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PROCESS CONSISTENCY FOR ADABOOST

BY WENXIN JIANG

Northwestern University

Recent experiments and theoretical studies show that AdaBoost can
overfit in the limit of large time. If running the algorithm forever is
suboptimal, a natural question is how low can the prediction error be during
the process of AdaBoost? We show under general regularity conditions that
during the process of AdaBoost a consistent prediction is generated, which
has the prediction error approximating the optimal Bayes error as the sample
size increases. This result suggests that, while running the algorithm forever
can be suboptimal, it is reasonable to expect that some regularization method
via truncation of the process may lead to a near-optimal performance for
sufficiently large sample size.

1. Introduction. Some recent experimental results [e.g., Friedman, Hastie
and Tibshirani (2000), Grove and Schuurmans (1998) and Mason, Baxter, Bartlett
and Frean (1999)] and theoretical examples [Jiang (2002)] suggest that the
AdaBoost algorithm [e.g., Schapire (1999) and Freund and Schapire (1997)] can
overfit in the limit of (very) large time (or the number of rounds of AdaBoost),
despite the observation that the algorithm is often found to be resistant to
overfitting after running hundreds of rounds. Jiang (2002) provides examples
where it can be shown that the prediction error of AdaBoost [PE(AdaBoost t

n),
depending on the sample size n and the time t] is asymptotically suboptimal
at t = ∞, in the sense that the prediction at t = ∞ is not consistent. Here by
consistency of a prediction we mean that as the sample size n increases, the
prediction based on the sample has a prediction error that converges to the optimal
Bayes error. When running the unmodified AdaBoost algorithm forever (t = ∞),
there are situations when the resulting prediction error converges to a suboptimal
value larger than the optimal Bayes error as the sample size n increases, that is,
limn→∞ PE(AdaBoost t=∞

n ) > Bayes Error.
If running the algorithm forever can be suboptimal, a natural question is

how low a prediction error PE(AdaBoost tn) can AdaBoost achieve during the
process of t? Can AdaBoost generate a prediction during the process that
can have a nearly optimal prediction error as n increases? Is it true that
limn→∞ inft∈{1,2,3,...} PE(AdaBoost t

n) = Bayes Error? If this last formula holds,
then we say that AdaBoost is process consistent. As far as we know, this
problem has not been addressed in the previous literature. The bounds on the
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prediction error obtained before [e.g., Schapire, Freund, Bartlett and Lee (1998)
and Breiman (1997)] are all semiempirical in the sense that they involve some
sample quantities (related to the margin or the top) and are not compared to the
optimal Bayes error. This problem of process consistency is also theoretically
important since the process consistency would imply that even though running
the AdaBoost algorithm forever may be suboptimal, the algorithm does achieve
a good asymptotic performance at some time during the process. Therefore, it is
reasonable to expect that some regularization method via truncation of the process
may lead to a near-optimal performance for sufficiently large sample size.

In a recent work, Breiman (2000) considers the case n = ∞ and shows
that this population version of AdaBoost typically leads to a limiting
prediction that achieves the optimal Bayes error as t increases. That is,
limt→∞ PE(AdaBoost t

n=∞) = Bayes Error. We will utilize some of his results
to study the asymptotic behavior of the sample version of AdaBoost, in partic-
ular, the problem of process consistency. We will show that AdaBoost produces
process-consistent predictions under very general regularity conditions. Therefore,
even though running the algorithm forever is often suboptimal, the algorithm does
achieve a good asymptotic performance at some time during the process, and a
systematic study on regularization by truncating the process may be a reasonable
direction for future research. Below we introduce the notation and the main results.

2. Notation and main results. Let (Xi,Zi)
n
1 and (X,Z) be i.i.d. (indepen-

dent and identically distributed) random quantities valued in [0,1]d × {±1}. Let
H be a base hypothesis space, which is a set of functions f : [0,1]d �→ {±1}.
Let Cn(F ) = n−1 ∑n

1 e−ZiF (Xi) (the AdaBoost cost function) and let C∞(F ) =
Ee−ZF(X) (the population version). For each n = 1,2, . . . ,∞, define the follow-
ing sequential fits F t

n. They describe the sample version and the population version
(for n = ∞) of the AdaBoost algorithm.

1. Let F 0
n = 0.

2. For t = 1,2, . . . ,
(a) (“Weak learning” at step t). Let f t

n = arg maxf ∈H |εt
n(f ) − 0.5|, then set

αt
n = 0.5 ln

{
1 − εt

n(f
t
n)

εt
n(f

t
n)

}
.

Here the “weighted training errors” are

εt
n(f ) = n−1

n∑
j=1

{
e−F t−1

n (Xj )Zj

n−1 ∑n
k=1 e−F t−1

n (Xk)Zk

}
I {f (Xj ) �= Zj }

and

εt∞(f ) = E

{
e−F t−1∞ (X)Z

Ee−F t−1∞ (X)Z

}
I {f (X) �= Z}.
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(b) (Linear combination of “weak hypotheses”). Let F t
n = F t−1

n + αt
nf

t
n .

The resulting prediction at step t is sgn◦F t
n. [Note that in the case of a negation-

closed H (f ∈ H whenever −f ∈ H ), step 2(a) equivalently uses f t
n to minimize

the weighted training error εt
n(f ).]

In this paper, we will use the following notational simplification:

�t−1
n (f ) = |�̃t−1

n (f )| where �̃t−1
n (f ) = n−1

n∑
j=1

e−ZjF
t−1
n (Xj )Zjf (Xj ),

�t−1∞ (f ) = |�̃t−1∞ (f )| where �̃t−1∞ (f ) = Ee−ZF t−1∞ (X)Zf (X),

2δt
n = �̃t−1

n (f t
n)/Cn(F

t−1
n ).

Then it follows that �t−1
n (f )/Cn(F

t−1
n ) = 2|εt

n(f ) − 0.5|, so we can rewrite the
“weak learning” step 2(a) at time t as 2(a′):

f t
n = arg max

f ∈H
�t−1

n (f ) and αt
n = 1

2
log

(
1 + 2δt

n

1 − 2δt
n

)
.

[We use f t
n = arg maxf ∈H �t−1

n (f ) to denote an approximate maximizer satisfy-
ing �t−1

n (f t
n) = supf ∈H �t−1

n (f ) + op(1) and having a consistent limit. We will
see that f t

n consistently estimates f t∞, a maximizer of �t−1∞ (f ).]
The goodness of any prediction of the form sgn◦F is measured by the

misclassification probability L∞(F ) = P [Z �= sgn◦F(X)]. The gold standard is
the Bayes error L∞(FB) = P [Z �= sgn◦FB(X)], where FB(X) = 1

2 log{P (Z =
1|X)/P (Z = −1|X)} corresponding to the optimal Bayes prediction. If a sequence
of predictions sgn◦Fn, possibly depending on the data S = (Xi,Zi)

n
1, has a

prediction error ESL∞(Fn) → L∞(FB), then we say that the prediction is
consistent. We will show that there are a sequence tn and AdaBoost fit F t

n such
that the prediction sgn◦F

tn
n generated by AdaBoost is consistent. Therefore, the

lowest point of the prediction error during the process of AdaBoost is close to the
optimal standard for large sample sizes.

We will use the following regularity conditions. Conditions (Ia) and (Ib) are
on the joint distribution of (X,Y ), while (IIa)–(IIc) are on the base hypothesis
space H .

(Ia) (Distribution of predictor). The distribution of X is assumed to be
absolutely continuous with respect to Lebesgue measure on [0,1]d .

(Ib) (Continuity of log odds). The function FB(·) is continuous on [0,1]d .
(IIa) (Completeness of base hypothesis space). The linear span of H is

complete in L2(PX) on [0,1]d . That is, for any function g such that ‖g‖L2(PX) ≡√∫
[0,1]d g(x)2PX(dx) < ∞ and for any ε > 0, there exists a linear combination
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∑m
s=1 αsfs(·) for some m ∈ {1,2, . . . } such that fs ∈ H and αs ∈ 
 and ‖g(x) −∑m
s=1 αsfs(x)‖L2(PX) < ε.
(IIb) (Finite VC dimension of base hypothesis space). The VC (Vapnik–

Chervonenkis) dimension of H is finite, that is, VC(H) < ∞. [For the concept
of VC dimension, see, e.g., Anthony and Biggs (1992), Chapter 7.]

(IIc) (Compactness of base hypothesis space). The base hypothesis space H

is a compact set of ±1-valued functions on [0,1]d in the L2(PX) metric.

THEOREM (Process consistency for AdaBoost). Under conditions (Ia)–(IIc),
there exists a sequence t = tn for AdaBoost fits F t

n such that limn→∞ ESL∞(F
tn
n ) =

L∞(FB) [and therefore limn→∞ inft ESL∞(F t
n) = L∞(FB) also].

REMARKS.

1. Conditions (Ia), (Ib) and (IIa) ensure that for any sequence (allowing possible
multiple solutions) F t∞ of fits from the population version of AdaBoost, one
has limt→∞ ‖F t∞ − FB‖L2(PX) = 0, due to Theorem 3 of Breiman (2000). This
guarantees that at least at n = ∞ AdaBoost does the right thing and gives the
optimal Bayes prediction. More preliminary sufficient conditions for (IIa) are
given in Breiman (2000), for example, ±1 trees with number of terminal nodes
(leaves) exceeding the dimension of X satisfy (IIa).

2. Conditions (IIb) and (IIc) are used to prove that the large-n case is close to
the population version at finite time t . Condition (IIb) typically holds. Condi-
tion (IIc) holds in common situations when H is “continuously parameterized
on a compact space”—see Lemma 9. Examples include the set of step functions
in one dimension Hstep = {sgn(·−θ) : θ ∈ [0,1]} as well as the set of linear per-
ceptrons in the case d > 1. The space Htree(T ) = closure of the set of ±1 trees
with T leaves (i.e., the set of ±1 trees with T leaves or less) also is compact for
every finite T . This follows because Htree(T ) is a closed subset of a compact set
Hrectangle = {f :f = ∑K

k=1 ηk
∏d

j=1 I [xj ≤ ξ
j
k ], ηk’s and ξ

j
k ’s ∈ [−1,1]} with

some finite K . See Lemma 10 for the compactness of Hrectangle. Note that, for
Htree(T ), the completeness condition (IIa) [for T > d , see Breiman (2000)] and
condition (IIb) (for any finite T ) are also satisfied. Therefore, the base hypoth-
esis space Htree(T ) with T > d satisfies all the conditions (IIa)–(IIc) and the
consistency of AdaBoost holds whenever (Ia) and (Ib) hold.

3. Condition (Ib) also implies that the coefficients of the population AdaBoost
are well defined; that is, |αs∞| < ∞ for all s, or, equivalently, 2δs∞ �= ±1, the
singularities of

αs∞ = 1

2
log

(
1 + 2δs∞
1 − 2δs∞

)
.

Therefore, the population fit F t∞(X) is well defined and |F t∞(X)| ≤∑t
s=1 |αs∞| < ∞. See Preparatory Lemma 1. See also Preparatory Lemma 2
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for the definition and existence of certain expectations used later in the proof.
Another implication of (Ib) is that the population version of the criterion
function is continuous at each step of “weak learning”; that is, for any s =
1,2, . . . , �s∞(f ) is a continuous mapping from the L2(PX) functions on [0,1]d
to 
. See Lemma 7.

4. The proof is nonconstructive and we do not know what rate tn can take.
Presumably some tn that increases to ∞ very slowly will work. This is because,
as tn → ∞, the “approximation error” is related to ‖F tn∞ − FB‖L2(PX), which
goes to 0. On the other hand, if the growth tn is slow enough, the sample
AdaBoost fit F

tn
n is sufficiently close to the population version F

tn∞ for large n.
This is actually the main intuition behind the proof, which uses a method of
induction over t .

2.1. Some preparatory lemmas.

PREPARATORY LEMMA 1. Condition (Ib) implies that the coefficients of the
population AdaBoost are well defined, that is, |αt∞| < ∞ for all t , or, equivalently,
2δt∞ /∈ {±1}, the singularities of

αt∞ = 1

2
log

(
1 + 2δt∞
1 − 2δt∞

)
.

Therefore, the population fit F t∞(X) is well defined and |F t∞(X)| ≤∑t
s=1 |αs∞| < ∞.

PROOF. Note that condition (Ib) or FB(·) being continuous on [0,1]d implies
that FB(·) is finite, and thus P (Z = 1|X) is bounded away from {0,1} on [0,1]d .

For t = 1: Suppose |2δ1∞| = 1. Then 1 = |EZf 1∞(X)| = |Eµ(X)f 1∞(X)|, where
µ(X) = E(Z|X). Then Eµf 1∞ = −1 or +1. So 0 = E(1 − µf 1∞) = E|1 − µf 1∞|
or 0 = E(1 + µf 1∞) = E|1 + µf 1∞|, noting that (1 ± µf 1∞) ≥ 0. So µf 1∞ = 1 with
probability 1 (w.p.1) or µf 1∞(X) = −1 w.p.1. So 2P (Z = 1|X) − 1 = µ(X) ∈
{±1} with probability 1. So P (Z = 1|X) ∈ {0,1} with probability 1, conflicting
with the implication of condition (Ib). So (Ib) implies that |2δ1∞| < 1.

Now perform induction. Suppose that, for all s = 1, . . . , t − 1, we have
|2δs∞| < 1. Then all |αs∞| < ∞ and all |F s∞(X)| ≤ ∑s

r=1 |αr∞| < ∞ for s =
1, . . . , t − 1. Suppose that (I) holds but |2δt∞| = 1. Then 1 = |EWtZf t∞(X)|,
implying that EWtZf t∞ = −1 = −EWt or = +1 = +EWt , where Wt =
e−ZF t−1∞ (X)/Ee−ZF t−1∞ (X) is well defined and ∈ (0,1] [due to the boundedness of
F t−1∞ (X)] and has unit expectation. So 0 = EWt(1 − Zf t∞) = EWt |1 − Zf t∞|
or 0 = EWt(1 + Zf t∞) = EWt |1 + Zf t∞|, noting that Wt(1 ± Zf t∞) ≥ 0. So
Zf t∞(X) = 1 w.p.1 or Zf t∞(X) = −1 w.p.1, implying that 1 = |EZf t∞(X)| =
|Eµ(X)f t∞(X)|. Then similar to the proof for t = 1, we have P (Z = 1|X) ∈
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{0,1} with probability 1, conflicting with the implication of condition (Ib). So
(Ib) implies that |2δs∞| < 1 for s = t as well. �

We denote S = (Xi,Zi)
n
i=1 and denote Eg(X,Z,S) ≡ EX,Z|Sg(X,Z,S) =

EX,Zg(X,Z,S) as the integration over (X,Z) fixing S. [Note that S and (X,Z)

are independent.] Then we have the following existence theorem of the integrations
that will be used later.

PREPARATORY LEMMA 2. For all t = 1,2, . . . and n = 1,2, . . . ,∞, we have

E exp
(−ZF t−1

n (X)
) ∈ exp

(
±

t−1∑
s=1

|αs
n|

)

⊂
(

exp

(
−

t−1∑
s=1

|αs∞|
)

exp

(
−

t−1∑
s=1

|αs
n − αs∞|

)
,

exp

(
t−1∑
s=1

|αs∞|
)

exp

(
t−1∑
s=1

|αs
n − αs∞|

))
.

Therefore, E exp(−ZF t−1∞ (X)) ∈ exp(±∑t−1
s=1 |αs∞|) ⊂ (0,∞) under

condition (Ib) due to Preparatory Lemma 1, and E exp(−ZF t−1
n (X)) ∈

exp(±∑t−1
s=1 |αs∞|){1 + op(1)} in the inductive proof of Lemma 2 later.

PROOF OF PREPARATORY LEMMA 2. Note that |−ZF t−1
n (X)| = |Z×∑t−1

s=1 αs
nf

s
n (X)| ≤ ∑t−1

s=1 |αs
n| ≤ ∑t−1

s=1 |αs∞| + ∑t−1
s=1 |αs

n − αs∞| leads to the proof.
�

2.2. Proof of the theorem. To prove the theorem, we first consider a slightly
more general setup and formulate some general sufficient conditions for process
consistency in Proposition 1 in the next section. Then we will check that these
conditions are satisfied given the more primitive conditions (Ia)–(IIc) in the case
of AdaBoost.

3. A slightly more general setup: generalized additive model (GAM) with
sequential fits. Denote p(x) = P [Z = 1|X = x]. Assume that p(x) = ψ ◦F(x),
where ψ is strictly increasing and continuously differentiable with derivative ψ ′
bounded on 
1, and ψ(0) = 0.5 [such that sgn(F ) = sgn(p − 1/2)]. Here F is
to be estimated by a sequential (t-step) additive fit F t

n = ∑t
s=1 αs

nf
s
n , αs

n ∈ 
,
f s

n ∈ H (H is a base hypothesis space), which may depend on the data S =
(Xi,Zi)

n
1, similar to the previous section. Denote FB = ψ−1 ◦p. As an example, in

AdaBoost, ψ = e2F /(1 + e2F ), |ψ ′| ≤ 0.5, and FB(x) = 1
2 log{p(x)/(1 − p(x))}.
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LEMMA 1. L∞(F t
n) − L∞(FB) ≤ 2‖ψ ′‖∞‖F t

n − FB‖L2(PX).

This is a variant of Corollary 6.2 of Devroye, Györfi and Lugosi (1996),
obtained by a first-order Taylor expansion. Here ‖ψ ′‖∞ = supx∈
 |ψ ′(x)|. Below
we will use ‖ · ‖ to denote ‖ · ‖L2(PX) unless otherwise noted.

PROPOSITION 1 (Process consistency for sequential GAM). Suppose that
there exists a nonstochastic sequence F t∞ of functions on the domain of X,
independent of n, such that:

(i) ‖F t
n − F t∞‖ ≤ bt

n with probability PS ≥ 1 − at
n.

(ii) ‖F t∞ − FB‖ ≤ ct , where at
n, bt

n, ct are nonnegative, ct → 0 as t → ∞,

and at
n, bt

n → 0 as n → ∞ ∀ t . Then there is a sequence t (n) such that

ESL∞(F
t(n)
n ) − L∞(FB) = on(1).

In the case of AdaBoost, F t∞ was taken to be a population fit and (ii) is
guaranteed via conditions (Ia), (Ib) and (IIa) by Theorem 3 of Breiman (2000);
what we only need for proving the main theorem on process consistency is to
establish condition (i). This will be done in the next section.

Below we first prove the proposition itself in the GAM context.

PROOF OF PROPOSITION 1. Since the nonnegative sequences at
n, b

t
n → 0

as n → ∞ ∀ t , there exists a sequence t (n) → ∞ sufficiently slow, such that
a

t(n)
n , b

t(n)
n → 0 as n → ∞. Also we have ct(n) → 0.

Denote Yn = L∞(F
t(n)
n )−L∞(FB). Note that Yn ∈ [0,1] and, for any ε ∈ [0,1],

0 ≤ ESYn =
∫ ε

0
Yn dPS +

∫ 1

ε
Yn dPS

≤ ε + P [Yn > ε].
Now take ε = 2‖ψ ′‖∞(b

t(n)
n + ct(n)). Note that, by the previous lemma, the

triangle inequality and conditions (i) and (ii), we have

Yn ≤ (∥∥F t(n)
n − F t(n)∞

∥∥ + ∥∥F t(n)∞ − FB
∥∥)

2‖ψ ′‖∞
≤ ε,

with probability PS ≥ 1 − a
t(n)
n . Therefore, ESYn ≤ 2‖ψ ′‖∞(b

t(n)
n + ct(n)) +

a
t(n)
n = on(1). �

Now we prove condition (i) (convergence of the sequential fits) of the
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proposition for the case of AdaBoost under more primitive conditions listed in
the previous section.

4. Convergence of the sequential fits. Condition (i) of Proposition 1 in the
previous section is established immediately via the following proposition.

PROPOSITION 2 (Convergence of the sequential fits). Suppose conditions
(Ia)–(IIc) hold. Then, for any t = 1,2, . . . and sample AdaBoost fit F t

n, there
exists population AdaBoost fit F t∞ such that, with probability PS ≥ 1 − at

n,
‖F t

n − F t∞‖ ≤ bt
n, where at

n, b
t
n → 0 as n → ∞, or, equivalently, ‖F t

n − F t∞‖ =
op(1) as n → ∞.

So we only need to prove this proposition now, which is done by using
the following lemma. If the following lemma is true, then the proposition on
‖F t

n − F t∞‖ is easily proved by applying the triangle inequality to ‖F t
n − F t∞‖ =

‖∑t
s=1(α

s
nf

s
n − αs∞f s∞)‖.

LEMMA 2 (Convergence step by step). Suppose conditions (Ia)–(IIc) hold.
Then there exists a population version of “weak learning” f s∞ for each step
s = 1,2, . . . , such that ‖f s

n − f s∞‖ = op(1) and |αs
n − αs∞| = op(1) as n → ∞.

Now let us prove this lemma. This is done by a method of induction that uses
the following secondary lemmas, where we suppose that conditions (Ia)–(IIc) hold.
These secondary lemmas will be proved in the next section.

LEMMA 3. Dt
n,∞ ≤ Qt−1

1n + Rt−1
n , where Dt

n,∞ = supf ∈H |�t−1
n (f ) −

�t−1∞ (f )|, Qt−1
1n = supf ∈H |n−1 ∑n

i=1 e−ZiF
t−1
n (Xi)f (Xi)Zi − Ee−ZF t−1

n (X) ×
f (X)Z| and Rt−1

n = E|e−ZF t−1
n (X) − e−ZF t−1∞ (X)|.

LEMMA 4. For any β > 0, we have PS[Qt−1
1n ≤ Ut−1

n ] ≥ 1 − 8n−β and

PS[Qt−1
2n ≤ Ut−1

n ] ≥ 1 − 8n−β . Here Qt−1
2n = |n−1 ∑n

j=1 e−Zj F t−1
n (Xj ) −

Ee−ZF t−1
n (X)| and

Ut−1
n = exp

(
t−1∑
s=1

|αs∞|
)

×
√

(32 logn/n){VC(H)t + β} + (32/n)VC(H)t log{e/VC(H)}

+ 2 exp

(
t−1∑
s=1

|αs∞|
)

exp

(
t−1∑
s=1

|αs
n − αs∞|

)
t−1∑
s=1

|αs
n − αs∞|.
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LEMMA 5. Rt
n ≤ exp(|αt∞|+|αt

n−αt∞|)(Rt−1
n +exp(

∑t−1
s=1 |αs∞|)|αt

n−αt∞|+
0.5|αt∞| exp(

∑t−1
s=1 |αs∞|)‖f t

n − f t∞‖2).

LEMMA 6. |2δt
n − 2δt∞| ≤ {Cn(F

t−1
n )}−1(Qt−1

1n + Rt−1
n + 2δt∞Qt−1

2n +
2δt∞Rt−1

n + 0.5 exp(
∑t−1

s=1 |αs∞|)‖f t
n − f t∞‖2).

LEMMA 7. Another implication of (Ib) is that the population version of the
criterion function at each step of “weak learning” is continuous; that is, for
any t = 1,2, . . . , �t∞(f ) is a continuous mapping from the L2(PX)-functions
on [0,1]d to 
.

LEMMA 8. Assume that conditions (Ib) and (IIc) hold so that �t−1∞ (f )

is continuous (see Lemma 7) and H is compact. Consider any approximate
maximizer f t

n = arg maxf ∈H �t−1
n (f ) such that �t−1

n (f t
n) = supf ∈H �t−1

n (f ) +
op(1). If Dt

n,∞ ≡ supf ∈H |�t−1
n (f ) − �t−1∞ (f )| = op(1) as n → ∞, then, for

any ε > 0, with probability tending to 1 as n → ∞, there exist maximizers
f t∞ = arg maxf ∈H �t−1∞ (f ) [such that �t−1∞ (f t∞) = supf ∈H �t−1∞ (f )] such that
‖f t

n − f t∞‖ < ε.

PROOF OF LEMMA 2. For s = 1,

D1
n,∞ = sup

f ∈H

∣∣∣∣∣
∣∣∣∣∣n−1

n∑
i=1

f (Xi)Zi

∣∣∣∣∣ − |Ef (X)Z|
∣∣∣∣∣

≤ sup
f ∈H

∣∣∣∣∣n−1
n∑

i=1

f (Xi)Zi − Ef (X)Z

∣∣∣∣∣,
which is at most

√
(32 logn/n){VC(H) + β} + (32/n)VC(H) log{e/VC(H)} with

probability at least 1 − 8n−β , for any β > 0, by the VC uniform bounding tech-
nique (Lemmas 3 and 4). Therefore, D1

n,∞ ≡ supf ∈H |�0
n(f ) − �0∞(f )| = op(1).

Now conditions (Ib) and (IIc) imply the continuity of �∞(f ) (see Lemma 7)
and the compactness of H . Then supf ∈H |�0

n(f ) − �0∞(f )| = op(1) implies
that for f 1

n = arg maxf ∈H �0
n(f ) we have f 1∞ = arg maxf ∈H �0∞(f ) such that

‖f 1
n − f 1∞‖ = op(1). (See also Lemma 8.) Note also that Q0

1n = op(1), Q0
1n = 0,

R0
n = 0. Therefore, |2δ1

n − 2δ1∞| = op(1) by Lemma 6. Then, due to the continuity
of the relationship between αs

n and 2δs
n for all n and s (note that singularities of the

relationship are avoided due to Preparatory Lemma 1), we have |α1
n −α1∞| = op(1)

also. Therefore, at s = 1, the results of the lemma hold and R0
n = 0 = op(1).

Now suppose that, for all s = 1, . . . , t − 1, the results of the lemma hold
and R0, . . . ,Rt−2 are all op(1). Then we have Ut−1

n = op(1), implying that
Qt−1

1n , Qt−1
2n and Rt−1

n are all op(1) due to Lemmas 4 and 5. Then Dt
n,∞ =

supf ∈H |�t−1
n (f ) − �t−1∞ (f )| is op(1) also, due to Lemma 3. So for f t

n =
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arg maxf ∈H �t−1
n (f ) we have f t∞ = arg maxf ∈H �t−1∞ (f ) such that ‖f t

n −f t∞‖ =
op(1). Then we apply Lemma 6. Note that

∣∣Cn(F
t−1
n ) − Ee−ZF t−1∞

∣∣ =
∣∣∣∣∣n−1

n∑
1

e−ZiF
t−1
n (Xi) − Ee−ZF t−1∞

∣∣∣∣∣
≤

∣∣∣∣∣n−1
n∑
1

e−ZiF
t−1
n (Xi) − Ee−ZF t−1

n

∣∣∣∣∣
+ ∣∣Ee−ZF t−1

n − Ee−ZF t−1∞
∣∣

≤
∣∣∣∣∣n−1

n∑
1

e−ZiF
t−1
n (Xi) − Ee−ZF t−1

n

∣∣∣∣∣
+ E

∣∣e−ZF t−1
n − e−ZF t−1∞

∣∣
= Qt−1

2n + Rt−1
n = op(1).

Then, on the right-hand side of Lemma 6, the factor {Cn(F
t−1
n )}−1 = {Ee−ZF t−1∞ +

op(1)}−1, where

E exp(−ZF t−1∞ ) = E exp

(
−Z

t−1∑
s=1

αs∞f s∞(X)

)
∈ E exp

(
±

t−1∑
s=1

|αs∞|
)

∈ (0,∞)

due to the finite boundedness of |αs∞| for all s (Preparatory Lemma 1). The other
factor on the right-hand side of Lemma 6 is op(1). Therefore, |2δt

n −2δt∞| = op(1)

and |αt
n − αt∞| = op(1) follows by a continuity argument. This completes the

induction proof for the lemma. �

5. Proof of secondary lemmas.

PROOF OF LEMMA 3. Note that

Dt
n,∞ = sup

f ∈H

∣∣|�̃t−1
n (f )| − |�̃t−1∞ (f )|∣∣

≤ sup
f ∈H

|�̃t−1
n (f ) − �̃t−1∞ (f )|

= sup
f ∈H

∣∣∣∣∣
{
n−1

n∑
i=1

e−ZiF
t−1
n (Xi)f (Xi)Zi − Ee−ZF t−1

n (X)f (X)Z

}

+ {
E

(
e−ZF t−1

n (X) − e−ZF t−1∞ (X)
)
f (X)Z

}∣∣∣∣∣,
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apply the triangle inequality and note that

sup
f ∈H

∣∣E(
e−ZF t−1

n (X) − e−ZF t−1∞ (X)
)
f (X)Z

∣∣ ≤ E
∣∣e−ZF t−1

n (X) − e−ZF t−1∞ (X)
∣∣.

This shows the further upper bound Qt−1
1n + Rt−1

n . �

PROOF OF LEMMA 4. By the triangle inequality,

Qt−1
1n = sup

f ∈H

∣∣∣∣∣n−1
n∑

i=1

e−ZiF
t−1
n (Xi)f (Xi)Zi − Ee−ZF t−1

n (X)f (X)Z

∣∣∣∣∣
is bounded above by T1 + T2 + T3 where

T1 = sup
f ∈H

∣∣∣∣∣n−1
n∑

i=1

exp
(
−Zi

t−1∑
s=1

αs∞f s
n (Xi)

)
f (Xi)Zi

− E exp

(
−Z

t−1∑
s=1

αs∞f s
n (X)

)
f (X)Z

∣∣∣∣∣,

T2 = sup
f ∈H

∣∣∣∣∣n−1
n∑

i=1

(
exp

(
−Zi

t−1∑
s=1

αs
nf

s
n (Xi)

)

− exp

(
−Zi

t−1∑
s=1

αs∞f s
n (Xi)

))
f (Xi)Zi

∣∣∣∣∣
and

T3 = sup
f ∈H

∣∣∣∣∣E
(

exp

(
−Z

t−1∑
s=1

αs
nf

s
n (X)

)
− exp

(
−Z

t−1∑
s=1

αs∞f s
n (X)

))
f (X)Z

∣∣∣∣∣.
Both T2 and T3 can be shown to be bounded above by

exp

(
t−1∑
s=1

|αs∞|
)

exp

(
t−1∑
s=1

|αs
n − αs∞|

)
t−1∑
s=1

|αs
n − αs∞|

by applying a first-order Taylor expansion. Note that T1 is bounded above by

exp

(
t−1∑
s=1

|αs∞|
)√

(32 logn/n){VC(H)t + β} + (32/n)VC(H)t log{e/VC(H)},

with probability at least 1 − 8n−β , for any β > 0, by applying the following
proposition, which is proved in the same way as the VC result, Theorem 12.5
of Devroye, Györfi and Lugosi (1996):
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PROPOSITION 3. Let Wn
1 and W be i.i.d. random vectors, ϕ ∈ � a family

of nonstochastic ( possibly multivariate) functions defined on the domain of W ,
g a nonstochastic function such that g(ϕ(W),W) ∈ [−M,M] for all W and all
ϕ ∈ �. Let s(�,n) = maxWn

1
card{ϕ(Wn

1 ) :ϕ ∈ �}. Then

P

[
sup
ϕ∈�

∣∣∣∣∣n−1
n∑

i=1

g
(
ϕ(Wi),Wi

) − Eg
(
ϕ(W),W

)∣∣∣∣∣ > ε

]
≤ 8s(�,n)e−nε2/32M2

for any ε > 0 and

P

[
sup
ϕ∈�

∣∣∣∣∣n−1
n∑

i=1

g
(
ϕ(Wi),Wi

) − Eg
(
ϕ(W),W

)∣∣∣∣∣
≤ M

√
(32/n){log s(�,n) + β log n}

]
≥ 1 − 8n−β

for all β > 0.

In our case, set ϕ = (f 1, . . . , f t ) ∈ Ht ≡ �, Wi = (Zi,Xi), W = (Z,X). Then
T1 is bounded above by

sup
ϕ∈�

∣∣∣∣∣n−1
n∑

i=1

exp

(
−Zi

t−1∑
s=1

αs∞f s(Xi)

)
f t (Xi)Zi

− E exp

(
−Z

t−1∑
s=1

αs∞f s(X)

)
f t (X)Z

∣∣∣∣∣.
Here M can be taken as exp(

∑t−1
s=1 |αs∞|) for application of the proposition and

s(�,n) ≤ s(H,n)t ≡
[
max
Xn

1

card{f (Xn
1 ) :f ∈ H }

]t

≤ {en/VC(H)}VC(H)t .

Combining the resulting bounds for T1, T2 and T3, we obtain the lemma for the
statement on Qt−1

1n . The proof for the statement on Qt−1
2n is similar. �

PROOF OF LEMMA 5. Note that

E
∣∣e−ZF t

n − e−ZF t∞
∣∣

= E
∣∣e−ZF t−1

n e−Zαt
nf

t
n − e−ZF t−1∞ e−Zαt∞f t∞

∣∣
≤ E

(∣∣e−Zαt
nf

t
n
∣∣ ∣∣e−ZF t−1

n − e−ZF t−1∞
∣∣) + E

(∣∣e−ZF t−1∞
∣∣ ∣∣e−Zαt

nf
t
n − e−Zαt∞f t∞

∣∣).
Note that ∣∣e−Zαt

nf
t
n
∣∣ ≤ e|αt

n| ≤ e|αt∞|+|αt
n−αt∞|,
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and use a first-order Taylor expansion to obtain
∣∣e−ZF t−1∞

∣∣ ∣∣e−Zαt
nf

t
n − e−Zαt∞f t∞

∣∣
≤ ∣∣e−Z(F t−1∞ +α̃t

nf̃
t
n)

∣∣ ∣∣αt
nf

t
n − αt∞f t∞

∣∣
≤ ∣∣e−Z(F t−1∞ +α̃t

nf̃
t
n)

∣∣(|f t
n ||αt

n − αt∞| + |αt∞||f t
n − f t∞|),

where α̃t
nf̃

t
n is between αt∞f t∞(X) and αt

nf
t
n(X). Note that |f t

n | = 1, |f t
n − f t∞| =

0.5(f t
n − f t∞)2,

exp
(−Z(F t−1∞ + α̃t

nf̃
t
n)

) ≤ exp

(
t−1∑
s=1

|αs∞| + |αt∞| + |αt
n − αt∞|

)
.

Combining these results, we then get

E
∣∣ exp(−ZF t

n) − exp(−ZF t∞)
∣∣

≤ exp
(|αt∞| + |αt

n − αt∞|)E| exp(−ZF t−1
n ) − exp(−ZF t−1∞ )

∣∣
+ exp

(
t−1∑
s=1

|αs∞| + |αt∞| + |αt
n − αt∞|

)

× (|αt
n − αt∞| + 0.5|αt∞|‖f t

n − f t∞‖2
L2(PX)

)
,

which proves the lemma. �

PROOF OF LEMMA 6. Note that

|2δt
n − 2δt∞| = ∣∣�̃t−1

n (f t
n)/Cn(F

t−1
n ) − �̃t−1∞ (f t∞)/C∞(F t−1∞ )

∣∣
= Cn(F

t−1
n )−1

× ∣∣(�̃t−1
n (f t

n) − �̃t−1∞ (f t∞)
) − 2δt∞

(
Cn(F

t−1
n ) − C∞(F t−1∞ )

)∣∣.
Now apply the triangle inequality. Note that

|�̃t−1
n (f t

n) − �̃t−1∞ (f t∞)| ≤ Qt−1
1n + Rt−1

n + 0.5 exp

(
t−1∑
s=1

|αs∞|
)
‖f t

n − f t∞‖2

by Lemma 3 and by using the triangle inequality we also have

|Cn(F
t−1
n ) − C∞(F t−1∞ )| ≤ Qt−1

2n + Rt−1
n .

Combining these results, we have the proof of the lemma. �

PROOF OF LEMMA 7. For any two L2(PX) functions f and f ′ on [0,1]d , we



26 W. JIANG

have

|�t∞(f ) − �t∞(f ′)| = ∣∣|�̃t∞(f )| − |�̃t∞(f ′)|∣∣
≤ |�̃t∞(f ) − �̃t∞(f ′)|
= ∣∣Ee−ZF t∞(X)Z{f (X) − f ′(X)}∣∣
≤

√
Ee−2ZF t∞(X)

√
E{f (X) − f ′(X)}2

≤ exp

(
t∑

s=1

|αs∞|
)
‖f − f ′‖L2(PX),

which implies continuity when all the |αs∞|’s are finite under (Ib) due to
Preparatory Lemma 1. �

PROOF OF LEMMA 8. We omit the time index since the statement above can
be for any t .

For any ε > 0, define �(ε) = {f ∈ H :‖f − f∞‖L2(PX) ≥ ε ∀f∞ =
arg maxf ∈H �∞(f )}, which is the set of elements in H that are at a distance of ε

or more away from the set of maximizers. Then �(ε) is compact since H is com-
pact. Note that δ(ε) ≡ supf ∈H �∞(f ) − supf ∈�(ε) �∞(f ) > 0. This is because
�∞(·) is continuous and �(ε) is compact, and thus supf ∈�(ε) �∞(f ) is attained
somewhere in �(ε), resulting in a value strictly smaller than supf ∈H �∞(f ).

Consider now any approximate maximizer fn = arg maxf ∈H �n(f ) such that
�n(fn) = supf ∈H �n(f ) + op(1). Let An be the event ‖fn − f∞‖ ≥ ε for all f∞.
[Here a maximizer f∞ ∈ H is such that �∞(f∞) = supf ∈H �∞(f ), which exists
due to the continuity of �∞ and the compactness of H .]

Assuming event An and picking any maximizer f∞ in the following argument,
we have

�∞(fn) − �∞(f∞) ≤ sup
f ∈�(ε)

�∞(f ) − �∞(f∞)

= sup
f ∈�(ε)

�∞(f ) − sup
f ∈H

�∞(f ) = −δ(ε).

Then we have

�n(fn) − sup
f ∈H

�n(f ) ≤ �n(fn) − �n(f∞)

= {�n(fn) − �∞(fn)}
+ {�∞(fn) − �∞(f∞)} + {�∞(f∞) − �n(f∞)}

≤ −δ(ε) + 2 sup
f∈H

|�n(f ) − �∞(f )|.
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Therefore, 2 supf ∈H |�n(f ) − �∞(f )| + supf ∈H �n(f ) − �n(fn) ≥ δ(ε) > 0,
which will be referred to as event Bn.

Therefore, we have shown that An implies Bn, which further implies that
P [An] ≤ P [Bn] → 0. [Note that supf ∈H |�n(f )−�∞(f )| and supf ∈H �n(f )−
�n(fn) are both op(1) by assumptions of the lemma, so P [Bn] → 0.] Therefore,
with probability tending to 1, the complement of An is true, which proves the
lemma. �

6. Lemmas related to condition (IIc).

LEMMA 9. Suppose H = {f :f = sgnϕ(·, θ), θ ∈ �}, ϕ(x, θ) is continuous
in θ for all x ∈ [0,1]d , PX[ϕ(X, θ) = 0] = 0 for all θ ∈ � and � is a compact
set in a metric space. Then H is compact in the metric space of L2(PX) functions
on [0,1]d .

PROOF. First, we show that F(θ) = sgnϕ(·, θ) is a continuous mapping
from � to L2(PX)-functions on [0,1]d . Then the lemma follows since H = F(�)

is a continuous image of a compact set �.
The mapping F(θ) is continuous for the following reasons. Consider a

sequence θk in � converging to any θ ∈ �. Then

‖F(θk) − F(θ)‖2
L2(PX)

=
∫
[0,1]d

{sgnϕ(x, θk) − sgnϕ(x, θ)}2PX(dx)

= 4PX[sgnϕ(X, θk) �= sgnϕ(X, θ)]
= 4PX[sgnϕ(X, θk) �= sgnϕ(X, θ), ϕ(X, θ) = 0]

+ 4PX[sgnϕ(X, θk) �= sgnϕ(X, θ), ϕ(X, θ) > 0]
+ 4PX[sgnϕ(X, θk) �= sgnϕ(X, θ), ϕ(X, θ) < 0]

= 4PX[sgnϕ(X, θk) �= sgnϕ(X, θ), ϕ(X, θ) = 0]
+ 4PX[sgnϕ(X, θk) = −1, ϕ(X, θ) > 0]
+ 4PX[sgnϕ(X, θk) = 1, ϕ(X, θ) < 0]

≤ 4PX[ϕ(X, θ) = 0]
+ 4PX[ϕ(X, θk) ≤ 0, ϕ(X, θ) > 0] + 4PX[ϕ(X, θk) ≥ 0, ϕ(X, θ) < 0].

The first term has been assumed to be 0. In the second term, PX[ϕ(X, θk) ≤ 0,

ϕ(X, θ) > 0] = 0 for all sufficiently large k since ϕ(X, θk) → ϕ(X, θ) > 0
due to the continuity. Similarly, the third term converges to 0 also. Therefore,
‖F(θk) − F(θ)‖2

L2(PX) → 0 as a result of θk → θ showing the continuity. �
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LEMMA 10. The set of “rectangular” functions on [0,1]d , Hrectangle =
{f :f = ∑K

k=1 ηk

∏d
j=1 I [xj ≤ ξ

j
k ], η′

ks and ξ i′
k s ∈ [−1,1]} with some finite K ,

is compact in L2(PX) under condition (Ia).

PROOF. Denote by θ the parameter vector including all components of ηk’s
and ξ

j
k ’s and let � be the corresponding compact set of θ ’s when the components

vary in [−1,1]. Denote by F(θ) and F(θ ′) two elements in Hrectangle, where θ ′ is

the parameter vector including all components of (η′
k)’s and {(ξ ′)jk}’s. Then, by

recursive applications of the triangle inequality, one can show that

‖F(θ ′) − F(θ)‖ =
∥∥∥∥∥

K∑
k=1

η′
k

d∏
j=1

I [xj ≤ (ξ ′)jk ] −
K∑

k=1

ηk

d∏
j=1

I [xj ≤ ξ
j
k ]

∥∥∥∥∥
=

∥∥∥∥∥
K∑

k=1

η′
k

d∏
j=1

I [xj ≤ (ξ ′)jk ] −
K∑

k=1

ηk

d∏
j=1

I [xj ≤ (ξ ′)jk ]

+
K∑

k=1

ηk

d∏
j=1

I [xj ≤ (ξ ′)jk] −
K∑

k=1

ηk

d∏
j=1

I [xj ≤ ξ
j
k ]

∥∥∥∥∥
≤

K∑
k=1

|η′
k − ηk| +

K∑
k=1

∥∥∥∥∥
d∏

j=1

I [xj ≤ (ξ ′)jk] −
d∏

j=1

I [xj ≤ ξ
j
k ]

∥∥∥∥∥
=

K∑
k=1

|η′
k − ηk|

+
K∑

k=1

∥∥∥∥∥(
I [x1 ≤ (ξ ′)1

k] − I [x1 ≤ ξ1
k ]) d∏

j=2

I [xj ≤ (ξ ′)jk ]

+ I [x1 ≤ ξ1
k ]

(
d∏

j=2

I [xj ≤ (ξ ′)jk ] −
d∏

j=2

I [xj ≤ ξ
j
k ]

)∥∥∥∥∥
≤

K∑
k=1

|η′
k − ηk| +

K∑
k=1

{
‖I [x1 ≤ (ξ ′)1

k] − I [x1 ≤ ξ1
k ]‖

+
∥∥∥∥∥

d∏
j=2

I [xj ≤ (ξ ′)jk ] −
d∏

j=2

I [xj ≤ ξ
j
k ]

∥∥∥∥∥
}

≤ · · ·

≤
K∑

k=1

|η′
k − ηk| +

K∑
k=1

d∑
j=1

‖I [xj ≤ (ξ ′)jk] − I [xj ≤ ξ
j
k ]‖
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=
K∑

k=1

|η′
k − ηk| +

K∑
k=1

d∑
j=1

√
P [Xj between (ξ ′)jk and ξ

j
k ],

which converges to 0 if θ ′ → θ in Euclidean norm, under condition (Ia). Therefore,
F(·) is continuous and Hrectangle = F(�) is compact due to the compactness of �.

�
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