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BOOTSTRAP CONFIDENCE BANDS FOR REGRESSION CURVES
AND THEIR DERIVATIVES

BY GERDA CLAESKENS1 AND INGRID VAN KEILEGOM2

Texas A&M University and Université catholique de Louvain

Confidence bands for regression curves and their first p derivatives are
obtained via local pth order polynomial estimation. The method allows
for multiparameter local likelihood estimation as well as other unbiased
estimating equations. As an alternative to the confidence bands obtained by
asymptotic distribution theory, we also study smoothed bootstrap confidence
bands. Simulations illustrate the finite sample properties of the methodology.

1. Introduction. Local polynomial estimation of a regression curve has been
studied for a variety of applications and models, ranging from the classical
regression setting [Cleveland (1979)], where the response is modelled as its mean
plus additive error, to local quasi-likelihood [Fan, Heckman and Wand (1995)],
local multiparameter likelihood [Aerts and Claeskens (1997)], local pseudo-
likelihood [Claeskens and Aerts (2000)] and local estimating equations [Carroll,
Ruppert and Welsh (1998)].

In the previous work the theoretical focus has mainly been on obtaining
consistency and asymptotic normality of the local polynomial estimators, thereby
providing the necessary ingredients to construct pointwise confidence intervals
for θ(x), the regression function of interest evaluated at x. This, however, is not
sufficient to get an idea about the variability of the estimator of the whole curve,
neither can it be used to correctly answer questions about the curve’s shape. We go
one step further. First, in Section 2, we consider a likelihood model f (y; θ(x))

for the conditional density of the response Y given that the covariate X equals x,
where the form of f is known, but θ(x) is unspecified, and we obtain the strong
uniform consistency of local polynomial estimators for the regression curve θ(x)

and for its derivatives up to order p, say, the degree of the polynomial chosen for
estimation. Thereby we extend the results of Zhao (1994) who focuses on local
constant estimation in a likelihood setting.

Further, we use this result to obtain the limit distribution of the maximal
deviation of supx∈B |θ̂ (x) − θ(x)| where the set B is compact. Following the
original idea of Bickel and Rosenblatt (1973), this leads to the construction of
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confidence bands, importantly, not only for the regression curve of interest, but
also for its derivatives up to order p.

The method of proof largely follows the construction of Härdle (1989), who
derives a maximal deviation result for local constant M-smoothers. An important
difference, though, is that in local polynomial estimation we deal with a set
of estimating equations instead of just a single one. Also some assumptions of
earlier work will be relaxed. In a classical regression setting, Xia (1998) obtains
a confidence band for a regression curve, using local linear estimators, thereby
explicitly including a nonparametric bias estimator. Explicit bias correction has
earlier been introduced by Eubank and Speckman (1993) for local constant kernel
estimation in regression. We avoid bias estimation by a slight undersmoothing as
compared to curve estimation. Undersmoothing is also advocated by Neumann and
Polzehl (1998), following earlier results of Hall (1991a, 1992) where it is shown
that undersmoothing is more efficient than explicit bias correction, when the goal
is to minimize the coverage error of the confidence band. Other approaches to
construct confidence bands are investigated by Knafl, Sacks and Ylvisaker (1985),
Hall and Titterington (1988) and Sun and Loader (1994), who assume bounds on
the derivatives of the curves.

Most earlier methods proposed in the literature restrict to asymptotic confidence
bands and since the convergence of normal extremes is known to be slow,
see, for example, Hall (1979, 1991b), all these bands perform relatively poorly
for small sample sizes. The motivation of the present paper is to propose a
solution to this problem by using a bootstrap approach. In particular, we apply
the smoothed bootstrap [see Silverman and Young (1987)] to construct novel
bootstrap based confidence bands, which unlike the asymptotic bands described
above, avoid application of asymptotic distributions. The bootstrap confidence
bands are available for the regression curve as well as for its derivatives. We show
that the bootstrap works in asymptotically obtaining the correct nominal levels
for the simultaneous confidence bands; a simulation study shows numerically the
advantages of the bootstrap approach. Neumann and Polzehl (1998) construct a
wild bootstrap in a simple regression setting of the form Y = µ(x) + ε, without
first obtaining results for asymptotic confidence bands. Their method is not
immediately generalized to the (likelihood) models which are the object of our
paper.

One of the main motivations to construct simultaneous confidence bands is to be
able to answer graphical questions about the curves. For example, if a 100(1−α)%
simultaneous confidence band for θ(·) over the set B does not contain any linear
function, this is evidence against the null hypothesis that θ(·) is linear in B . A lack
of fit test is therefore an immediate application of the proposed confidence bands.
A graphical representation of this confidence band indicates where possibly the
null hypothesis is rejected. Moreover, confidence bands give an idea about the
global variability of the estimator.
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Although the above results are established for one-parameter likelihood models,
we also study the extension to more than one parameter. In addition, the results are
extended to the situation where estimating equations, different from the full local
maximum likelihood equations, are considered.

Throughout the paper we focus on the case of one-dimensional covariates.
The extension to confidence bands for multidimensional covariates will suffer
from typical curse of dimensionality problems. In addition, we are unaware of
extensions of the Bickel and Rosenblatt construction to more dimensions.

The paper is organized as follows. In Section 2 we describe the model and the
estimators and state the main results. Extensions to models with more than one
parameter and to other estimation equations are given in Section 3. Section 4 deals
with a simulation study, and technical proofs and regularity conditions are placed
in Section 5.

2. Main results for one-parameter models. In Section 2.1 we first define
the estimators, obtain a strong uniform consistency rate and study the order of the
remainder term in a one-step approximation to the estimators. The construction of
confidence bands based on a maximal deviation result is explained in Section 2.2
and an alternative bootstrap approach is derived in Section 2.3.

All results will be presented for one-parameter likelihood models, with a one-
dimensional covariate. Extensions to other estimation schemes and models are
discussed in Section 3. Let us introduce some notation and definitions.

Suppose we employ a likelihood model f (y; θ(x)) for the conditional density
of the response Y given that X = x, where the form of f is known, but the
dependence of Y on the covariate x, via the regression curve θ(x), is unspecified.
Assuming this function to be sufficiently smooth, in the sense that it possesses at
least p continuous derivatives, locally θ(u) can be well approximated by

θ(x,u) =
p∑

j=0

θj (x)(u − x)j ,

where θj (x) = θ(j)(x)/j ! for j = 0, . . . , p. This is the idea behind local
polynomial estimation [Cleveland (1979)] and has since been studied in various
modelling frameworks by many authors, including Fan (1992, 1993), Ruppert and
Wand (1994), Aerts and Claeskens (1997) and Carroll, Ruppert and Welsh (1998).
For more references refer to Fan and Gijbels (1996).

For independent and identically distributed vectors (Xi, Yi), i = 1, . . . , n, the
local log likelihood at θ(x) = (θ0(x), . . . , θp(x))t is defined as

Ln{θ(x)} = 1

n

n∑
i=1

Kh(Xi − x) logf
(
Yi; θ(x,Xi)

)
,

where Kh(·) = K(·/hn)/hn for a kernel function K and bandwidth sequence hn,
tending to zero as n tends to infinity. Staniswalis (1989) introduced local constant
likelihood estimation, that is, taking p = 0; see also Zhao (1994).
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For all regularity and smoothness conditions and assumptions on the kernel and
bandwidth sequence, we refer to Section 5.

2.1. Strong uniform consistency. In a first theorem we obtain the existence of
at least one solution to the local log likelihood equations and the strong uniform
consistency of the local polynomial likelihood estimators, the proof of which is
summarized in Section 5. Under slightly stronger assumptions, a similar result for
local constant estimators is derived in Zhao (1994).

THEOREM 2.1. Assume conditions (H1a), (R0)–(R2). Then there exists, for
all x in an interval B , a sequence of solutions {θ̂(x)} to the likelihood equations,
j = 0, . . . , p,

∂

∂θj

Ln(θ) = 0

such that for each j = 0, . . . , p,

sup
x

|θ̂j (x) − θj (x)| = O
(
h−j

n {logn/(nhn)}1/2 + h2([(p−j)/2]+1)
n

)
a.s.,

where [a] denotes the integer part of a.

For asymptotic normality of these estimators, we refer to Aerts and Claeskens
(1997). Before giving a convenient matrix representation of the estimator’s
variance, we introduce some definitions. Np and Tp are matrices of dimension
(p + 1) × (p + 1) of which the (i + 1, j + 1)st entry equals νi+j (K) =∫

ui+jK(u) du and
∫

ui+jK2(u) du, respectively, i, j = 0, . . . , p. The matrix
Mjp(u) is obtained by replacing in Np the (j + 1)st, j = 0, . . . , p, column
by (1, u, . . . , up)t , and for |Np| �= 0, we define the modified kernel function
Kjp(u) = K(u)|Mjp(u)|/|Np|. Note that from Fan, Heckman and Wand [(1995),
Proof of Theorem 1] it follows that

∫
K2

jp(u) du = (N−1
p TpN−1

p )j+1,j+1.
Aerts and Claeskens (1997), in their Theorem 2, obtain that the asymptotic vari-

ance of the local polynomial estimator is given by V(θ(x)) = f −1
X (x)I−1(θ(x)) ×

(N−1
p TpN−1

p ), where fX denotes the density of X and I (θ(x)) is the local Fisher
information number

I (θ(x)) = −Ex

{
∂2

∂θ2 logf
(
Y ; θ(x)

)} = Ex

{
∂

∂θ
log f

(
Y ; θ(x)

)}2

.

Throughout, Ex denotes expectation conditional on X = x. Note that the last
equality in the above definition holds by Bartlett’s identities in a full likelihood
model.

For the practical construction of confidence bands, an estimator of V(θ(x)) is
required. The proposed estimator is constructed by application of the delta method,
leading to the so-called sandwich covariance estimator; see Carroll, Ruppert and
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Welsh (1998) for an application in the setting of local estimating equations. For the
current local likelihood estimator the variance estimator reads as follows. Define
the column vector Xi = (1, . . . , (Xi −x)p)t and the matrix Hn = Diag(1, . . . , h

p
n).

Let Bn(x) be the matrix of dimension (p + 1) × (p + 1) consisting of the second
partial derivatives of Ln(x), rescaled with the appropriate power of the bandwidth;
that is,

Bn(x) = 1

n

n∑
i=1

Kh(Xi − x)
∂2

∂θ2
logf

(
Yi; θ̂ (x,Xi)

)
(H−1

n Xi )(H−1
n Xi )

t ,

where θ̂ (x, u) = ∑p
j=0 θ̂j (x)(u − x)j . As part of the variance estimator, we also

define the matrix

Kn(x) = 1

n

n∑
i=1

hnK
2
h(Xi − x)

{
∂

∂θ
logf

(
Yi; θ̂ (x,Xi)

)}2

(H−1
n Xi )(H−1

n Xi)
t .

We define V̂(θ̂(x)) = B−1
n (x)Kn(x)B−1

n (x) as an estimator of the variance
V(θ̂(x)). In practice we might replace θ̂ (x,Xi) by θ̂ (Xi). Note that for lo-
cal likelihood estimators alternative variance estimators can be proposed and
used. For example, the entry in the first row and first column of the matrix
−Bn(x) is an estimator of fX(x)I (θ(x)), suggesting the variance estimator
(−Bn(x)1,1)

−1N−1
p TpN−1

p . For specific likelihood models, I (θ(x)) might be cal-
culated exactly. The next corollary reports on a consistency property of the
variance estimator V̂(θ̂(x)) and obtains a bound on the error of a one-step ap-
proximation to the local polynomial estimator θ̂(x). To make the exposition more
transparent, define An(x) to be the vector of first partial derivatives of Ln(x) with
respect to θ ; that is,

An(x) = 1

n

n∑
i=1

Kh(Xi − x)
∂

∂θ
logf

(
Yi; θ(x,Xi)

)
Xi(2.1)

and define the matrix J(x) = fX(x)I (θ(x))Np(x). For future use, denote g(x) =
fX(x)I (θ(x)).

COROLLARY 2.1. Assume conditions (H1), (R0)–(R2).

(i) For j, k = 0, . . . , p, supx |V̂jk(θ(x)) − Vjk(θ(x))| = oP {(nhn log n)−1/2}.
(ii) The following representation holds:

Hn

(
θ̂(x) − θ(x)

) = J(x)−1H−1
n An(x) + Rn(x),

where, for j = 0, . . . , p, supx |Rnj (x)| = oP {(nhn logn)−1/2}.

Part (ii) of this corollary provides the basis for the construction of one-step
estimators, thereby ignoring the remainder term in the expansion. In a local quasi-
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likelihood setting, Fan and Chen (1999) study one-step estimators based on a
similar expansion replacing J(x) by its empirical version −Bn(x). These one-step
estimators are particularly useful in otherwise heavily computationally intensive
bootstrap methods. A similar one-step approximation has been used in a bootstrap
approach by Claeskens and Aerts (2000). We will come back to this representation
for the construction of bootstrap confidence bands.

2.2. Asymptotic confidence bands. In this section we extend the asymptotic
distribution theory for local polynomial estimators in a likelihood framework with
the intent of constructing confidence bands based on asymptotic distribution theory
for extremes of Gaussian processes, dating back to Bickel and Rosenblatt (1973).
In Section 2.3 we develop a bootstrap method to achieve the same goal.

The construction of a confidence band for the components of θ(x) involves
a series of five steps, quite similar to those used in Härdle (1989) and Johnston
(1982). A major difference between our approach and the one used in these two
articles is that we do not impose certain technical assumptions on f that depend on
a sequence {an} that tends to infinity. See Section 5 for a more detailed discussion
of this issue. Another important difference from the results in Härdle (1989) is
that we do not have a single estimating equation, but instead have a set of p + 1
equations, one for each component θj (x), j = 0, . . . , p. A welcome consequence
of working with the vector θ(x) is that it enables us to obtain confidence bands not
only for the curve θ(·), but also for its derivatives θ(j)(·) up to order p. This feature
of local polynomial approximation for confidence band construction has, at least to
our knowledge, not been explored before, not even in simpler regression settings.
Another difference from earlier work is that we do not assume the boundedness
of our estimating equations; that is, the score vector does not need to be bounded
as a function of the response y, which would be an important restriction as it, for
example, excludes application to normal regression models.

Define for j = 0, . . . , p,

Ynj (x) = (nhn)
1/2h−j

n {I (θ(x))fX(x)}−1/2Anj(x).

Further, with F(·; θ(x)) and FX(·) denoting the cumulative distribution functions
corresponding to, respectively, f (·; θ(x)) and fX(·), define the Rosenblatt trans-
formation [Rosenblatt (1952)]

M(x,y) = (
FX(x),F

(
y; θ(x)

))
,

transforming (X,Y ) into (FX(X),F (Y ; θ(X))), which is uniformly distributed
on the unit square [0,1]2. In the next lemmas we establish asymptotically
equivalent expressions for Ynj (x), which will eventually lead to the construction
of confidence bands.
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LEMMA 2.1. Assume conditions (H), (R0)–(R3). Let

Ynj1(x) = h1/2
n g(x)−1/2

×
∫ ∫

Kh(z − x)

(
z − x

hn

)j ∂

∂θ
logf

(
y; θ(x, z)

)
dVn

(
M(z,y)

)
,

where {Vn} is a sequence of four-sided tied-down Wiener processes, defined in
Lemma 5.1. Then, for j = 0, . . . , p,

sup
x

|Ynj (x) − Ynj1(x)| = oP

(
(log n)−1/2).

LEMMA 2.2. Assume conditions (H), (R0)–(R3). Let

Ynj2(x) = h1/2
n g(x)−1/2

×
∫ ∫

Kh(z − x)

(
z − x

hn

)j ∂

∂θ
log f

(
y; θ(z)

)
dVn

(
M(z,y)

)
.

Then, for j = 0, . . . , p,

sup
x

|Ynj1(x) − Ynj2(x)| = OP (h1/2
n ).

LEMMA 2.3. Assume conditions (H), (R0)–(R3). Let

Ynj3(x) = h1/2
n g(x)−1/2

×
∫ ∫

Kh(z − x)

(
z − x

hn

)j ∂

∂θ
log f

(
y; θ(z)

)
dWn

(
M(z,y)

)
,

where {Wn} is a sequence of standard bivariate Wiener processes satisfying
Vn(u, v) = Wn(u, v) − uWn(1, v) − vWn(u,1) + uvWn(1,1). Then, for j =
0, . . . , p,

sup
x

|Ynj2(x) − Ynj3(x)| = OP (h1/2
n ).

LEMMA 2.4. Assume conditions (H), (R0)–(R3). Let

Ynj4(x) = h1/2
n g(x)−1/2

∫ ∫
Kh(z − x)

(
z − x

hn

)j

g(z)1/2 dW(z),

where W is the Wiener process on the support of X. Then, for j = 0, . . . , p,
Ynj3(x) and Ynj4(x) have the same distribution.

LEMMA 2.5. Assume conditions (H), (R0)–(R3). Let

Ynj5(x) = h1/2
n

∫
Kh(z − x)

(
z − x

hn

)j

dW(z).

Then, for j = 0, . . . , p,

sup
x

|Ynj4(x) − Ynj5(x)| = OP (h1/2
n ).
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The following theorem gives a maximal absolute deviation result for the local
polynomial estimators of the curve θ(·) and of its derivatives up to order p. First,
we need some definitions. Let Qp be a matrix of dimension (p + 1) × (p + 1)

of which the (i + 1, j + 1)st entry equals
∫

ui+j {K ′(u)}2 du − 1
2{i(i − 1) +

j (j − 1)} ∫
ui+j−2K2(u) du, i, j = 0, . . . , p. Further, for j = 0, . . . , p, define the

kernel dependent constant Cj = (N−1
p QpN−1

p )j+1,j+1/
∫

K2
jp .

THEOREM 2.2. Assume conditions (H), (R0)–(R3), and define the random
variable

Znj (x) = (nh2j+1
n )1/2(θ̂j (x) − θj (x)

){
V̂jj

(
θ̂(x)

)}−1/2
,

and the sequence znj = (−2 loghn)
1/2 + (−2 loghn)

−1/2 log(C
1/2
j /(2π)). Then,

for j = 0, . . . , p,

P

{
(−2 loghn)

1/2
(

sup
x∈B

|Znj (x)| − znj

)
< z

}
→ exp

(−2 exp(−z)
)
.

This theorem leads immediately to the definition of the confidence bands for the
components of θ(x).

COROLLARY 2.2. Assume conditions (H), (R0)–(R3). A (1 − α)100% confi-
dence band for θ(j)(·), j = 0, . . . , p, over region B , is given by the collection of
all curves ϑj belonging to the set{

ϑj : sup
x∈B

[|j !θ̂j (x) − ϑj(x)|{V̂jj

(
θ̂(x)

)}−1/2] ≤ Lαj

}
,

where for j = 0, . . . , p,

Lαj = j !(nh2j+1
n )−1/2{

(−2 loghn)
1/2

+ (−2 loghn)
−1/2{

xα + log
(
C

1/2
j /(2π)

)}}
,

and xα = − log{−0.5 log(1 − α)}.

This approach contrasts the explicit bias corrected confidence bands of Eubank
and Speckman (1993) and Xia (1998), where, due to forcing the bandwidth to
be optimal for estimation, a bias correction term needs to be added to the curve
estimator in order to obtain correctly centered confidence bands, that is, bands for
the regression curves themselves, not for their respective expected values of the
estimated curves. Explicit “undersmoothing” for the construction of a confidence
band in heteroscedastic regression models is proposed by Neumann and Polzehl
(1998), following results earlier obtained by Hall (1991a, 1992) in the context
of density estimation. There it is shown that undersmoothing outperforms bias
correction.
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Our theoretical investigation shows that a bandwidth

o
(
(n × log n)−1/(4[(p−j)/2]+2j+5)

)
is sufficient for the results to hold. This bandwidth goes to zero faster than the rate
which minimizes the mean (integrated) squared error used for curve estimation by
a factor o((logn)−1/(2p+3)) for p − j odd, and o((logn)−1/(2p+5)) for p − j even.
We do not prove this rate to be optimal in any sense.

In our numerical simulation work we use the bandwidth sequence which
minimizes coverage error by performing a grid search. An interesting topic of
further research is a determination of a data-driven “optimal” bandwidth.

2.3. Bootstrap confidence bands. In this section we propose a bootstrap
procedure and construct a bootstrap confidence band for the unknown θ(x) and its
derivatives up to order p, which serves as an alternative to the bands constructed in
Corollary 2.2. The latter bands are based on the asymptotic results of Theorem 2.2,
and as will be seen in the simulations, the convergence to this asymptotic
distribution is quite slow. For relatively small sample sizes the bootstrap band is
therefore a useful alternative. The bands we propose in this section can easily be
adopted to the classical nonparametric regression context, where these bands and
in particular those of the derivative curves have, to our knowledge, never been
proposed.

We generate bootstrap resamples by using a smoothed bootstrap procedure.
Let gn = hnσ̂Y /σ̂X and

f̂ (x, y) = 1

nhngn

n∑
i=1

K

(
Xi − x

hn

,
Yi − y

gn

)
,

be the bivariate density estimator of (X,Y ), where σ̂X and σ̂Y are the sample
standard deviations of X and Y . The bootstrap resamples (X∗

1, Y ∗
1 ), . . . , (X∗

n, Y
∗
n )

are n independent pairs, where for each i, (X∗
i , Y

∗
i ) ∼ f̂ . We refer to Silverman

and Young (1987) for more details about the smoothed bootstrap. We chose to
use in the definition of f̂ the same bandwidth hn as before, since simulations
indicate that this choice works well in practice. It is possible, however, to work with
different bandwidths for the bootstrap and for the construction of the confidence
bands. The reason for generating bootstrap data from f̂ , rather than from the
bivariate empirical distribution of the observations (Xi, Yi), i = 1, . . . , n, is that
the asymptotic theory requires the bootstrap distribution to be smooth. More
specifically, for the smoothed bootstrap the Rosenblatt transform of (X∗, Y ∗) is
uniformly distributed on [0,1]2, a property which does not necessarily hold
when the distribution of (X∗, Y ∗) is not continuous. Using these bootstrap data,
we construct one-step Fisher-scoring estimators in the bootstrap world, hereby
avoiding any iterative calculation methods to obtain the bootstrap estimators. We
propose the following bootstrap analogue of the variance estimator V̂(θ̂(x)):

V̂∗(
θ̂(x)

) = B−1
n (x)K∗

n(x)B−1
n (x),
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where

K∗
n(x) = 1

n

n∑
i=1

hnK
2
h(X∗

i − x)

{
∂

∂θ
logf

(
Y ∗

i ; θ̂ (x,X∗
i )

)}2

(H−1
n X∗

i )(H
−1
n X∗

i )
t ,

with X∗
i = (1, . . . , (X∗

i − x)p)t . In a similar fashion we obtain the bootstrap local
score vector A∗

n(x),

A∗
n(x) = 1

n

n∑
i=1

Kh(X
∗
i − x)

∂

∂θ
logf

(
Y ∗

i ; θ̂(x,X∗
i )

)
X∗

i

− 1

n

n∑
i=1

E∗
[
Kh(X

∗
i − x)

∂

∂θ
logf

(
Y ∗

i ; θ̂ (x,X∗
i )

)
X∗

i

]
,

where E∗ denotes expectation, conditionally on the data (Xi, Yi), i = 1, . . . , n. For
future use, let f̂X(x) = n−1 ∑n

i=1 Kh(Xi −x) and F̂ (y; θ(x)) = f̂ −1
X (x)

∫ y
−∞ f̂ (x,

t) dt .
We can now define θ̂

∗
(x), the bootstrap estimator of θ(x),

Hn

(
θ̂

∗
(x) − θ̂(x)

) = −B−1
n (x)H−1

n A∗
n(x),

which we call a one-step estimator, since the above equation is the bootstrap
analogue of the one-term expansion of θ̂(x) given in Corollary 2.1 (without the
remainder term). See also Aerts and Claeskens (2001), for a similar bootstrap
estimator of θ(x).

In the next theorem we establish the bootstrap analogue of Theorem 2.2. The
proof is given in Section 5.

THEOREM 2.3. Assume conditions (H), (R0)–(R4), and define the random
variables

Z
(1)∗
nj (x) = (nh2j+1

n )1/2(θ̂∗
j (x) − θ̂j (x)

){
V̂jj

(
θ̂(x)

)}−1/2
,

Z
(2)∗
nj (x) = (nh2j+1

n )1/2(θ̂∗
j (x) − θ̂j (x)

){
V̂ ∗

jj

(
θ̂(x)

)}−1/2
.

Then, for j = 0, . . . , p and k = 1,2,

P ∗
{
(−2 loghn)

1/2
(

sup
x∈B

∣∣Z(k)∗
nj (x)

∣∣ − znj

)
< z

}
→ exp

(−2 exp(−z)
)

a.s.,

where znj is defined in Theorem 2.2 and where P ∗ denotes probability, condition-
ally on the data (Xi, Yi), i = 1, . . . , n.

This result together with Theorem 2.2 shows that supx |Znj (x)| and

supx |Z(k)∗
nj (x)|, k = 1,2, have the same limiting distribution. From this, we di-

rectly obtain two bootstrap confidence bands for the components of θ(x).
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COROLLARY 2.3. Assume conditions (H), (R0)–(R4). A (1 − α)100% confi-
dence band for θ(j)(·), j = 0, . . . , p, over region B , is given by the collection of
all curves ϑj belonging to the set{

ϑj : sup
x∈B

[|j !θ̂j (x) − ϑj (x)|{V̂jj

(
θ̂(x)

)}−1/2] ≤ L
(k)∗
αj

}
, k = 1,2,

where the bound L
(1)∗
αj satisfies

P ∗
(
j ! sup

x∈B

[|θ̂∗
j (x) − θ̂j (x)|{V̂jj

(
θ̂(x)

)}−1/2] ≤ L
(1)∗
αj

)
= 1 − α,

and L
(2)∗
αj satisfies

P ∗
(
j ! sup

x∈B

[|θ̂∗
j (x) − θ̂j (x)|{V̂ ∗

jj

(
θ̂(x)

)}−1/2] ≤ L
(2)∗
αj

)
= 1 − α.

3. Applications and extensions. One important class of likelihood models
are the generalized linear models, where the conditional density of the response Y

given the covariate x belongs to a one-parameter exponential family

f
(
y; θ(x)

) = exp{yθ(x) − b(θ(x)) + c(y)}
for known functions b and c [see, e.g., McCullagh and Nelder (1989)]. Well-known
members of this family are the known variance normal regression model, and the
inverse Gaussian and gamma distributions. The results in Section 2 immediately
apply to these generalized linear models.

3.1. Multiparameter likelihood. Although the class of one-parameter mod-
els is already quite large, it does not include the commonly used Gaussian
heteroscedastic regression model Yi = µ(Xi) + σ(Xi)εi where the εi are stan-
dard normal random variables. In the two-parameter model f (yi; θ1(xi), θ2(xi))

both curves [e.g., θ1(x) = µ(x) and θ2(x) = σ 2(x)] can be estimated, simultane-
ously, by local polynomial estimators; see Aerts and Claeskens (1997). There it is
advised to take both polynomials of equal degree p, which we will also assume
here. Note that a link function can be included at this stage. The two-parameter
normal model is actually a special example since µ(x) and σ 2(x) are orthogonal;
that is, the corresponding Fisher information matrix is a diagonal matrix, imply-
ing that a confidence band for µ(x) may be constructed as in the one-parameter
case, provided an estimator for the variance σ 2(x) is available. We might use the
estimator resulting from the above described simultaneous estimation procedure
or use any other estimator such as, for example, the variance estimator of Ruppert,
Wand, Holst and Hössjer (1997). Other interesting multiparameter models include
the generalized extreme value and Pareto distributions; see, respectively, Davison
and Ramesh (2000) and Beirlant and Goegebeur (2004) for application of local
polynomial estimation.
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Without loss of generality we restrict attention to two-parameter models. For
local pth order estimation in a two-parameter model, there now is a 2(p + 1)-
dimensional vector θ(x) = (θ1(x)t , θ2(x)t )t , where, for r = 1,2, θrj (x) =
θ

(j)
r (x)/j !.

Almost sure consistency and a maximal deviation result are obtained in
this multiparameter setting, for which we introduce the following notation. For
r = 1,2, the (p + 1)-dimensional vectors Anr are defined similarly as for An, but
now taking partial derivatives,

Anr(x) = 1

n

n∑
i=1

Kh(Xi − x)
∂

∂θr

log f
(
Yi; θ(x,Xi)

)
Xi .

The 2 × 2 local Fisher information matrix I(θ1(x), θ2(x)) has as (r, s)th entry
Ex[−(∂2/∂θr ∂θs) logf (Y ; θ1(x), θ2(x))]. Further, the earlier defined matrix J(x)

is now equal to J(x) = fX(x)I(θ1(x), θ2(x)) ⊗ Np(x), where ⊗ denotes the
Kronecker product.

Crucial for the derivation is the asymptotic behavior of the random variables

Ynrj (x) = (nhn)
1/2h−j

n

(
I−1(

θ1(x), θ2(x)
))1/2

rr f
−1/2
X (x)Anrj (x),

where r = 1,2 and j = 0, . . . , p. A general theorem is presented in Section 3.3.

3.2. Other estimating equations. When the functional form of the likelihood
of the data is not known, or when we do not wish to use a full likelihood
approach, other estimation schemes are available. We first give some examples,
before deriving the results.

Our first example is pseudolikelihood estimation [Arnold and Strauss (1991)],
where for a multivariate response vector, the joint density of the data is replaced
by a product of conditional densities which do not necessarily represent a joint
density. The motivation behind this estimation technique is to avoid the calculation
of a complicated normalizing constant, which frequently arises in exponential
family models [Arnold, Castillo and Sarabia (1992)]. Let A represent the set
of all 2m − 1 vectors a of length m = dim(Y), consisting solely of zeros and
ones, with each vector having at least one nonzero entry, and {γa | a ∈ A} a set
of 2m − 1 given real numbers, not all zero. Denote by Y(a) the subvector of Y
corresponding to the nonzero components of a with associated (marginal) density
function f (a)(y(a); θ1(x), θ2(x)). In a two-parameter model the logarithm of the
local pseudolikelihood is defined as

1

n

n∑
i=1

Kh(Xi − x)
∑
a∈A

γa log f (a)
(
Y(a)

i; θ1(x,Xi), θ2(x,Xi)
)
.

We refer to Claeskens and Aerts (2000) for more about local polynomial estimation
in these models, also for the situation that the functions f (a) are possibly
misspecified.
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In cases where the likelihood of the data is not available, a quasi-likelihood
function can specify the relationship between mean and variance of the response
[McCullagh and Nelder (1989) and Wedderburn (1974)]. For example, let V (µ(x))

represent the conditional variance of Y given x. Then the quasi-likelihood
function Q is such that (∂/∂µ)Q(y;µ) = (y − µ)/V (µ). Fan, Heckman and
Wand (1995) introduced local polynomial estimation in such models by defining
the estimators to be the maximizers with respect to components of θ(x) of the
following function:

n∑
i=1

Q
(
Yi;g−1(θ(x,Xi)

))
Kh(Xi − x).

In the above, g is a known link function, such that θ̂ (x) = g(µ̂(x)). For one-
parameter exponential family models, using the canonical link function, quasi-
likelihood and likelihood estimation coincide.

All of the above examples, including M-estimation [Huber (1967)], fit in
the general estimating equations framework. Without loss of generality, as-
sume that there are two-parameter functions θ(x) = (θ1(x), θ2(x)) for which
ψ1(Y ; θ1(x), θ2(x)) and ψ2(Y ; θ1(x), θ2(x)) are two unbiased estimating functions
in the sense that Ex{ψr(Y ; θ(x))} = 0, for r = 1,2. Local polynomial estimators,
both of degree p, are solutions to the following set of equations:

1

n

n∑
i=1

Kh(Xi − x)ψr

(
Yi; θ1(x,Xi), θ2(x,Xi)

)
Xi = 0, r = 1,2.

We refer to Carroll, Ruppert and Welsh (1998) for more details and examples about
local estimating equations. This estimating framework is particularly useful for a
multivariate response vector. It is straightforward to extend the theorems to models
with more than two-parameter functions.

3.3. Main result. In order to formulate our main theorem, define the 2 × 2
matrices I and K with (r, s)th components

Irs(θ(x)) = Ex

{
−∂ψr

∂θs

(
Y ; θ(x)

)}

and

Krs(θ(x)) = Ex

{
ψr

(
Y ; θ(x)

)
ψs

(
Y ; θ(x)

)}
.

Note that for local likelihood estimation where ψr = (∂/∂θr) logf , by Bartlett’s
identities, the matrices I and K coincide.

Further, let

Vr;jj (θ(x)) = (
I−1(θ(x))K(θ(x))I−1(θ(x))

)
rrf

−1
X (x)

∫
K2

jp
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be the (j, j)th component, j = 0, . . . , p, of the asymptotic variance matrix
associated with local polynomial estimation of θr(x), r = 1,2. As its estimator
we define

V̂r;jj (θ̂(x)) = (
B−1

n (x)Kn(x)B−1
n (x)

)
r̃ j̃,

where Bn and Kn are partitioned matrices with (p + 1) × (p + 1) submatrices
Bn;rs and Kn;rs , respectively, r, s = 1,2,

Bn,rs = 1

n

n∑
i=1

Kh(Xi − x)
∂

∂θs

ψr

(
Yi; θ̂(x,Xi)

)
(H−1

n Xi )(H−1
n Xi )

t ,

Kn,rs = 1

n

n∑
i=1

hnK
2
h(Xi − x)ψr

(
Yi; θ̂(x,Xi)

)

× ψs

(
Yi; θ̂(x,Xi)

)
(H−1

n Xi)(H−1
n Xi)

t .

The subscript notation r̃, j̃ denotes that we take the j th diagonal entry of the
(r, r)th submatrix.

We now present the construction of confidence bands for multiparameter curves
using local estimating equations.

THEOREM 3.1. Assume conditions (H), (R0) and (R1′)–(R3′). A 100(1−α)%
confidence band for the j th derivative, j = 0, . . . , p, of θr(·), r = 1,2, over
region B , is the collection of all curves ϑrj belonging to the set{

ϑrj : sup
x∈B

[|j !θ̂rj (x) − ϑrj (x)|{V̂r;jj
(
θ̂(x)

)}−1/2] ≤ Lαj

}
,

where Lαj is as in Corollary 2.2.
Bootstrap confidence bands are constructed analogously as in Corollary 2.3.

3.4. Application to lack of fit testing. Checking whether a curve ϑ(·) belongs
to a simultaneous confidence band for θ(j)(·) corresponds to testing the null
hypothesis H0 : θ(j)(x) = ϑ(x) for all x ∈ B versus the alternative hypothesis
Ha : θ(j)(x) �= ϑ(x) for some x ∈ B . It is readily obtained that this coincides with
comparing the value of the test statistic

sup
x∈B

{
V̂jj

(
θ̂(x)

)−1/2|j !θ̂j (x) − ϑ(x)|}
to the critical value Lαj , defined in Corollary 2.2. Rejection takes place for values
bigger than the critical value. For a similar hypothesis test, Fan and Zhang (2000)
showed that a composite null hypothesis H0 : θ(j)(x) = ϑ(x, ν), with the parameter
vector ν unspecified, can be dealt with in a similar way, substituting for ν a root-n
consistent estimator.
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The power of this test will suffer from the same convergence problems as
discussed before; therefore, for small or moderately sized samples, we advise using
a bootstrap version of the test instead. We refer to Aerts and Claeskens (2001),
where a procedure to generate bootstrap data under the null model is proposed for
(generalized) estimating equation models. Note that in certain situations, the model
under the null hypothesis is completely specified, and hence in these cases, data
can be generated directly from the true model, instead of making use of asymptotic
or bootstrap results. This is, for example, the case for local likelihood models
containing a single parameter θ(x), which is fully specified under H0.

4. Simulations. In this section we apply the methods discussed above
in a simulation study. For comparison purposes we also include the bias-
corrected confidence bands of Xia (1998) with plug-in bandwidth choice. We
construct confidence bands based on local linear estimators (p = 1), and use the
Epanechnikov kernel function. For the confidence bands based on the asymptotic
distribution theory, as well as for the two bootstrap methods, we perform a grid
search to find the bandwidth which minimizes simulated coverage error.

We generate data from the normal regression model

Yi = µ(Xi) + σ(Xi)εi,

where the independent regression variables Xi have a uniform distribution on the
unit interval, µ(x) = x(1 − x) and the error terms εi are independent standard
Gaussian random variables.

In the first setting we take σ(x) = 0.1. Table 1 presents the simulation results
for three sample sizes, n = 50,100 and 200, and two nominal values for coverage
probability, 90% and 95%. Simulated coverage probabilities together with the
calculated area of the confidence band are obtained for the curve µ(·) as well as for
its first derivative µ′(·). Note that the method of Xia (1998) does not provide a band
for the latter curve. 500 simulation runs are carried out and for each simulation,
500 bootstrap samples are generated.

From Table 1 we observe that, for the asymptotic method, coverage probabilities
improve with increasing sample size. Results for the derivative curve (j = 1) are
better than for the curve itself, although the bands are wider. For this particular
setting, Xia’s method, focusing on the curve itself, obtains a larger coverage
probability than the asymptotic method, though still significantly smaller than
the nominal coverage. Both bootstrap methods arrive at about nominal coverage.
It is observed that the size of the bands decreases with increasing sample size.
Also the effect of slow convergence for the asymptotic methods illustrates itself
clearly in showing smaller coverage errors for the larger sample sizes. For j = 0,
bootstrap method 2 has slightly narrower bands than bootstrap method 1; this
reverses for j = 1, where bootstrap 1 is preferred.



BOOTSTRAP CONFIDENCE BANDS 1867

TABLE 1
Simulated coverage probabilities and areas of nominal 90% and 95% confidence
bands. j = 0 and j = 1 denote the results for, respectively, the curves µ and µ′,
by local linear estimation following Xia (1998), asymptotic distribution theory
and the two bootstrap methods as discussed in Section 2. Data are generated

from a homoscedastic model

Nominal j = 0 j = 1

cov. (%) n Method Cov. prob. Area Cov. prob. Area

90 50 Xia 0.738 0.171 — —
Asympt. 0.566 0.120 0.744 1.164
Bootst. 1 0.902 0.218 0.896 1.312
Bootst. 2 0.902 0.206 0.898 1.378

100 Xia 0.758 0.121 — —
Asympt. 0.670 0.104 0.844 1.002
Bootst. 1 0.890 0.143 0.910 0.881
Bootst. 2 0.902 0.129 0.902 0.867

200 Xia 0.760 0.086 — —
Asympt. 0.762 0.083 0.864 0.948
Bootst. 1 0.912 0.097 0.898 0.713
Bootst. 2 0.870 0.087 0.900 0.995

95 50 Xia 0.840 0.191 — —
Asympt. 0.688 0.133 0.826 1.167
Bootst. 1 0.952 0.268 0.950 1.593
Bootst. 2 0.954 0.241 0.948 2.112

100 Xia 0.842 0.136 — —
Asympt. 0.784 0.110 0.920 1.013
Bootst. 1 0.958 0.173 0.946 0.968
Bootst. 2 0.948 0.142 0.946 0.903

200 Xia 0.850 0.096 — —
Asympt. 0.862 0.096 0.934 1.100
Bootst. 1 0.950 0.110 0.950 0.755
Bootst. 2 0.940 0.102 0.950 1.128

In simulation setting 2, data are generated according to a heteroscedastic model
where σ(x) = 0.1 + 0.06x. Table 2 presents the results when a global variance
estimator is used. Even though heteroscedasticity is not explicitly accounted for
in estimating σ , a local Fisher information number is calculated. Both bootstrap
methods perform very well, clearly outperforming Xia’s and the asymptotic
method. Note that for j = 0, the area of bootstrap 2’s bands is on average smaller
or very comparable to that following Xia’s approach, while at the same time the
bootstrap achieves the correct coverage probability.
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TABLE 2
Simulated coverage probabilities and areas of nominal 90% and 95% confidence
bands. j = 0 and j = 1 denote the results for, respectively, the curves µ and µ′ ,
by local linear estimation following Xia (1998), asymptotic distribution theory,
and the two bootstrap methods as discussed in Section 2. Data are generated

from a heteroscedastic model, global variance estimation

Nominal j = 0 j = 1

cov. (%) n Method Cov. prob. Area Cov. prob. Area

90 50 Xia 0.722 0.233 — —
Asympt. 0.590 0.147 0.770 1.118
Bootst. 1 0.902 0.261 0.906 1.459
Bootst. 2 0.902 0.260 0.898 1.662

100 Xia 0.742 0.156 — —
Asympt. 0.730 0.120 0.860 1.888
Bootst. 1 0.900 0.177 0.888 0.967
Bootst. 2 0.902 0.169 0.908 1.005

200 Xia 0.766 0.112 — —
Asympt. 0.812 0.098 0.896 1.238
Bootst. 1 0.906 0.120 0.894 0.813
Bootst. 2 0.858 0.108 0.882 1.273

95 50 Xia 0.794 0.262 — —
Asympt. 0.724 0.171 0.868 1.326
Bootst. 1 0.948 0.318 0.952 1.744
Bootst. 2 0.952 0.318 0.946 2.097

100 Xia 0.838 0.175 — —
Asympt. 0.854 0.142 0.934 1.510
Bootst. 1 0.956 0.215 0.944 1.122
Bootst. 2 0.948 0.179 0.956 1.194

200 Xia 0.870 0.125 — —
Asympt. 0.902 0.109 0.946 1.340
Bootst. 1 0.956 0.141 0.950 0.956
Bootst. 2 0.936 0.124 0.958 1.558

To obtain the results presented in Table 3 we explicitly take the heteroscedas-
ticity into account by locally estimating the variance function. This additional
difficulty is reflected in somewhat lower coverage probabilities, especially for
bootstrap 2. Also in this setting bootstrap 1 gives slightly wider confidence bands
for the curve (j = 0), while bootstrap 2 has somewhat wider bands for the deriva-
tive curve (j = 1). Note that Xia’s bands are not available here.

Overall, both bootstrap methods perform very well in achieving nearly perfect
simulated coverage probabilities, while not sacrificing much on the width of the
bands.



BOOTSTRAP CONFIDENCE BANDS 1869

TABLE 3
Simulated coverage probabilities and areas of nominal 90% and 95% confidence
bands. j = 0 and j = 1 denote the results for, respectively, the curves µ and µ′,

by local linear estimation using asymptotic distribution theory, and the two
bootstrap methods as discussed in Section 2. Data are generated

from a heteroscedastic model, local variance estimation

Nominal j = 0 j = 1

cov. (%) n Method Cov. prob. Area Cov. prob. Area

90 50 Asympt. 0.588 0.149 0.770 1.267
Bootst. 1 0.798 0.281 0.894 2.154
Bootst. 2 0.832 0.246 0.842 2.519

100 Asympt. 0.730 0.120 0.862 1.853
Bootst. 1 0.872 0.201 0.898 1.407
Bootst. 2 0.836 0.140 0.868 2.358

200 Asympt. 0.814 0.099 0.898 0.903
Bootst. 1 0.906 0.140 0.902 0.935
Bootst. 2 0.846 0.103 0.880 1.021

95 50 Asympt. 0.718 0.167 0.870 1.202
Bootst. 1 0.864 0.335 0.950 2.840
Bootst. 2 0.946 0.430 0.936 2.530

100 Asympt. 0.854 0.142 0.936 1.759
Bootst. 1 0.936 0.196 0.950 1.486
Bootst. 2 0.914 0.161 0.942 1.779

200 Asympt. 0.904 0.111 0.948 1.660
Bootst. 1 0.942 0.129 0.954 1.024
Bootst. 2 0.922 0.114 0.936 1.321

5. Regularity conditions and proofs.

CONDITIONS.

(H) (H1a) The bandwidth sequence hn tends to zero as n → ∞, in such a way
that nhn/ logn → ∞ and hn ≥ (log n/n)1−2/λ for λ as in condi-
tion (R2).

(H1b) (logn)3/(nhn) → 0 and for j = 0, . . . , p, nh
4[(p−j)/2]+2j+5
n ×

logn → 0.
(H2) n−1h

−(1+b)
n (log n)5+b = O(1) for some b ≥ 1.

(R0) The kernel K is a symmetric, continuously differentiable p.d.f. on [−1,1]
taking on the value zero at the boundaries.

The design density fX is differentiable on B = [b1, b2], the derivative
is continuous and infx∈B fX(x) > 0. The function θ(x) has 2([p/2] + 1)

continuous derivatives on B .
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(R1) For every y, third partial derivatives of f (y, θ) with respect to θ exist and
are continuous in θ . The Fisher information I (θ(x)) possesses a continuous
derivative and infx∈B I (θ(x)) > 0.

(R2) There exists a neighborhood N(θ(x)) such that

max
k=1,2

sup
x∈B

∥∥∥∥ sup
θ∈N(θ(x))

∣∣∣∣ ∂k

∂θk
log f (Y ; θ)

∣∣∣∣
∥∥∥∥
λ,x

< ∞

for some λ ∈ (2,∞], where ‖ · ‖λ,x is the Lλ-norm, conditional on X = x.
Further,

sup
x∈B

Ex

[
sup

θ∈N(θ(x))

∣∣∣∣ ∂3

∂θ3
logf (Y ; θ)

∣∣∣∣
]

< ∞.

(R3) For some a < b/{2(1 + b)}, with b as in (H2),

max
k=1,2

sup
x∈B

sup
θ1,θ2∈N(θ(x))

∫ [
F(y; θ1)

(
1 − F(y; θ1)

)]a

×
{∣∣∣∣ ∂

∂y

[
∂

∂θ
log f (y; θ2)

]k∣∣∣∣ +
∣∣∣∣ ∂2

∂y ∂θ

[
∂

∂θ
log f (y; θ2)

]k∣∣∣∣
}

dy < ∞.

(R4) For some δ > 0,

max
k=2,3

∥∥∥∥sup
x∈B

sup
θ∈N(θ(x))

∣∣∣∣ ∂(k)

∂θ(k)
log f (Y ∗; θ)

∣∣∣∣
∥∥∥∥
∗

2+δ,x

= O(1) a.s.,

where for any λ > 0, ‖ · ‖∗
λ,x stands for the Lλ-norm of Y ∗, conditional on

X∗ = x. Further,

sup
x∈B

sup
|θ−θ(x)|≤hn

∣∣∣∣E∗
x

[
∂

∂θ
logf (Y ∗; θ)

]∣∣∣∣
= o

(
h1/2

n (logn)−1/2) a.s.,

sup
x∈B

sup
θ∈N(θ(x))

∣∣∣∣E∗
x

[
∂

∂θ
logf (Y ∗; θ)

]2

− Ex

[
∂

∂θ
log f (Y ; θ)

]2∣∣∣∣
= o

(
(logn)−1/2) a.s.

and

max
k=1,2

sup
x∈B

sup
θ1,θ2∈N(θ(x))

∫ [
F̂ (y; θ1)

(
1 − F̂ (y; θ1)

)]a

×
{∣∣∣∣ ∂

∂y

[
∂

∂θ
log f (y; θ2)

]k∣∣∣∣ +
∣∣∣∣ ∂2

∂y ∂θ

[
∂

∂θ
log f (y; θ2)

]k∣∣∣∣
}

dy

= O(1) a.s.,

where a is as in condition (R3).
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Note that condition (R4) is formulated in terms of the distribution of the
bootstrap data. It is straightforward to verify this condition for specific classes of
densities. For instance, (R4) is satisfied when f (y; θ(x)) equals the normal density
and θ(x) is the conditional mean or variance, and also when all partial derivatives
of order at most three of log f (y; θ(x)) with respect to y and θ are uniformly
bounded in y and θ .

The second bandwidth condition in (H1b) reduces to nh
2p+3
n logn → 0 for

p − j odd and to nh
2p+5
n logn → 0 for p − j even.

Also note that for the multiparameter case assumption (R0) holds for all θr ,
for the Fisher information matrix in (R1) infx∈B I(θ(x)) is positive definite and
that in (R2)–(R4) partial derivatives are with respect to the components θr , where
r = 1,2.

For the general estimating equations situation, we replace (R1) by the follow-
ing.

(R1′) For every y, second partial derivatives of ψr(y; θ) with respect to θs ,
r, s = 1,2, exist and are continuous in θ . The matrices I and K possess
a continuous derivative at θ(x) and infx∈B I(θ(x)) is positive definite.

Conditions (R2′)–(R4′) are (R2)–(R4) where ψr replaces the score function
(∂/∂θ) logf , for r = 1,2.

PROOF OF THEOREM 2.1. This proof goes along the same lines as the proof
of Theorem 2.1 of Zhao (1994). The major difference is that because of the
local polynomial estimation, we have to deal with a vector parameter θ(x) =
(θ0(x), . . . , θp(x))t . Using the conditions of the theorem, and similar to Lemma 1
of Zhao (1994), we obtain that

sup
x∈B

sup
θ∈N(θ(x))

√
nhn

logn

×
∣∣∣∣∣ 1

nhn

n∑
i=1

K

(
Xi − x

hn

)
∂

∂θ
logf (Yi; θ)

(
Xi − x

hn

)j

− 1

nhn

n∑
i=1

E

[
K

(
Xi − x

hn

)
∂

∂θ
log f (Yi; θ)

(
Xi − x

hn

)j]∣∣∣∣∣
= O(1) a.s.

(5.1)

For a (p + 1)-dimensional sequence εn, define θε(x,u) = ∑p
j=0(θj (x) + εnj ) ×

(u − x)j , and let

Anj,ε(x) = n−1
n∑

i=1

Kh(Xi − x)(Xi − x)j
∂

∂θ
log f

(
Yi; θε(x,Xi)

)
.
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Then it follows from (5.1) that, with j = 0, . . . , p,

sup
x∈B

|Anj,ε(x) − E[Anj,ε(x)]| = n,j = O
{
hj

n

(
log n/(nhn)

)1/2} a.s.

Further, let p̃ = 2([p/2]+1), wj(hn) = h
p̃+j
n νp̃+j (K) supx∈B θ(p̃)/p̃! = O(h

p̃+j
n )

and w̃j (hn) = sup|u−x|≤hn

∑p
=0(u− x)νj (K) = O(1). By a Taylor series expan-

sion of ∂
∂θ

log f (Yi; θε(x,Xi)) around the true parameter value, and
after taking expectations, we obtain by conditions (R1) and (R2) that there
exists a constant C such that E[Anj,ε(x)] ≤ −1

2Cεnj w̃j (hn), where we took
the sequence εnj = max{2wj(hn)/w̃j (hn),4n,j/(Cw̃j (hn))}. In a similar way,
E[Anj,−ε(x)] ≥ 1

2Cεnj w̃j (hn). The proof now proceeds along the same lines as in
Zhao (1994), using a continuity argument in the (p + 1)-dimensional parameter
space. �

PROOF OF COROLLARY 2.1. Let Bn(x) be the matrix

Bn(x) = 1

n

n∑
i=1

Kh(Xi − x)
∂2

∂θ2
logf

(
Yi; θ(x,Xi)

)
(H−1

n Xi)(H−1
n Xi )

t

and further, define

Cn(x) = 1

2

1

n

n∑
i=1

Kh(Xi − x)
∂3

∂θ3
logf

(
Yi;η(x,Xi)

)

× (
θ̂(x) − θ(x)

)tXt
iXi

(
θ̂(x) − θ(x)

)
(H−1

n Xi ),

where η(x,Xi) is in between θ(x,Xi) and θ̂ (x,Xi). By a Taylor series expansion
it is readily obtained that

Hn

(
θ̂(x) − θ(x)

) = −B−1
n (x){H−1

n An(x) + Cn(x)}
= {J(x)}−1H−1

n An(x) + Rn(x),

where

Rn(x) = −B−1
n (x)J−1(x){J(x) + Bn(x)}H−1

n An(x)

+ {
B−1

n (x)J−1(x)Bn(x) − J−1(x)
}
H−1

n An(x) − B−1
n (x)Cn(x).

Via a Taylor expansion of ∂
∂θ

log f (Yi; θ(x,Xi)) about θ̂ (x,Xi), taking expecta-
tions and using the symmetry of the kernel, we obtain that, under the previous set
of conditions,

sup
x∈B

|E{Anj(x)}| = O
(
h2([p/2]+1)+j

n

)
,
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where [a] denotes the integer part of a. This, together with equation (5.1), implies
that

sup
x∈B

|Anj (x)| = OP

{
hj

n(logn/nhn)
1/2 + h2([p/2]+1)+j

n

}
.

Similar techniques yield that

sup
x∈B

|Bnjk(x) + Jjk(x)| = OP

{
(logn/nhn)

1/2 + h2([p/2]+1)
n

}
,

and that for n sufficiently large, infx∈B Det(Bn(x)) > 0. Using the result of
Theorem 2.1 and condition (H1b) on the bandwidth sequence, it now follows that,
for k = 0, . . . , p,

sup
x∈B

|Rnk(x)| = OP

({
(logn/nhn)

1/2 + h2([p/2]+1)
n

}2)
= oP

{
(nhn logn)−1/2}. �

For the proof of Lemma 2.1, we first need to show the result below. Note that
although the techniques in this paper are (in nature) quite similar to the ones
used in Johnston (1982) and Härdle (1989), these papers do not make use of the
result below. As a consequence of this, the integration over y in Ynj1(x) has to be
restricted to [−an, an] in their proofs, where an tends to infinity at a certain rate
[while we can work with the full range (−∞,+∞)]. Since their technique has
the disadvantage that it leads to a number of regularity conditions on f (y; θ) that
depend on the sequence {an}, we prefer to use a different method.

In regard to the lemma below, we would like to point out that Lemma 2.1
in Härdle (1989), which is similar to the result below but does not have the
denominator in (5.2), is only valid if the variables (X,Y ) in that theorem follow a
uniform distribution on [0,1]2.

LEMMA 5.1. Let (U1,V1), . . . , (Un,Vn), . . . be independent random vectors
uniformly distributed on [0,1]2, and let 0 < r < 1 and 0 < a < (1 − r)/2.
A sequence of four-sided tied-down Wiener processes Vn(u, v), that is, Vn(u, v) =
Bn(u, v) − vBn(u,1) − uBn(1, v) for some sequence of Brownian bridges {Bn}
on [0,1]2 can then be constructed such that

sup
0≤u,v≤1

∣∣∣∣ Z
∗
n(u, v) − Vn(u, v)

[u(1 − u)v(1 − v)]a
∣∣∣∣ = o

(
n−r/2(logn)2r

)
a.s.,(5.2)

where Z∗
n(u, v) = Zn(u, v) − vZn1(u) − uZn2(v),

Zn(u, v) = n1/2

[
n−1

n∑
i=1

I (Ui ≤ u,Vi ≤ v) − uv

]
,

Zn1(u) = n1/2

[
n−1

n∑
i=1

I (Ui ≤ u) − u

]
,
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and similarly for Zn2(v).

PROOF. We will restrict attention to (u, v) ∈ A = [0,1/2]2. The proof for the
three other quadrants of [0,1]2 is similar. Hence, it suffices to consider, where
s = a/(1 − r),

sup
A

∣∣∣∣Z
∗
n(u, v) − Vn(u, v)

uava

∣∣∣∣
≤ sup

A

|Z∗
n(u, v) − Vn(u, v)|r sup

A

∣∣∣∣Z∗
n(u, v) − Vn(u, v)

usvs

∣∣∣∣
1−r

.

(5.3)

Since Vn(u, v) = Bn(u, v) − vBn(u,1) − uBn(1, v), we can write

Z∗
n(u, v) − Vn(u, v)

= [Zn(u, v) − Bn(u, v)] − v[Zn1(u) − Bn(u,1)] − u[Zn2(v) − Bn(1, v)]
and this is O(n−1/2(log n)2) a.s. uniformly in u and v by the theorem in Tusnády
(1977). It follows from Einmahl, Ruymgaart and Wellner (1988) that the process
Z∗

n(u, v)/(usvs), (u, v) ∈ A, converges weakly to Vn(u, v)/(usvs). This, together
with the Skorohod–Dudley–Wichura theorem [see Shorack and Wellner (1986),
page 47] yields that the second factor on the right-hand side of (5.3) is o(1) a.s.,
from which the result follows. �

PROOF OF LEMMA 2.1. Define

Lx(z, y) = ∂

∂θ
logf

(
y; θ(x, z)

)
,

and let Zn(x, y) = n1/2(Fn(x, y) − F(x, y)) be the empirical process of (X,Y ).
Then, for j = 0, . . . , p,

g(x)1/2Ynj (x) = n−1/2h1/2
n

n∑
i=1

Kh(Xi − x)

(
Xi − x

hn

)j

Lx(Xi, Yi)

= h1/2
n

∫ ∫
Kh(z − x)

(
z − x

hn

)j

Lx(z, y) dZn(z, y)

+ (nhn)
1/2h−j

n EAnj(x).

Since supx |EAnj(x)| = O(h
2([p/2]+1)+j
n ) (see the proof of Corollary 2.1), it

follows that under the given conditions on the bandwidth, the second term above
is o((logn)−1/2). Using the Rosenblatt transformation M(x,y) = (FX(x),F (y;
θ(x))) and integration by parts, the first term above can be written as [where we
use the notation qu = F−1

X (u)]

h1/2
n

∫ ∫
Kh(qu − x)

(
qu − x

hn

)j

Lx

(
M−1(u, v)

)
dZn

(
M−1(u, v)

)
,(5.4)
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where M−1(u, v) = (F−1
X (u),F−1(v; θ(F−1

X (u)))). Straightforward calculations
show that in the above integral, Zn(M

−1(u, v)) can be replaced by Z̃n(u, v), the
empirical process of (FX(Xi),F (Yi; θ(Xi))), i = 1, . . . , n, which is uniformly
distributed on [0,1]2. Hence, using similar notation as in the statement of
Lemma 5.1, (5.4) can be written as

h1/2
n

∫ ∫
Kh(qu − x)

(
qu − x

hn

)j

Lx

(
M−1(u, v)

)
dZ̃∗

n(u, v)

+ h1/2
n

∫ ∫
Kh(qu − x)

(
qu − x

hn

)j

× Lx

(
M−1(u, v)

)
d
[
vZ̃n1(u) + uZ̃n2(v)

]
.

(5.5)

Using integration by parts, the first term of (5.5) can be written as

h1/2
n

∫ ∫
Z̃∗

n(u, v) d

[
Kh(qu − x)

(
qu − x

hn

)j

Lx

(
M−1(u, v)

)]

− h1/2
n

∫
Z̃∗

n(u,1) d

[
Kh(qu − x)

(
qu − x

hn

)j

Lx

(
M−1(u,1)

)]

+ h1/2
n

∫
Z̃∗

n(u,0) d

[
Kh(qu − x)

(
qu − x

hn

)j

Lx

(
M−1(u,0)

)]
.

In a similar way, g(x)1/2Ynj1(x) can be decomposed into three terms. In what
follows, we consider the difference between the first terms of each of both
decompositions. The derivations for the second and third terms are similar, but
in fact easier since only one integral is involved. Since (FX(X),F (Y ; θ(X))) is
uniformly distributed on [0,1]2, it follows from Lemma 5.1 that

sup
0≤u,v≤1

∣∣∣∣ Z̃
∗
n(u, v) − Vn(u, v)

[u(1 − u)v(1 − v)]a
∣∣∣∣ = o

(
n−r/2(logn)2r)

a.s., where r = 1/(1 + b) [b > 0 as in condition (H2)] and 0 < a < (1 − r)/2 =
b/{2(1 + b)}. Hence,

h1/2
n

∣∣∣∣
∫ ∫ [

Z̃∗
n(u, v) − Vn(u, v)

]
d

[
Kh(qu − x)

(
qu − x

hn

)j

Lx

(
M−1(u, v)

)]∣∣∣∣
≤

∫ ∫
[v(1 − v)]a

∣∣∣∣d
[
Kh(qu − x)

(
qu − x

hn

)j

Lx

(
M−1(u, v)

)]∣∣∣∣
× o

(
n−r/2h1/2

n (logn)2r
)
.

(5.6)
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The integral in the above expression can be written as∫ ∫ [
F

(
y; θ(z)

)(
1 − F

(
y; θ(z)

))]a∣∣∣∣d
[
Kh(z − x)

(
z − x

hn

)j

Lx(z, y)

]∣∣∣∣
= h−1

n

∫ ∫ [
F

(
y; θ(x + uhn)

)(
1 − F

(
y; θ(x + uhn)

))]a
×

∣∣∣∣[K ′(u)uj + jK(u)uj−1] ∂

∂y
Lx(x + uhn, y)

+ hnK(u)uj ∂2

∂z ∂y
Lx(z = x + uhn, y)

∣∣∣∣dy du

and this is O(h−1
n ) by condition (R3). It now follows that (5.6) is o(n−r/2h

−1/2
n ×

(log n)2r) = o((logn)−1/2) a.s. Consider now the second term of (5.5),

h1/2
n

∫
Kh(z − x)

(
z − x

hn

)j

×
[∫

∂

∂θ
logf

(
y; θ(x, z)

)
dF

(
y; θ(z)

)]
dZ̃n1

(
FX(z)

)

+ h1/2
n

∫
Kh(z − x)

(
z − x

hn

)j

fX(z)

×
[∫

∂

∂θ
logf

(
y; θ(x, z)

)
dZ̃n2

(
F

(
y; θ(z)

))]
dz.

(5.7)

We start with the second term of (5.7). Consider∣∣∣∣
∫

∂

∂θ
logf

(
y; θ(x, z)

)
dZ̃n2

(
F

(
y; θ(z)

))∣∣∣∣
≤

{
sup

0≤v≤1

|Bn2(v)|
(v(1 − v))a

+ o(1)

}

×
∫ [

F
(
y; θ(z)

)(
1 − F

(
y; θ(z)

))]a∣∣∣∣ ∂2

∂y ∂θ
log f

(
y; θ(x, z)

)∣∣∣∣dy,

where {Bn2} is a sequence of Brownian bridges on [0,1]. Hence, by condi-
tion (R3), the second term of (5.7) is OP (h

1/2
n ). Using the notation xu = x + uhn,

the first term is bounded by

h−1/2
n

∫
K(u)uj

∣∣∣∣
∫

∂

∂θ
logf

(
y; θ(x, xu)

)
f

(
y; θ(xu)

)
dy

∣∣∣∣∣∣dZ̃n1
(
FX(xu)

)∣∣.
Since by definition of θ(xu),

Exu

[
∂

∂θ
logf

(
Y ; θ(xu)

)] = 0,
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for any x and u, the integral within absolute value signs equals

−uhn

∂

∂z
θ(z = x̃u, xu)Exu

[
∂2

∂θ2 log f
(
Y ; θ(x̃u, xu)

)]
,

for some x̃u between x and xu. Hence, by condition (R2), also this term
is OP (h

1/2
n ). �

PROOF OF LEMMA 2.2. Using integration by parts, we can write g(x)1/2 ×
[Ynj1(x) − Ynj2(x)] as the sum of three terms in a similar way to the proof of
Lemma 2.1. It suffices to consider the first term of this sum, as the two others are
similar,

h1/2
n

∫ ∫
Vn

(
M(z,y)

)
d

[
Kh(z − x)

(
z − x

hn

)j

×
{

∂

∂θ
logf

(
y; θ(x, z)

) − ∂

∂θ
log f

(
y; θ(z)

)}]

= h−1/2
n

∫ ∫
Vn

(
M(xu, y)

)
d

[
K(u)uj

{
∂

∂θ
logf

(
y; θ(x, xu)

)

− ∂

∂θ
log f

(
y; θ(xu)

)}]

= h−1/2
n

∫ ∫
Vn

(
M(xu, y)

){
K ′(u)uj + jK(u)uj−1}

×
{

∂2

∂y ∂θ
logf

(
y; θ(x, xu)

) − ∂2

∂y ∂θ
log f

(
y; θ(xu)

)}
dy du

+ h1/2
n

∫ ∫
Vn

(
M(xu, y)

)
K(u)uj

×
{

∂3

∂y ∂θ2 logf
(
y; θ(x, xu)

) ∂

∂z
θ(x, z = xu)

− ∂3

∂y ∂θ2
logf (y; θ(xu))θ

′(xu)

}
dy du,

where xu = x + uhn. From the mean value theorem it follows that the first term
above is bounded by

Kh1/2
n sup

0≤u,v≤1

|Vn(u, v)|
(v(1 − v))a

∫ ∫ [
F

(
y; θ(xu)

)(
1 − F

(
y; θ(xu)

))]a

×
∣∣∣∣ ∂3

∂y ∂θ2 logf (y; θxu)

∣∣∣∣dy du
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for some K > 0 and some θxu between θ(x, xu) and θ(xu), and this is OP (h
1/2
n ) by

condition (R3). In a similar way it follows that the second term above is OP (h
1/2
n ).

�

PROOF OF LEMMA 2.3. The difference Ynj2(x)−Ynj3(x) can be decomposed
into two components by writing Wn(u, v) − Vn(u, v) = [Wn(u, v) − Bn(u, v)] −
[Vn(u, v) − Bn(u, v)], where {Bn} is a sequence of Brownian bridges on
[0,1] satisfying Bn(u, v) = Wn(u, v) − uvWn(1,1). Since Vn(u, v) − Bn(u, v) =
vBn(u,1) + uBn(1, v), the proof for the second component parallels completely
the derivation for the second term of (5.5) in the proof of Lemma 2.1, and hence
this term is OP (h

1/2
n ). For the first component, note that Wn(u, v) − Bn(u, v) =

uvWn(1,1), and hence

∫ ∫
Kh(z − x)

(
z − x

hn

)j ∂

∂θ
logf

(
y; θ(z)

)
d
[
Wn

(
M(z,y)

) − Bn

(
M(z,y)

)]

= Wn(1,1)

∫
Kh(z − x)

(
z − x

hn

)j

×
[∫

∂

∂θ
log f

(
y; θ(z)

)
dF

(
y; θ(z)

)]
dFX(z) = 0

by definition of θ(z). �

PROOF OF LEMMA 2.4. The proof is similar to that of Lemma 3.7 in
Härdle (1989). First note that for any j = 0, . . . , p, Ynj3(x) and Ynj4(x)

are zero mean Gaussian processes. It therefore suffices to show that they
have the same covariance function. Since any functions h1 and h2, that are
defined on an interval [a, b] and for which hi(a) = hi(b) = 0, i = 1,2, satisfy∫ b
a

∫ b
a (x1 ∧ x2) dh1(x1) dh2(x2) = ∫ b

a h1(x)h2(x) dx, straightforward, but lengthy,
calculations show that

Cov
(
Ynj3(x1), Ynj3(x2)

)
= hn[g(x1)g(x2)]−1/2

×
∫ ∫ [

∂

∂θ
log f

(
y; θ(z, z)

)]2

dy Kh(z − x1)Kh(z − x2)f
(
y; θ(z)

)
dz

= hn[g(x1)g(x2)]−1/2
∫

g(z)Kh(z − x1)Kh(z − x2) dz

= Cov
(
Ynj4(x1), Ynj4(x2)

)
. �
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PROOF OF LEMMA 2.5. The proof parallels that of Lemma 3.5 in Härdle
(1989). We have

Ynj4(x) − Ynj5(x)

= h1/2
n

∫ [(
g(z)

g(x)

)1/2

− 1
]
Kh(z − x)

(
z − x

hn

)j

dW(z)

= h−1/2
n

∫ [(
g(x + uhn)

g(x)

)1/2

− 1
]
K(u)uj dW(x + uhn)

(5.8)
= −h−1/2

n

∫
W(x + uhn)

×
[(

g(x + uhn)

g(x)

)1/2

− 1
]{

K ′(u)uj + jK(u)uj−1}du

− 1

2
h1/2

n

∫
W(x + uhn)

(
g(x + uhn)

g(x)

)−1/2(g′(x + uhn)

g(x)

)
K(u)uj du.

Using the conditions on I (θ(x)) and fX(x) and the fact that supx |W(x)| = OP (1),

it easily follows that (5.9) is OP (h
1/2
n ). �

PROOF OF THEOREM 2.2. For j = 0, . . . , p, let

rj (x) = Cov

( p∑
k=0

(N−1
p )j+1,k+1Ynk6(x),

p∑
k=0

(N−1
p )j+1,k+1Ynk6(0)

)

=
p∑

k=0

p∑
=0

(N−1
p )j+1,k+1(N−1

p )j+1,+1

∫
K(x + u)K(u)(x + u)ku du.

A Taylor series expansion about zero yields that rj (0) = ∫
K2

jp , and that by the

assumptions on the kernel, r ′
j (0) = 0, and r ′′

j (0) = −Cj

∫
K2

jp . The result now
follows using Corollary 2.1, Lemmas 2.1–2.5 and Corollary A.1 of Bickel and
Rosenblatt (1973). �

PROOF OF THEOREM 2.3. We only give the proof for Z
(2)∗
nj (x), since the

proof for Z
(1)∗
nj (x) is very similar. Since by Corollary 2.1,

Znj (x) =
p∑

k=0

g(x)1/2Ynk(x)
(
J(x)−1)

jkV̂jj

(
θ̂(x)

)−1/2 + o
(
(log n)−1/2) a.s.

and

Z
(2)∗
nj (x) = −

p∑
k=0

g(x)1/2Y ∗
nk(x)

(
Bn(x)−1)

jkV̂
∗
jj

(
θ̂(x)

)−1/2
,
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where

Y ∗
nk(x) = (nhn)

1/2h−k
n g(x)−1/2A∗

nk(x),

it suffices, by Slutsky’s theorem, to prove that

sup
x

|Z∗
nj (x)| − sup

x
|Znj (x)| = o∗

P

(
(logn)−1/2) a.s.

To accomplish this, we will show that for all j, k = 0, . . . , p,

sup
x

∣∣g(x)1/2[
Y ∗

nk(x) − Ynk(x)
]∣∣ = o∗

P

(
(log n)−1/2) a.s.,(5.9)

sup
x

∣∣V̂ ∗
jj

(
θ̂(x)

)−1/2 − V̂jj

(
θ̂(x)

)−1/2∣∣ = o∗
P

(
(log n)−1/2) a.s.,(5.10)

sup
x

∣∣(Bn(x)−1)
jk + (

J(x)−1)
jk

∣∣ = o
(
(logn)−1/2)

a.s.(5.11)

From the proof of Corollary 2.1, together with bandwidth condition (H1b), it
follows that (5.11) holds. For showing (5.9), write

g(x)1/2[
Y ∗

nk(x) − Ynk(x)
]

= g(x)1/2[
Y ∗

nk(x) − Ỹ ∗
nk(x)

] + g(x)1/2[
Ỹ ∗

nk(x) − Ynk(x)
]

= Tnk1(x) + Tnk2(x),

where Ỹ ∗
nk(x) = (nhn)

1/2h−k
n g(x)−1/2Ã∗

nk(x) and Ã∗
nk(x) is obtained by replacing

θ̂ (x,X∗
i ), i = 1, . . . , n, in the expression of A∗

nk(x) by θ(x,X∗
i ). We start with

Tnk1(x). Write
∂

∂θ
logf

(
Y ∗

i , θ̂ (x,X∗
i )

) − ∂

∂θ
logf

(
Y ∗

i , θ(x,X∗
i )

)

= ∂2

∂θ2 logf
(
Y ∗

i , θ(x,X∗
i )

)[
θ̂ (x,X∗

i ) − θ(x,X∗
i )

]

+ 1

2

∂3

∂θ3
log f (Y ∗

i , η∗
i )

[
θ̂ (x,X∗

i ) − θ(x,X∗
i )

]2
,

where η∗
i is in between θ(x,X∗

i ) and θ̂ (x,X∗
i ). Hence, Tnk1(x) can be decomposed

into two terms, say Tnk11(x) and Tnk12(x). From Theorem 2.1 it follows that

Tnk12(x) = O∗
P {logn/(nhn)

1/2 + (nh
8[p/2]+9
n )1/2} = o∗

P ((log n)−1/2) uniformly
in x. In order to show that supx |Tnk11(x)| = o∗

P ((logn)−1/2), let

Z∗
nijk(x) = dnjkKh(X

∗
i − x)

∂2

∂θ2 logf
(
Y ∗

i , θ(x,X∗
i )

)
(X∗

i − x)j+k,

where dnjk = bnkcnj and

bnk = n−1h−k
n (nhn)

1/2 logn,

cnj = h−j
n

(
log n

nhn

)1/2

+ h2([(p−j)/2]+1)
n .
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Then

Tnk11(x) =
p∑

j=0

θ̂j (x) − θj (x)

cnj

(log n)−1
n∑

i=1

{
Z∗

nijk(x) − E∗[Z∗
nijk(x)]}.

In what follows we will show that

sup
x

∣∣∣∣∣
n∑

i=1

{
Z∗

nijk(x) − E∗[Z∗
nijk(x)]}

∣∣∣∣∣ = OP ∗(1)(5.12)

for all j and k, from which it follows that supx |Tnk11(x)| = OP ∗((log n)−1) =
oP ∗((logn)−1/2). In order to show (5.12), we establish the weak convergence of
the process

∑
i[Z∗

nijk(x) − E∗Z∗
nijk(x)], x ∈ B , by making use of Theorem 2.11.9

in van der Vaart and Wellner (1996). We start by calculating the bracketing number
N[·](ε,B,Ln

2), which is the minimal number of sets Nε in a partition B = ⋃Nε

j=1 Bεj

such that for every partitioning set Bεj ,
n∑

i=1

E∗ sup
x,x′∈Bεj

∣∣Z∗
nijk(x) − Z∗

nijk(x
′)

∣∣2 ≤ ε2.(5.13)

Partition the space B into O(ε−2) equally spaced intervals [x, x+1] of
length Kε2 for some K > 0. We need to consider two cases. If ε2 ≤ hn, then
for x ≤ x, x′ ≤ x+1, it follows from (R4) that the left-hand side of (5.13) is
bounded by K ′nhnd

2
njkh

−4
n ε2hn ≤ ε2 for some K ′ > 0. If ε2 ≥ hn, then similar

arguments show that the bound is now given by K ′′nε2d2
njkh

−2
n ≤ ε2. This shows

that the bracketing number is O(ε−2) and hence the third displayed condition in
the above mentioned theorem is satisfied. Next, we show the first displayed con-
dition, which states that nE∗{supx |Z∗

nijk(x)|I [supx |Z∗
nijk(x)| > η]} → 0 a.s., for

all η > 0. This follows easily from condition (R4) together with the fact that for
any distribution F for which

∫
x2 dF (x) < ∞,

∫ +∞
y x dF (x) ≤ y−1 for y large

enough. To complete the proof of the weak convergence of
∑n

i=1 Z∗
nijk(x), we still

need to show the convergence of the marginals. Fix x ∈ B . It is easily shown that
Liapunov’s ratio (for some δ > 0)∑n

i=1 E∗|Z∗
nijk(x) − E∗Z∗

nijk(x)|2+δ

(
∑n

i=1 Var∗ Z∗
nijk(x))(2+δ)/2

is O((nhn)
−δ/2) = o(1) provided assumption (R4) holds. This shows that (5.12)

is satisfied. It remains to consider the term Tnk2(x). Since Lemma 2.1 entails that
Ynk(x) is asymptotically equivalent to Ynk1(x), it suffices to show that

T̃nk2(x) = g(x)1/2[Ỹ ∗
nk(x) − Ynk1(x)

]
is o∗

P ((log n)−1/2) uniformly in x. The proof for this parallels that of Lemma 2.1.
Let F̂X(x) = ∫ x

−∞ f̂X(t) dt . Then, by using the Rosenblatt transformation (F̂X(x),
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F̂ (y; θ(x)) we can decompose T̃nk2(x) in the same way as is done in Lemma 2.1,
except that FX(x), respectively, F(y; θ(x)) are replaced by F̂X(x), respec-
tively, F̂ (y; θ(x)). It hence follows from condition (R4) that supx |T̃nk2(x)| =
o∗
P ((log n)−1/2).

It remains to prove (5.10). It suffices to show that for all j, k = 0, . . . , p,

sup
x

∣∣K∗
njk(x) − Knjk(x)

∣∣ = o∗
P

(
(log n)−1/2) a.s.

Write

K∗
njk(x) − Knjk(x)

= [
K∗

njk(x) − K̃∗
njk(x)

] + [
K̃∗

njk(x) − K̃njk(x)
] + [

K̃njk(x) − Knjk(x)
]
,

where K̃∗
njk(x), respectively, K̃njk(x) is obtained by replacing θ̂ by θ in K∗

njk(x),
respectively, Knjk(x). A similar derivation as for the term Tnk12(x) above shows
that the first and third terms are o∗

P ((nhn logn)−1/2) a.s. uniformly in x. Hence, it
suffices to consider

K̃∗
njk(x) − K̃njk(x)

= [
K̃∗

njk(x) − E∗K̃∗
njk(x) − K̃njk(x) + EK̃njk(x)

]
+ [

E∗K̃∗
njk(x) − EK̃njk(x)

]
= A(x) + B(x).

Using a similar derivation as in the proof of Lemma 2.1, it is easy to see that

sup
x

|A(x)| = O∗
P

(
(nhn)

−1/2(h−1/2
n + (log n)−1/2)) = o∗

P

(
(logn)−1/2) a.s.

Finally, using the notation xu = x + uhn,

B(x) =
∫ ∫

K2(u)uj+k

[
∂

∂θ
log f

(
t; θ(x, xu)

)]2(
f̂ (xu, t) − f (xu, t)

)
dudt

=
∫

K2(u)uj+k
∫ [

∂

∂θ
logf

(
t; θ(x, xu)

)]2

× f̂
(
t; θ(xu)

)
dt

(
f̂X(xu) − fX(xu)

)
du

+
∫

K2(u)uj+k
∫ [

∂

∂θ
log f

(
t; θ(x, xu)

)]2

× (
f̂

(
t; θ(xu)

) − f
(
t; θ(xu)

))
dt fX(xu) du,

where f̂ (y; θ(x)) = f̂ (x, y)/f̂X(x). From condition (R4) and the rate of conver-
gence of f̂X(x) it now follows that the first term above is O((nhn)

−1/2(log n)1/2)

a.s., while the second is o((logn)−1/2) a.s. This completes the proof. �
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PROOF OF THEOREM 3.1. For r = 1,2 and j = 0, . . . , p, define

Ynrj (x) = (nhn)
1/2h−j

n

(
I−1(θ(x))K(θ(x))I−1(θ(x))

)1/2
rr f

−1/2
X (x)Anrj (x),

where Anrj is defined similarly as in (3.1), now replacing the r th score component
by ψr(Yi; θ(x,Xi)). It is readily obtained that Var(H−1

n An) = (nhn)
−1fX(x) ×

K(θ(x)) ⊗ Tp + o(nhn)
−1. The proof now continues along the same lines as the

proof of Theorem 2.2. �
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