nielsen and Cox (1989); Hormander (1983)] (cf.
Section 3 below). This method requires that we locate the critical points of the
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function f, and then we approximate (1) by certain sums depending on the
values of f and its higher derivatives at the critical points. (This should be
contrasted with Laplace’s method [Muirhead (1982), page 391], which pro-
vides asymptotic expansions for integrals of certain real-valued integrands.)

Here, we consider the problem of finding random variables X for which the
method of stationary phase produces the exact value of the characteristic
function (1). Our interest in this problem began on reading the result of
Daniels (1980) [cf. Blasild and Jensen (1985)] that the saddlepoint approxi-
mation for the mean of a random sample is exact if and only if the data follow
either a normal, gamma or inverse Gaussian distribution. On reading the
results of Daniels and of Blesild and Jensen, we were motivated to search for
exactness results for other approximation methods used in statistical theory.

2. Preliminaries. Consider the integral on the sphere S? coordinatized
by standard Euler angles (6, ¢),

(exp(it) — exp(—it))
2it ’

1 coq .m . .
(2) Ej(‘) foexp(ztcose)smededqﬁ—

where ¢ # 0. This may be viewed as calculating the Fourier transform of the
random variable cos ®, where the pair (®,®) parametrizes the uniform
distribution on S2. For later purposes we note also that (2), with ¢ replaced
by t/i, represents an evaluation of the normalizing constant for the Fisher
distribution [Watson (1983)] on S2.

The right-hand side of (2) is a sum of two terms, each term arising from a
critical point of the function cos 0 (at the two critical points § = 0 and #). It
may be checked that the method of stationary phase, applied to the left-hand
side of (2), produces the right-hand side as the final value. Therefore, (2)
provides an example where the method of stationary phase obtains an exact
asymptotic expansion. This example is a simple instance of a phenomenon
treated by Duistermaat and Heckman (1982); those authors characterized, in
a more general context than ours, a class of integrals such that, when the
method of stationary phase is applied to those integrals, the remainder terms
are identically zero. As an application of the results of Duistermaat and
Heckman we also find that, in the second example above, where f(s) =
tr UsVs™!, s € O(n), the method of stationary phase does not return the
exact result. '

To describe explicitly the phenomenon of exact stationary phase, we need
some preliminaries on manifolds and differential forms, all of which are
provided by Muirhead (1982) or Wijsman (1990), and some topological results
which we have abstracted from Milnor (1963).

As before, let M be an n-dimensional, smooth, orientable, compact mani-
fold without boundary, and with a given volume form dm. For 0 < p < n, let
AP (M) denote the space of smooth p-forms on M. Thus, in a system of local
coordinates s = (sy,...,s,) on M, each w € AP(M) is a differential form of
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the type
o= Y hihiz’w,ip(sl,...,sn) als,-1 A A dsip,

where the h; ;, _;(s;,...,s,) are smooth functions of (s;,..., s,).

Let d: /\P (M ) > /\P”(M ) denote exterior dlfferentlatlon Wlth range
Ran, and kernel Ker,. Since d°d = 0, then it follows that Ran,_; C Ker,.
With A“1(M) = A 1 (M) = {0}, define the pth de Rham cohomology group
of M to be the quotient space H? = Ker »/Ran,_;, 0 <p <n. It may be
shown that H? is a finite-dimensional vector space, and the numbers bp =
d1m(H ), 0 <p <n, are called the Betti numbers of M. When M is a
compact Lie group or a homogeneous space (e.g., a sphere), more precise
information about the Betti numbers is given by Weyl (1946).

Let f: M — R be a smooth function. A point s € M is a critical point for f

if df(s) = 0; that is, in any local coordinate system (s, ..., s,) about s,
of af
—‘E(S)_ asn(s)—O.

A critical point s is called nondegenerate if the Hessian matrix H(s), with
(j, k)th entry 92f/ds ; 08y, 1s nonsingular. The index A(s) of a critical point s
is the number of negative eigenvalues of H(s).

A smooth function f: M — R is a Morse function if it has only a finite
number of critical points and each critical point is nondegenerate. We denote
by m,(f), 0 < p < n, the number of critical points of f with index p. It is
well known [Milnor (1963)] that the Betti numbers b, and the numbers
m,(f) satisfy the Morse inequalities

> (=) Pm,(f) > » (-1)*7"b,, O0<ks<n-1,
(3) - P

p=
= n—p = n—p

L (-D"m,(f)= X (-1D" b,

p=0 p=0

In the case when (3) consists entirely of equalities, the function f is called a

perfect Morse function [Kirwan (1987)].

3. The denouement. Suppose f: M — R is a nondegenerate Morse func-
tion with isolated critical points and distinct critical values. The stationary
phase approximation to the characteristic function (1) may be described as
follows [Hérmander (1983); Kirwan (1987)]. For any critical point s let

A, = X (it) Ve,
Jj=0

where the real constants @, ; depend on the function f and its higher
derivatives at the point s [Hérmander (1983), Section 7.7.5] and satisfy the
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following property: if A, ,(¢) is the kth partial sum of A, then, as ¢ — o,
jMexp(itf(s)) dm(s)

1) ~@nrr % exp(i[tf(S)+(n—2A(S))%])As,k(t)

s:df(s)=0
+ O(t_(n+2k)/2).

Suppose that for all critical points s and all suitably large ¢ the series A,
converges, say, to A (¢). The stationary phase approximation (4) is said to be
exact if the A (¢) satisfy

[Mexp(itf(s)) dm(s)
(5) = (2m)" e

x Y exp(i[tf(s) + (n—2)\(s))%])As(t).
s:df(s)=0
Then it is a remarkable theorem of Kirwan (1987) that if the stationary phase
approximation (4) is exact, then the following hold: (i) n is even; (ii) every
critical point of f has even index; and (iii) fis a perfect Morse function.

An interesting class of examples are those of the Langevin distributions
[Watson (1983)] which generalize the Fisher distribution to higher-dimen-
sional spheres. Here, for a given concentration parameter v > 0 and modal
direction vector v € S®”!, we have a probability density function,
c(y) texp(y(v, s)), s € S¢~1, relative to normalized surface measure dm(s)
on S% 1. Then the method of stationary phase may be applied to the integral

(6) c(iy) = [Sd_lexp(iy@, s)) dm(s)

to obtain an asymptotic approximation as y — . When d is odd it turns out
that stationary phase provides the exact result, generalizing the example
given in (2). .

An alternative method of deriving the exact approximation is as follows.
For even or odd d it follows from an invariance argument applied to (6) that
[Watson (1983), page 187]

rd/2 o
7/2T((d — 1)/2) [_fo(Wu)(l —u

When d is odd, we may expand the term (1 — ©?)?~3/2 by the binomial
theorem, and then c(iy) is obtained as a finite sum, generalizing the right-
hand side of (2). This finite sum is identical with the results produced by the
method of stationary phase. On the other hand, when d is even the method of
stationary phase does not provide the exact value of c(iy), as predicted by
Kirwan’s theorem. This proves that the function s — (»,s), s € S9! is a

c(iy) _ 2)(d—3)/2 du.
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perfect Morse function if and only if d is odd. In the special case d = 3, this
result simply means that the function (6, ¢) — cos 6 on S? is a perfect Morse
function. :

Very importantly, in the case of odd-dimensional spheres, Kirwan’s theo-
rem implies the following result.

PROPOSITION. Let the random variable X be uniformly distributed on the
unit sphere S¢~1, and let f(X) be a smooth, scalar-valued function of X. If d
is even, then the characteristic function of f(X) cannot be evaluated exactly by
the method of stationary phase.

As we have noted before, this result holds for any density function f with
distinct critical values. However, this result-remains valid [Kirwan (1987),
page 40, Remark (4)] if the critical values of f are not distinct.
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