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ADAPTIVE ROOT rn ESTIMATES OF INTEGRATED
SQUARED DENSITY DERIVATIVES!

By Tiee-JiaN WU

University of Houston

Based on a random sample of size n from an unknown density f on
the real line, the nonparametric estimation of 6, = [{f®(x)}?dx, k =
0,1,..., is considered. These functionals are important in a number of
contexts. The proposed estimates of 6, is constructed in the frequency
domain by using the sample characteristic function. It is known that the
sample characteristic function at high frequency is dominated by sample
variation and does not contain much information about f. Hence, the
variation of the estimate can be reduced by modifying the sample charac-
teristic function beyond some cutoff frequency. It is proposed to select
adaptively the cutoff frequency by a generalization of the (smoothed)
cross-validation. The exact convergence rate of the proposed estimate to 6,
is established. It depends solely on the smoothness of f. For sufficiently
smooth £, it is shown that the proposed estimate is asymptotically normal,
attains the optimal O,(n~'/%) rate and achieves the information bound.
Finally, to improve the performance of the proposed estimate at small to
moderately large n, two modifications are proposed. One modification is
for estimating 6,; it reduces bias of the estimate. The other modification is
for estimating 6,, £ > 1; it reduces sample variation of the estimate. In
simulation studies the superior performance of the proposed procedures is
clearly demonstrated.

1. Introduction and motivation. Let X,,..., X, be a random sample
from an unknown density f. Let us write

(1.1) 6= 0(f) = [ {(fP(x)f dx, k=012,

where f®* is the k-th derivative of f. Note that for smoother f we can
express 0, as

0 = (—1)" [ () f(x) dx.

These nonlinear functionals are of distinct interest from the point of view of
actual applications. For example, 6, appears in the asymptotic variance of
the Wilcoxon rank statistics and in the (Pitman) asymptotic relative efficiency
of the Wilcoxon rank test relative to the ¢-test. The functionals 6,, 6, and 6,
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appear in the asymptotically optimal bandwidth for histograms, frequency
polygons and kernel density estimates. Also, 6, has useful applications in
projection pursuit because 6, appears in the Friedman-Tukey projection
index, and log 6, is an upper bound for the Shannon negentropy [we have
E log f(X,) < log Ef(X;) = log 6, by Jensen’s inequality].

The nonparametric estimation of 6,, based on the observations X,,..., X,,
has been investigated by Hall and Marron (1987, 1991a), Bickel and Ritov
(1988) and Jones and Sheather (1991). Under suitable conditions, all of these
authors obtained asymptotically efficient estimates of 6, with the optimal
convergence rate OP(n‘l/ 2). This means that the mean squared error (MSE)
of the estimate is asymptotically equivalent to the following information
bound:

(2)  an [ (FO0(0) Fx) de = 02) = an” Var fO(X,)

as n — . Here and below a, ~ b, means a,b,' — 1. [See, e.g., Koshevnik
and Levit (1976), Ritov and Bickel (1990) and Donoho and Liu (1991) for
discussions on the information bound for nonparametric estimates of 6,.]

The estimates proposed by the above authors are kernel-based and are
variations of the estimates 6,(f, ,) or (— 1%/ f25(x) dF,(x), with fhow
being a kernel density estimate of f with kernel w and bandwidth A~ and F,
the empirical cdf associated with Xj,..., X,. Hall and Marron (1987, 1991a)
gave “diagonals-out (debiasing)” variations, whereas Jones and Sheather
(1991) gave a “diagonals-in” variation. Bickel and Ritov (1988) gave a varia-
tion which involved splitting the sample, using an estimated influence func-
tion and debiasing. For these estimates, the optimal bound (1.2) can be
attained by taking w to be a symmetric kernel of order [, with

(1.3) l>22(m+ a—-Fk),

and choosing % to be a nonrandom value satisfying

(1.4) hnl/@Gk+) 5 0 and hnpl/Wmre=k} o
if f has smoothness of order m + « that satisfies

(1.5) m+a> 2k + 47 ¢,

with ¢ =1 or 2 [here f has smoothness of order m + a means that f™
exists and is Lipschitz of order 0 < a < 1 over (-, ©)]. For example, ¢ = 2 in
Jones and Sheather (1991), and ¢ = 1 in both Hall and Marron (1991a) and
Bickel and Ritov (1988) [in fact, they pick A = n~2/@m+4e+ 1D which satisfies
(1.4)]. However, the optimal rate and bound (1.2) cannot be attained if { is not
high enough. In this case, Hall and Marron (1987) and Jones and Sheather
(1991) derived asymptotically optimal bandwidths (minimizing asymptotic
MSE), which depends on the unknown 6, and 6, ., .

The above results provide significant insight into the theoretical issue of
choosing kernel order and bandwidth. However, their applications require
detailed knowledge (at least, on the degree of smoothness) of the unknown f.
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Although in practice one can choose them subjectively, there is a great
demand for adaptive (data-driven) procedures. Some reasons for using adap-
tive procedures were given in Silverman (1986).

The purpose of this paper is to propose a kernel-based nonparametric
estimate of §, which involves using an infinite-order kernel and then select-
ing the bandwidth adaptively. Furthermore, to improve the performance of
the estimate at small to moderately large n, two modifications are also
proposed. One modification is for estimating 6,; it reduces bias of the
estimate. The other modification is for estimating 6,, & > 1; it reduces
sample variation of the estimate. The estimates will be constructed in the
frequency domain.

One reason for working with Fourier transforms is that the procedures can
be easily implemented in practice by taking fast Fourier transforms [cf.
Silverman (1982)]. Another reason for working with Fourier transforms is
technical. Since the present problem is estimating 6,, one need have no
qualms over using higher-order kernels in formulating kernel-based esti-
mates. In order to obtain asymptotically best estimates, one needs to take
inequality (1.3) into consideration. This leads to the choice of an infinite-order
kernel so that (1.3) is always satisfied. Among such kernels, we shall choose
the “sync kernel” K (x) = (7x) !sin x, —® < x < o, because of certain L2
optimality properties [cf. Davis (1975, 1977), Ibragimov and Khas'minski
(1982) and Hall and Marron (1988)]. Note that K, is not in L', and it is more
convenient to work with its L? Fourier transform G (A) =11 1)(N), —» <
A < oo, with I(-) denoting the indicator function. Here and below we use
¢, () = [* .exp(irx)g(x) dx to denote the Fourier transform of any g € L' U
2.

By Parseval’s formula and the fact that ld)f(k)()\)|2 = /\2k|¢f()\)|2, we can
express 0, as

(16) 6, =(27)" [_w|¢f<k,( NZda= (277)‘1]_00A2k|¢f()u)|2 dA.
Indeed, the set of conditions

{f® el nL? and fY e L
is absolutely continuous for all j = 0,1,...,2 — 1}

is sufficient for (1.6) to hold [cf. Hewitt and Stromberg (1969), pages 414-415].
Let f, denote the sync-kernel estimate of f with bandwidth A~!. On replac-
ing ¢(A) in (1.6) by the estimate ¢z(A) = ¢(NI_, ,,(A), where

n

(1.7) () =n"! ¥ exp(irX;), —w<A<o,
j=1
is the sample characteristic function, we obtain the family of estimates
(1.8) 6(8) = (2m) 7 [P RHEWIPdr, Ao
-A

The performance of the estimates depends crucially on how well the cutoff
frequency A (or, equivalently, the bandwidth A~!) can be selected.
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The notion of smoothness of f can be expressed in terms of the decay rate
of |¢,(M). Throughout the paper we assume the mild conditions given in
Condition (A).

ConpITION (A)  Relation (1.6) holds and, for some 0 < p < =, |A|”[¢(M)] =
0(1) as [A| — .

According to the earlier discussions, a proper cutoff A under conditions
analogous to (1.5) should satisfy a criterion analogous to (1.4) (with A = A~1).
An important implication here is that the choice of the cutoff A should
depend on k. It turns out that the adaptive A, [see (2.1)] we propose does
meet the criterion [see (2.10)]. When p > 2k + 1, (2.10) is analogous to (1.4)
with ¢ = 2 (see also Remark 2.2 and Lemma 2.2). Moreover, under Condition
(A) the estimate 6,(A,) is consistent for 6, if p > &k + 271, and is asymptoti-
cally optimal if p > 2k + 1 (see Theorem 2.1). Note that the condition
p > 2k + 1 is analogous to (1.5) but it is neither weaker nor stronger than
(1.5). For example, the Gamma(2k + 1 + §, B8) density, 0 < 6§ < 47!, 8> 0,
satisfies the condition p > 2k + 1 but not (1.5) since the order of smoothness
of such density is only 2k + 8. Thus, comparing with all the estimates
discussed earlier, the proposed adaptive estimate 6,(A,) has equally good
theoretical properties. B

The source of variation, for estimates using ¢(A), has been clearly pointed
out in the important works of Chiu (1991a, 1992). In fact, by noting that

(1.9) E{l¢(N)I* —n"} =n Y (n - 1)l (M)

and that ¢(A) at high frequency is dominated by sample variation and does
not contain much information about f, Chiu (1991a) suggested removing the
effect from @(A) at high frequency and proposed the family of estimates

(1.10) B,(A) = (27) " [_AAA4{|J>(A)|2 —n-1da, A>0,

to estimate 6,. The difference between the estimates (1.8) (with 2 = 2) and
(1.10) is that the latter does not include the nonstochastic diagonal “j = 1”
terms (bias) in the expansion |H(A)® = n‘zijZ,exp(i(Xj — X)), whereas
the former does. A practical advantage of using (1.8) is that it is always
positive; whereas (1.10) can be negative for some A and to ensure its
positivity, one has to choose small A which may cause underestimation
problems if |¢,(A)| does not decay nicely (this will be made clear below).
Indeed, the estimates (1.8), which we focus on in this paper, is the sync-kernel,
Fourier-domain version of the “diagonals-in” estimates of 6, proposed by
Jones and Sheather (1991), and the readers are referred to their work for
further insights on choosing “diagonals-in” over “diagonals-out.”

In the context of kernel density estimation, Chiu (1991a) suggested select-
ing the cutoff frequency, denoted by A, here, as the first (smallest positive) A
such that |$(A)|? = ¢/n for some constant ¢ > 1 [this ensures the positivity of
(1.10)]. However, this procedure works only when |$,(A)| never vanishes and
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decays nicely [see Chiu (1991a), Assumptions 1 and 2, which are much
stronger than our Condition (A)]. In order to overcome the difficulty, Chiu
(1992) suggested selecting the cutoff frequency as the minimizer of the
smoothed cross-validation score [SCV, which is a generalization of the least
squares cross-validation and was termed by Hall, Marron and Park (1992)],

(1.11) 27 SCVZ(A) = 4An " = [M1B(V)EdA, A >0;
—A

he also proposed a modification for reducing the chance of selecting a large
cutoff frequency. However, this procedure works well only when P (A) has
unbounded support and decays in a regular way [see Theorem 2 of Chiu
(1992)]. The A » We propose here is a modification as well as an adaptation of
that procedure. In this paper all the results are derived under Condition (A)
only. This condition is much weaker than those in Chiu (1992).

Recent results on nonparametric estimation of 6, based on observations
from a density supported in [0, 1] are given by Fan (1991), who dealt with a
white-noise model, and by Goldstein and Messer (1992) [their Example 2
provides discussions on the overlap of their approach with those in Hall and
Marron (1987) and Bickel and Ritov (1988)]. Additional results on nonpara-
metric estimation of 6, and related functionals are given by Schweder (1975),
Hasminskii and Ibragimov (1979) and van Es (1992).

In the beginning of Section 2, we describe a general procedure of selecting
the cutoff A » along with the proposed adaptive estimate. The rest of Section 2
is divided into three subsections. In Section 2.1 we explain the rationale in
detail. Lemma 2.1 gives an asymptotic representation of the MSE of the
proposed estimate. Remark 2.3 indicates the connection of our approach with
the one in Jones and Sheather (1991). Section 2.2 contains the main theoreti-
cal result (see Theorem 2.1). In Section 2.3, modification for improving the
finite-sample performance of the general procedure is considered. Two differ-
ent rules are suggested here; one for 2 = 0 and the other for £ > 1. This is
mainly due to the concern about the bias—variance trade-off. Bias reduction
appears more effective for £ = 0, while variance reduction is more effective
for £ > 1. In Section 3, extensive simulation studies are carried out and the
superior performance of the proposed procedures are clearly demonstrated.
Section 4 is devoted to proofs.

2. The proposed procedure and the theoretical results. The pro-
posed cutoff frequency A, is the minimizer of the smoothed cross-validation
score

SCV,(A) = 4A** Y (n + 1) "2k + 1) !

2.1
(2.1) — [P RHEWIEdr, Ao,
—A
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and the proposed estimate of 6, is [see (1.8)]
(2.2) 6i(Ay) = (2m) " f L AHBP .
[Al<A k

Note that, when % = 0, Ak and SCV,(A) are asymptotically equivalent to
those proposed in Chiu (1992) [see (1.11) above].

2.1. The rationale of the proposed procedures. We now explain the ratio-
nale of the above scheme. At first, one might attempt to find an estimate
which is unbiased, up to a constant shift, for the risk MSE ,(A) = E{6,(A) —
6,}> at every n and A, and then select the cutoff frequency adaptively by
minimizing the estimated risk. This scheme, unfortunately, is not feasible
(see Remark 2.1). The alternatives, which we shall consider here, are (i)
minimizing an unbiased estimate of a sharp upper bound on a suitable risk
and (ii) minimizing an unbiased estimate of a quantity whose minimization is
asymptotically (as n — ) equivalent to the minimization of MSE,(A). They
both lead to the minimization of the same score (2.1), as explained below.

For alternative (i) we set r,(A) = E[{6,(A)}"/% — 6}/2]2, the mean squared
error of {6,(A)}'/? for estimating 6}/2, and consider a sharp upper bound
on this risk (this will be made precise later). Let us write |- (A)lly =
{/2.1- (VI dA}/2. By (1.6), (1.8) and Minkowski’s inequality, we have for
every A > 0 that

r(A) < 2m) BBV, 0 - ()],
(2.3) = (2m) fAAAZk{Eld“;(A) — ¢ (W =l (N)P} dA + 6,

= 2mm) ™" [* A1~ (n 4 Digp(VF} A + 6y,
where the last equality follows from the fact that
E|$(A) — ¢p(M)I* = cam(p(A), d(—A))
= Var($(1)} = n {1 = Ig,(D)I?}

(see Lemma 4.1). Let us denote the last line of (2.3) by MISE,(A), as a sharp
upper bound of r,(A). Let A, denote the minimizer of

Q,(A) = 2A%*+1(p . H'eE+1)!

(2.4)

2.5
(29 —[A,\Zk|¢f(/\)|2d/\, A>0.
—A

Then A, is also the minimizer of MISE k(A), A > 0, since MISE,(A) =
@27n) (n + DQ,(A) + 6, and the second term is independent of A. By (1.9)
and (2.1), we see that n(n — 1)~! SCV,(A) is an unbiased estimate of @,(A).
So A,, the minimizer of n(n — 1)~! SCV,(A), may be expected to be reason-
ably close to A,.
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For alternative (ii) we analyze the mean squared error MSE k(A); It can be
decomposed as MSE,(A) = Var{6,(A)} + BZ(A), where B,(A) = Ef,(A) — 0,
denotes the bias.

LEMMA 2.1. Assume Condition (A) with p > 2k + 1. Then, for every n
and A > 0,

(2.6) 27B,(A) = Dy(A) — hia(A)
and
(2.7) InVar6,(A) — 4 Var feH( X))l < My{n~' + n A%+ 1 + by (M)},

where M, > 0 is a constant not depending on n and A,
D,(A) = 20712k + 1) 'A%+ — n L [N g (M) da,
—A
and hy [ (A) = [jy> AA**1$ (D dA, for j = 1,2.

Let A, denote the least upper bound of the support of |¢|, and consider
the following modification of MSE,(A):

MSE3(A) = 4n~! Var f®9( X))
+(2m) HDu(A) + Ryg(A)):,  A>O.

Note that MSE%(A) is greater than or equal to the information bound (1.2) for
all A > 0. Evidently, Lemma 2.1 implies that, as n — o,

(2.9) MSE,(A) ~ {MSE}(A) — 7 2D, (A)hya(A)}

uniformly in A € J,, = {A(n) < A < o(nV/*** D)} where {A(n)} is any se-
quence satisfying liminf, ,, A(n) = A,. Since both D,(A) and %,,(A) are
nonnegative for all A > 0, MSE%(A) can be viewed as an asymptotic upper

bound on MSE,(A) over J,,. The asymptotic difference 7 2D,(A)h,,(A) has
order o(n ') uniformly on any interval J¥, of the form

(2.10) F={A*(n) < A <o(n¥/ErD)}

with {A*(n)} being a sequence satisfying %,,(A*(n)) = o(n"!/%). Note that
{J}5) < {J,,}. It follows that, as n — =,

2.11 MSE,(A) ~ MSE}(A) ~ 4n~! Var f@P( X,
k

uniformly in A € J)¥,. This and (1.2) together indicate that the minimization
of MSE,(A), A > 0, can be asymptotically achieved through the minimization
of MSE}(A), A > 0, if the minimizer of the latter is contained in some J3,.
By (2.8) and noting that D,(A) + h;,(A) = (27)MISE,(A), we see that A,
[cf. (2.5)] is the minimizer of MSE#(A), A > 0. Now @,(A) =0 implies
|p(A)* = (n + 1)~ and so, under Condition (A) with p >k + 271, there
exists a positive constant M, such that the inequality

(2.12) A< (Myn)®?, n>1,

(2.8)
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holds for every critical value A. In particular, it holds for A,. Combining this
with the inequality @,(A,) < Q,(b,), where b, = (Myn)"/@P), yields

(2.13) hya(Ay) = Byo(b,) < (n + 1) '(2k + 1) H(B2AF1 — AZk+1),

From (2.12), (2.13) and the fact that %,,(b,) = O(b, 2P *2**1), we conclude
that

(2.14) hyo(Ay) = O(n~1*@R+D/EPNY gand A, = O(n'/@P)

if p>k+ 271, and A, is contained in some J¥, [see (2.10)] if p > 2k + 1.
The precedlng discussions, together with those immediately below (2.5),
indicate that asymptotically A,, A, and A, [the minimizer of MSE,(A),
A > 0] may be expected to be close to one another (i.e., they are of the same
order in probability).

REMARK 2.1. Equation (2.6) indicates that BZ(A), and hence MSE,(A),
cannot be unbiasedly (up to a constant shift) estlmated This can be seen by
noting that h,,(A) = 276, — [, < AA%*1d(VI* dA, and 6, is not estimable.

REMARK 2.2. From (1.2), (2.10) and (2.11), we see that 6,(A) is asymptoti-
cally efficient if A is contained in some J)5, for each n.

REMARK 2.3. Set MSE#*(A) = 4n~! Var f@*)(X,) + BZ(A) [equals the
right-hand side of (2.9)]. Then, as n — <,
(2.15) MSEj*(A) ~ MSE%(A)
uniformly in A € J¥,. Let A, denote the minimizer of BZ(A) as well as
MSE#*(A), A > 0. Then upon noting that the bias B,(A) is strlctly increas-
ing on (0, ), we see that A, is the unique solution of the equation B,(A) =0
[ie., D,(A) = h,,(A)], A > 0. Note that Ay! is the sync-kernel, Fourier-
domain version of the solution (denoted by a,) in Jones and Sheather (1991)
and involves functionals which are not estimable nonparametrically. How-
ever, we can easily show that (2.14) remains true if A, is replaced by A,
throughout, and A, is contained in some J, if p > 2k + 1. This, together
with (2.15) and the arguments 1mmed1ately below (2.14), indicates that
asymptotically Ak, Ay, A, and A, may be expected to be close to one
another (i.e., they are of the same order in probability).

2.2. The main theoretical results. Remark 2.2 suggests that a proper
adaptive cutoff frequency must be asymptotically (as n — ©) contained in the
region of the form (2.10). The next lemma indicates that the proposed Ak
indeed meets the criterion.

LEMMA 2.2. Assume Condition (A) with p > k + 27 1. Then

(2.16) A, = 0,(n'/@)
and
(2.17) th(Ak) = op(n—1+«2k+1)/<2p»),

where the function h,, is defined in Lemma 2.1.
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By comparing this lemma with (2.14), we see that f&k and A, have the
same order, and they both are contained in region (2.10) if p > 2k + 1.

The main results concerning the asymptotic (as n — «) properties of the
estimate (2.2) are contained in the next theorem, and equation (2.16) is the
key to proving them.

THEOREM 2.1. Assume Condition (A) with p > k + 271, Then the follow-
ing two assertions hold:

(1) 0,(Ay) — 6, =

0,(n 1H@R+L/EPY - irp < 2k + 1,
0,(n"'?log n), ifp =2k +1.

(i) If p > 2k + 1, then
0,(Ar) - N(8,,4n"1 Var f®9(X,)) in law.

As expected, the order p which governs the decay rate of the characteristic
function for f is crucial. For large p, our estimators are Vn -consistent, and
they achieve the information bound. For smaller p, they are still consistent
but with slower convergence rates.

2.3. Two modifications of the proposed procedures. This subsection is
devoted to two modifications which improve the performance of the proposed
estimate (2.2) in practice (while n is small to moderately large). One modifi-
cation is for estimating 6,; it reduces the bias of the estimate. The other
modification is for estimating 6,, £ > 1; it reduces the chance of mistakenly
selecting a too large cutoff frequency, and thus it reduces the sample varia-
tion of the estimate.

By Remark 2.3 and by the works of Jones and Sheather (1991) and
Sheather and Jones (1991), we know that the minimizer of BZ(A), which is
the unique solution of B,(A) = 0, plays an important role. Since B,(A) is not
estimable (see Remark 2.1), we need to find a reasonable estimate B,(A) and
to solve Bk(A) = 0. Using (2.6), the equation in Remark 2.1 and following the
scale-model approach for f in Park and Marron (1990), we shall use

(2.18) B,(A) = 7 'n Y2k + 1) TAZEFL 4 G, (A) — 6 ChH Dy, (g)

to estimate B,(A), where 6,(A) is given by (1.8), 0,(g) is given by (1.1) with f
being replaced by g throughout, g is a reference density with unit variance
and &, the estimate of o; (the s.d. of f), equals min{sample s.d., (sample
interquartile range)/1.349} [cf. Silverman (1986), page 47]. It is easy to see
that Bk(A) is strictly increasing in A > 0, and the equation Bk(A) =
A > 0, has a unique solution, say A P

Both modifications involve using A, , at some stage, as a reference
frequency, to adjust the magnitude of the selected cutoff frequency. Since g is
subjectively chosen, the modified procedures are no longer completely data-
driven.
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The first modified estimate is ék(/A\k,M), where /A\k,M = max(A,, /A\k,g}, with
g being the standardized beta(k + 2, % + 2) density. This modification is
recommended in practice only for estimating 6, (the reason for not recom-
mendlng it for £ > 1 will be made clear in Section 3). Evidently, 6,(A EoM) =
Bk(A ). Hence, when % = 0, the probable underestimation by using 6,(A ), as
implied by the simulation results of Chiu (1992), can be improved by using
Ok(Ak u)- By (1.9), (2.18) and the fact G ~ oy asymptotically, we see that
B, (A)=0 implies, in a rough sense, that asymptotically,

nH(2k + 1) AR = 27 R, 0 (A) — w[0,(F) — of @1 D0,(g)]

(2.19)
< 27 hye(A),

where h,, is defined in Lemma 2.1 and the last inequality is by Terrell
(1990), who proves that, for our present choice of g, the expression within the
brackets in (2.19) is nonnegative for all f. It follows that the solution to (2.19)
is of order O(n'/@P)) under Condition (A) with p > & + 27!, The preceding
heuristic arguments justify that the conclusions of Lemma 2.2 and Theorem
2.1 hold for A r, u and 6,(A », i )> respectively. A formal proof can be given, but
is omitted.

The second modification is recommended only for estimating 6,, £ > 1. It
is mainly an adaptation and a refinement of the approach in Chiu (1992). It
also relates to the approach in Sheather and Jones (1991) through using
A kg~ Lhe basic idea here is to use some suitably chosen A .4 say, as the
cutoff frequency unless ¢>(A) at higher frequency contains significant infor-
mation about f. The issue of how to choose A .4 will be addressed later. We
now describe how to modify the SCV score (2.1) beyond Amod It can be shown
that, for any fixed n,

(2.20) Var(SCV,(A) — SCV, (1)) ~ @ui( 1, A, &p) + @pa( 1, A, ¢f)
as u - @ and A — u - o [see (4.5), (4.12), (4.14) and (4.15)], where

Qui( A ) = 4n72 [*[ 1208416, (Ay + A9) 12 + 19, (Ag = A)IP} ddy g,
TR
Qua( 1, A, ¢p) =4(n — 3)n™?
X [ [ R (= 0) 8(=Aa) (A + A0)} ddy dg

with J = [-/\ —u] U [ w, Al. Therefore, the left-hand side of (2.20) is esti-
mated by V,(u, A) = Q,1(1, A, &) + @uo( 1, A, $). Let us write

SCV,(A), ifO<A<u,
2.21) SCV, ,
(22D SOVCR) =\ 50v,08) + 2(ap) [Vu( w1}, A > 1,

where z(a;) is the upper «, point of the standard normal distribution, and
a; = 0.09, ay = 0.06, a3 = 0.035 and «a;, < 0.035 for £ > 4. The exact choice
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of a, depends on the user’s objective. The proposed modified estimate is
0,(A%) where A% is the minimizer of the modified score SCV} (A moq, A),
A>0.

It is left to describe how to select Amod For the rest, the g in A b is set to
be the standard normal density. Let A,,, denote the first local minimizer of
2.1. It Pplays a pivotal role [cf Hall and Marron (1991b)]. The basic idea is
letting A .4 equal A, unless Aloc is too large; and, in that case, letting A poa
equal Ak’g Specifically, let A}, , denote the minimizer of SCV} (Ak o M)
A > 0 and define

/A\k’g, if ./A\k,g <A, and

(2.22) A= Ay, =N, (if E; and E,, say),

Ay, otherwise.

Here E, implies A4 < A,,, and E, indicates that there is no need to look
beyond A kg Since $()) does not contain much information about f beyond it.
This explains (2.22).

The estimate 6,(A%) has smaller sample variation than the estimate
6,(A,) due to

(223)  Apa <Ay <A, and §,(A,.) < 6,(A%) < 8,(A,).

Note that 6,(A%) = ék(f\k &) < 6,(A,,,) when A_ , = f\k ¢+ This can happen
in practice, especially at small n, but cannot happen as n — «. Since, for any
A > 0, the difference between SCV;*(A k. ¢»A) and SCV,(A) is asymptotically
negligible, the event E; N E, is asymptotlcally null. Consequently, Amod and
Aloc are asymptotically 1nd1st1ngu1shable This and (2 23) together imply that
% and Gk(A* ) are asymptotically bounded below by Aloc and Ok(Aloc) respec-
tlvely Next, by the fact that SCV,(A) = 2A%*[(2/(n + 1)) — |$(A)|?], we see
that Aloc is equal to the first A such that |$(A)* = 2/(n + 1). It follows that
Ay = Ay, sn+1y [recall that A,_,, the cutoff frequency used by Chiu (1991a), is
the first A such that |¢(/\)I =c¢/n, ¢ > 1]. Therefore, if Condition (A) is
fulfilled and, in addition, |d>f( Ml ~ C|A™? (algebraic decay) or [ (M| ~
C exp(—gq|Al") (exponential decay) as A — «, where C > 0,q > 0and 1 < r <
2 are constants, then, following the proofs in. Chiu (1991a), we can show that
the conclusions of Lemma 2.2 hold for A, and, consequently, hold for A%,
and thus the conclusions of Theorem 2.1 hold for 6,(A%).

Finally, we note that, when k =0, the term @,,(u, A, ¢) in (2.20) is
asymptotically equivalent to, but more precise than, the one in Chiu (1992).
The extra term @,,(u, A, ¢;) that we have introduced has much larger order
than the former term, and so it cannot be ignored, especially at small n.

3. Simulation results. We have carried out extensive simulation stud-
ies. The complete report of the simulation is available from the author upon
request. Throughout this section we use 6, 0k u and 6} to denote the
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proposed estimates 6,(A,), 6,(A »,u) and 6,(A%) of Section 2, respectively.

For estimating 6,, k£ = 0, we compare our estimates (77,z and Ok u With 6
and 03, where 6, denotes Chiu’s (1991a) estimate §,(A,) with ¢ = 3 [here
0,(A) is defined by (1.10) with A* being replaced by A%*], and 6y denotes the
estimate of Sheather and Jones (1991) by using the normal density as both
the kernel and the reference density. For estimating 0,, 1 <k <3, we
compare our modified estimate 6} with OC, 0s and OH, where 6y denotes the
estimate of 6, of Hall, Sheather, Jones and Marron (1991). We use & [see
(2.18)] to estimate the scale parameter o wherever needed in_all these
estimates. For 1 < £ < 3, the simulation results on the estimate 6, are not
reported here because sometimes they still show quite large sample varia-
tions even when n = 1600. We do not know how large an n is needed before
the asymptotics take effect for 6,. However, the simulation results do suggest
that n should substantially increase with &2 and, moreover, the estimates 6,
as well as 0 , 1 < k < 3, being the substitute for Gk, perform excellently and
so the asymptotlcs take effect at relatively small n (see Tables 1 and 2). A
referee pointed out that in an unpublished work B. Aldershof has obtained
some results relating to the important question of “when do the asymptotics
take effect?” in general settings.

We generated 200 realizations of data sets of size n = 100, n = 400 and
n = 1600 from each of eight normal mixture densities: (#1) Gaussian, N(0, 1);
(#2) strongly skewed (resembles lognormal) 871LT_ NGB{(3) - 1} (2%,
(#3) kurtotic, (2)N(0, 1) + (3)N(0, 1&5); (#4) outlier, 0. 1N(O 1+ 0. 9N(O, 105);
(#5) separated blmodal 0.5N(0,1) + 0.5N(8,1); (#6) skewed bimodal,
0.75N(0, 1) + 0.25N(2, 3); (#7) trimodal, 0.25N(-2, 5%) + 05N(O D+
0.25N(2, 1); (#8) claw (five-modal), 0.5N(0,1) + 0.1L7_,N(j/2 — 1, 155).
Densities (#1)—(#4) are unimodal, whereas (#5)—(#8) are multimodal [and
Idaf()\)l2 has sidelobes]. These eight densities have been carefully chosen
because they typify different types of challenges [see Marron and Wand
(1992) for more details on these densities]. We remark that density (#6) was
also considered in Scott and Terrell (1987). The random samples were gener-
ated by the function RAND in FORTRAN 77 on a Sun-Sparc workstation. For
each sample we applied the fast Fourier transform to evaluate ¢(A). The
implementation is the same as in Chiu (1991a, b).

For comparison of the above estimates (say, 0 ), we choose to compare
MSE = m™'L7 (6,/6, — 1)? and MAE = m~TL 1Ié) /6, — 1|, respectively,
where m = 200

Tables 1 and 2 summarize the 51mulat10n results. To save space, the case
n = 1600 is not included here. Table 1 clearly indicates that 00 u and 6, are
conclusively the best two estimates of 6, for all the cases except when
n = 100 and density is (#4). For that case all four estimates perform equally
well. Table 2 indicates that, for the multimodal densities (#5)-(#8), 6/ is
overwhelmingly the best estimate of 6, for all the possible cases of 2 and n
except when n =100, 1 <k < 2, and the density is (#6) or (#8). For these
cases 6; is comparable with other estimates (its MSE or MAE may be a little
larger, but its bias is smaller than those of other estimates). For the unimodal
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TABLE 1
Simulation result on estimating 6,: sample mean, mean squared error and mean absolute
error of the ratio 6, /6, are given for n = 100 and 400 from each of eight different underly-
ing densities (200 replications in each case); the value under each density is the true 6,

n =100 n = 400

Density 0, MEAN MSE MAE MEAN MSE MAE
#1 b 0.880 0.021 0.127 0.893 0.013 0.107
0.2821 6 0.923 0.015 0.107 0.904 0.011 0.098
b0, m 0.947 0.012 0.090 0.936 0.006 0.068

bs 0.886 0.019 0.122 0.894 0.013 0.106

#2 b 0.815 0.054 0.201 0.913 0.014 0.100
0.5569 6o 1.000 0.042 0.144 0.974 0.008 0.071
0o, m 1.000 0.042 0.144 0.974 0.008 0.071

b 0.635 0.140 0.365 0.737 0.073 0.263

#3 b 0.905 0.047 0.175 0.935 0.011 0.088
0.6152 b, 1.053 0.042 0.158 0.971 0.008 0.073
0o, m 1.065 0.048 0.167 0.975 0.009 0.075

bs 0.809 0.068 0.225 0.841 0.032 0.161

#4 b 0.963 0.011 0.087 0.982 0.003 0.041
2.3592 6o 1.009 0.012 0.087 0.996 0.003 0.040
0o, m 1.019 0.013 0.088 1.006 0.003 0.040

b 0.965 0.012 0.087 0.981 0.003 0.042

#5 bc 0.249 0.584 0.751 0.254 0.576 0.746
0.1410 6o 0.824 0.043 0.187 0.795 0.044 0.205
b0, u 0.824 0.043 0.187 0.795 0.044 0.205

bs 0.456 0.297 0.545 0.603 0.158 0.397

#6 b 0.772 0.055 0.229 0.779 0.050 0.222
0.2350 6 0.912 0.018 0.112 0.879 0.016 0.121
b0, u 0.926 0.013 0.098 0.893 0.012 0.107

bs 0.813 0.038 0.187 0.835 0.028 0.165

#17 6o 0.541 0.213 0.459 0.602 0.162 0.398
0.2410 6o 0.961 0.015 0.104 0.897 0.013 0.105
b0, u 0.961 0.015 0.104 0.897 0.013 0.105

bs 0.624 0.142  0.376 0.701 0.090 0.299

#8 b 0.771 0.056 0.229 0.779 0.050 0.221
0.3702 6o 0.989 0.030 0.144 0.953 0.005 0.060
6o m 0.994 0.028 0.139 0.953 0.005 0.060

Og 0.785 0.050 0.215 0.801 0.041 0.199
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Simulation results on estimating 6,, 1 < k < 3: sample mean, mean squared error and
mean absolute error of the ratio én /6, are given for n = 100 and 400 from each of eight
different underlying densities (200 replications in each case); the top of each MSE column
is the true 0,; the zero entries in the mean columns are due to rounding

k=1 k=2 k=3
Density 6§, MEAN MSE MAE MEAN MSE MAE MEAN MSE MAE
#1 0.1410 0.2116 0.5289
n=100 6, 1017 0.128 0249 1191 2323 0646 1214 4.884 0.968
6 1047 0092 0222 1089 0359 0402 1.089 0912 0.620
fs 1017 0.089 0227 1373 0.968 0587 1984 4.837 1213
by 1505 1.496 0.701
n=400 6, 1025 0024 0.118 1.088 0289 0288 1137 3919 0561
6 1043 0025 0119 1060 0090 0216 1005 0210 0.317
fs 1006 0.019 0.109 1165 0.163 0271 1354 0.850 0.536
by 1.211 0212 0.310
#2 15.4191 4595.1899 3066960.0
n=100 @, 0279 0588 0740 0.050 0912 0950 0.007 0.987 0.993
6 0471 0607 0678 0.149 0946 0932 0.028 0976 0.987
6s 0034 0933 0966 0001 0999 0999 0.000 1000 1.000
by 0.001  0.999 1.000
n=400 6, 0562 0243 0453 0.186 0683 0814 0045 0915 0955
6F 0772 0162 0338 0342 0527 0689 0.109 0.816 0.893
6 0.057 0.890 0943 0.001 0998 0.999 0.000 1.000 1.000
by 0.001  0.998 0.999
#3 15.9093 2351.3999 587701.0
n=100 6, 0627 0370 0530 0359 0645 0749 0.177 0.877 0.873
6f 0.888 0430 0511 0604 0839 0744 0.339 1421 0933
6 0188 0.688 0813 0.037 0930 0.963 0.006 0988 0.994
by 0.042 0924 0.958
n=400 6, 0885 0088 0238 0.714 0244 0422 0562 0428 0599
6F 1034 0108 0246 0987 0430 0431 0917 0958 0.683
6s 0217 0621 0783 0034 0933 0966 0.004 0992 0.996
by 0.027 0947 0.973
#4 114.321 17137.5 4284320.0
n=100 §, 0954 0116 0259 0954 0930 0522 1.068 8081 0922
6F 0992 0114 0252 0829 0266 0415 0674 0562 0596
6s 0910 0.099 0256 1010 0460 0488 1.158 1622 0.773
by 1.147 0.752 0.533
n=400 §, 0981 0019 0110 0952 0099 0228 0919 0524 0405
6 1015 0024 0116 1013 0.156 0252 0.821 0.247 0.384
fs 0930 0024 0128 0916 0.101 0255 0.887 0273 0.406

1.004 0.085 0.224
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TABLE 2
(Continued)
k= k=2 k=3
Density 6, MEAN MSE MAE MEAN MSE MAE MEAN MSE MAE
#5 0.0705 0.1058 0.2644
n=100 6§, 0069 0911 0943 0.039 0966 0980 0.006 0992 0.994
6 0961 0.105 0257 0.741 0531 0.504 0.388 0.903 0.796
s 0.135 0.749 0.865 0.026 0948 0974 0.003 0994 0.997
by 0.022 0.956 0978
n=400 §, 0072 0900 0930 0.037 0951 0964 0.010 0986 0.990
6 1010 0.021 0.100 0931 0.078 0.187 0.796 0.425 0.430
6s 0251 0561 0.749 0.054 0.894 0946 0007 0.987 0.993
by 0.052 0.898 0.948
#6 0.2625 3.2251 72.6081
n=100 6, 0208 0629 0792 0012 0977 0988 0.001 0999 0.999
6r 0379 0612 0.750 0.082 0980 0973 0.006 0992 0994
6s 0304 0488 0.696 0045 0912 0955 0.006 0989 0.994
by 0.036 0.930 0.964
n=400 6§, 0220 0618 0.781 0.021 0966 0979 0.007 0990 0.993
6 0898 0.149 0310 0522 0495 0.629 0233 0.823 0.864
6s 0387 0379 0613 0072 0.861 0928 0010 0.980 0.990
. 0.055 0.894 0.945
#17 1.0870 26.9927 1083.49
=100 6, 0026 0951 0975 0001 0997 0.999 0.000 1.000 1.000
6y 0830 0558 0513 0.347 0.806 0.792 0.095 0917 0.950
fs 0049 0905 0951 0.003 0994 0997 0000 1.000 1.000
by 0.003 0.995 0.997
n=400 6, 0072 0870 0928 0012 0977 0988 0.003 0995 0.997
6 0994 0062 0193 0.748 0.177 0355 0.405 0463 0.634
6s 0089 0831 0911 0007 0986 0993 0000 0.999 1.000
6y 0.003 0994 0.997
#8 6.9292 11498 255921.0
n=100 4, 0028 0945 0972 0.000 0999 0999 0.000 1.000 1.000
6 0351 1.080 1.018 0245 1018 0.994 0.113 0941 0.946
fs 0031 0939 0969 0001 0999 1.000 0000 1.000 1.000
by 0.001 0.999 1.000
n=400 6, 0028 0944 0972 0.000 0.999 1.000 0.000 1.000 1.000
6 1088 0.123 0265 0915 0.132 0277 0.606 0221 0421
6s 0.034 0933 0966 0001 0999 0999 0.000 1.000 1.000
6y 0.001 0.999 0.999
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densities (#1) and (#2), 0} is apparently the best estimate of 6, for all the
possible cases of £ and n except when n = 400, £ = 1 and the density is (#1).
For that case all three estimates perform well, but 9s is a little better than
the others. For the unimodal density (#3), 6} and 6, are evidently the best
two estimates of 6, for all the possible cases of £ and n. The estimate 90 in
general has smaller MSE or MAE, but always has much larger bias than that
of 6;. Finally, for the unimodal density (#4), 6} is the best estimate of 60,
and also of 6, when n = 100. As for the remaining cases of 2 and n, all the
estimates perform well and are comparable with one another. When n = 100
and %k =1, 6; has the smallest MAE, whereas 05 has the smallest MSE.
When r = 400, 0H is the best estimate of 0,, and 6, performs very well for
l1<k<2

In summary, the simulation results reveal that over a wide range of
smooth density shapes and at practical sample sizes, the overall perfor-
mances of the proposed estimates 6, 00 y and 6, 1 <k < 3, are excellent
and are much better than the overall performances of other estimates in-
cluded in the study. Furthermore, Tables 1 and 2 also reveal that for smooth
densities the convergence rates (as n — ) of the proposed estimates 6, 00 M
and 0,2‘ 1 < %k < 3, to their respective target values are very fast. This agrees
well with the earher theoretic results.

4. Proofs. Set

(4.1) $a(A) = (M) = d(),

(4.2) T,(A) = fA)\“|J>d()\)I2dA,

(4.3) Ty(4) = [ (1) da(N) d,

(4.4) T,(A) = [A)\Z’e{w?()x)l2 — g (VI*} A,
where A is any measurable set. Note that E¢,(\) = 0 and
(4.5) Ty(A) = Ty(A) + 2Re(T,( A)).

Observe that Re(Ty(A)) = Ty(A) if A = —A. The notation T’(A) = T}(A) —
ET;(A) shall be used.

In the sequel we shall write ¢ for ¢, and suppress the subscript & in A P
6, and h, j»J = 1,2, whenever it causes no confusion.

LEMMA 4.1. The following hold for any A, and A,:
(4.6) cum(d;d(Al)> J’d()‘z)) = n_l{d’(/\l +2) — (M) d(Ag)};
Cum(lff;d()‘l)IZ, J’d(/\z))
(4.7) = n‘2{2|¢( MIPb(Ag) = d(—A) d(A + Ay)
—d(M)d(Ay — M)
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and
Cum(J’d()H)’ J’d(_)ﬁ), ¢~’d()‘2)’ d;d( _)‘2))
(48)  =n"*{2L ¢(a)d(b)$(—a —b)
—6l3(A) Ple(A) 1 — 16( Ay + A)I* = 16( A — M)},

where the summation is over {(a, b): @ = A, or —A;, b = Ay or —\,}. Further-
more, for any s > 2 it holds uniformly in Ay,..., A, that

(4.9) cum(y(Ay),. .., ba(A)) =O0(n™**1),  n oo,

The proof follows from straightforward computations [see Brillinger (1981),
pages 19-21, for general methods of computing cumulants; see also Chiu
(1991a), Lemma 1].

For the rest of the paper M > 0 denotes a finite generic constant that does
not depend on n (but that may depend on £ and/or p); A¢ = (—x, ) — A for
any set A; and I[-] denotes the indicator function on the set [-].

ProoF oF LEMMA 2.1. We note that h, < 2, and, under the conditions of
the present lemma, 2,(0) = [ _A2*|$(A)| dA is finite and F@*) exists and is
bounded over the whole real line [hence Var f@*(X 1) is finite]. Now, (2.6) can
be readily derived from (1.6), (1.8) and (1.9). Next, we have by (1.8) and (4.5)
that, for all A > 0,

472 Var9(A) = Var T9([ - A, A])
= Var(TP([ - A, A]) + 2Ty([ A, A])}.
By arguments analogous to those in Chiu [(1991a), Lemma 4], we obtain
(4.11) Var Ty((—,»)) = 4w%n"! Var f@¥(X,).
By (4.6) we have, for all A > 0,

nVar Ty([ A, A]°) = [M Mfu (A Ay)2

2l>A
(4.12) Xb( =) b(—Ag) (A, + Ap) dA; dA, — B2(A)

< 2h2(A).

Equations (4.11) and (4.12) and an application of the Cauchy-Schwarz in-
equality give, for all A > 0,

(4.13) |VarTy([—A, A]) — 4m2n~'Var fEO(X,)| < Mn~'hy(A).

[Here and below M does not depend on A either.] Using (4.7) we get, for all
A>0,

Cov(T{([~A, A]), To([ - A, AD))
(419 = [0 [0 ) (= dpeum(1da(A)I%, Bu(Aa) drsd,

< Mn~2.

(4.10)
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Let us denote the left-hand sides of (4.6) and (4.8) by c(A;, A,) and d(Ay, Ay),
respectively. Then, for all A > 0,

Var TP ([ - A, A])
= 7 [ ()™ cum(18a(A)I%, 190(A)*) dy d
15) = [* [* (ap)™{2e(Ap, A)e(— Ay, —Ag) + d(Ay, Ag)} Ay dAg
—A-A
< 2n"3{R(A) + 3(hy(0) — hy(A))*)

+n73{2R(A) + 14(hy(0) — hy(A))*},
where R(A) = /2, [ \(AA)%* (A, + AYI® dA, dA, is the dominating term
here. Evidently,
(4.16) R(A) < A [ RF [T 13(A + 1) dAy dAy SMA™YE, A0,
—A —w

Inequality (2.7) can be concluded from (4.10) and (4.13)-(4.16) immediately.
O

PrROOF OF LEMMA 2.2. From (1.8), (2.1) and the fact that SCV,(A) <
SCV,(A), for all A > 0, we get

(4.17) A2E+1 _ A2R+1 o 2—1dnﬂ.(é’(1"\) _ (;(A)), A>0

where d, = (n + 1X2k + 1). Pick and fix any & from the interval (27'/2,1)
and set

1\ 1/@p
(418)  u, = {262k + D[(2p — 2k — 1)(262 - )] 'n} .
By denoting the interval I, = [u,,u,s” ™" /@*+D] m = 0,1,..., we have,
by (4.17),

P[A2k+1 > (1 - 8)-1u3k+1]

=P[A2k+l —u2ktl> 8A2k+1]

< ¥ P[274d,7(6(R) - 6(n,)) > eAZ*+1,
m=0
(4.19) ung—m/(2k+l) <A< una—(m+1)/(2k+l)]
<

Yy P[z-ldnTg(Im) > g mtly2ktl
=0

m

—2‘1dnf /\“Eld;()\)lzd)t].
Im
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Note that (1.9), together with Condition (A) with p > & + 271, implies for all
m >0,

27d, [ A*EI$(N)I* dA
Im

= 2‘1dnf1 A (14 7Y (n = 1)I¢(A)I?) dA
<27H 1+ nt)gm g2kt
(4.20) +2°d n"Y(n - 1)(2p — 2k — 1) tu2k+1-2p
<2 Y1+ n {1+ (26) (262 - 1) Ju2t !
<2711+ n e e 4 (262) 7 (262 — 1) Jult !
= e (1407 )27 1+ (262) 7))
< eTmFly2ktl-1(] + §)
for all n > 2681 — 8)~', where 6 =271 + (2¢%)71] < 1. From arguments

similar to those in (4.12) and applying the Cauchy—Schwarz inequality we
have, forall1 <a < b < o,

nET(J) < [ 18O AHSO)IIS(A + Ag)l dA dAy

1/2
(@20 = [0 @{ [ 860 s A dr) d,
< hY/?(a) Mb* [ 23H16( M)l d Ay < hy(a) M2/,
J

where J = {A: @ <|A| < b). It follows from arguments analogous to those in
(4.10), (4.15) and (4.16), and from (4.21) that

(4.22) VarT{([a,b]) < M{n 2b*"! + nlhy(a)b2k+ /),

Here we note that h,(u,) = O(u,;2P*2**1) when p >k + 27!. Applying
Chebyshev’s inequality to (4.19) and using (4.20) and (4.22) yield, as n — o,

P[A2k+l > (1 _ 8)—1uik+1]
(4.23) = 0{8’4(1 - 6)_2u;1/2 i "8(m+1)/(2k+1)}
m=0

and so (2.16) holds. Next, we have Ry (MITA > ALl < hy(A,). Set J; = I[A <
A,land R, = hy(A) — hy(A,). Then (2.4), (2.14), (4.5), (4.17) and an applica-
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tion of the Cauchy—Schwarz inequality give

- (nlA ) ¢ oldtan - 600
(4.24) < {Tl([O,Ak]) + ZA‘TZ([A’AIZ])‘ + 2d;1(A2kk+1 — [\2k+1)}J1
-0, + (3.

1/2
< 0,(r,) + {2Ty([0, A, ])R,} I,
=0,(r,) + Op(r,}/2)R§/2Jl,
where r, = n 1*Gk*D/@PI Get oJ, = J I[R, > r,]. Multiplying (4.24) by
R;1/%J, yields
27'RY2J, < {0,(r,)R3'/% + O,(r¥/*)}J, = 0,(r2/?),
and so, using (2.14), we may conclude (2.17) quickly. O

PROOF OF THEOREM 2.1. By (4.17) and (4.18) we get, for all p > k + 277,
{6(u,) - O(ANMIA < u .1 = 0,(r,), where r, was defined in (4.24). Further-
more, upon denoting the interval B = (un,(l — g)"V/@k+ Dy 1 we get from
(2.4), (4.5) and (4.18) that

m(8(A) — 6(u,))I[A € B] <ITy(B)| + 27 hy(u,)
< Ty(B) + 2|Ty(B)| + 27 hy(u,) = O,(r,),
for all p > k& + 271, This and (4.23) together ensures that 6(A) — 6(u,) =
O,(r,) forall p >k + 2~ 1, Hence the theorem will be proved if we show that

assertlons (i) and (ii) remain true if A Gi.e., A ) is replaced by u, throughout.
By (4.5), for p > k + 271,

’".(é(un) - Ok) = T3([0’un]) - 2_1h2(un)

= T1([0,u,]) + To([ —un, un]) — 27 Ry(uy) )
and so, using (2.4) and (4.18), we see that assertion (i) remains true with A
being replaced by u,. For the rest of the proof we assume p > 2k + 1. On the
rightmost side of (4 25), the first and thlrd terms are of order o,(n"'/?).
Furthermore, (4.12) implies that T,(-u,, u,]1) = o (n‘l/ 2), and so
nl/2Ty((—o 00)) and n'?w(0(u,) — 6,) have the same asymptotlc distribu-
tion. To estabhsh the desired asymptotic normality, by virtue of (4.11), it
suffices to show that the r-th order cumulant of n'/2T,((—c,x)) converges to
zero for all r > 3. However, this may be concluded by noting that such an
r-th-order cumulant, by (4.9), is equal to

nr/zf_""w.../:}:[l A2k ( = A;)eum(Ba( M), .- s Ba(A,)) dAy - dA,

= 0( n(_r/2)+ 1)’
This completes the proof. O

(4.25)
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