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REGRESSION M-ESTIMATORS WITH NON-LLD. DOUBLY
CENSORED DATA!

BY JIAN-JIAN REN
University of Central Florida

Considering the linear regression model with fixed design, the usual
M -estimator with a complete sample of the response variables is expressed
as a functional of a generalized weighted bivariate empirical process,
and its asymptotic normality is directly derived through the Hadamard
differentiability property of this functional and the weak convergence of
this generalized weighted empirical process. The result reveals the direct
relationship between the M-estimator and the distribution function of
the error variables in the linear model, which leads to the construction of the
M -estimator when the response variables are subject to double censoring. For
this proposed regression M-estimator with non-i.i.d. doubly censored data,
strong consistency and asymptotic normality are established.

1. Introduction. In statistical analysis, one of the most widely used tools is
the linear regression model

(1.1) Xi=tB+e, i=1,2,...,n,

where X; are the response variables, #; are the fixed design points, 8 is the
unknown regression parameter, and e; are the independently and identically
distributed (i.i.d.) error random variables (r.v.’s) with an unknown continuous
distribution function (d.f.) F. To properly use this model with incomplete response
observations, which are frequently encountered in medical research and reliability
studies, the right-censored linear regression model has been studied over the past
two decades by Buckley and James (1979), Koul, Susarla and Van Ryzin (1981),
Leurgans (1987), Ritov (1990), Lai and Ying (1991) and Zhou (1992), among
others. In Lai and Ying (1994), the linear regression model with left-truncated and
right-censored response variables was considered. More recently, Zhang and Li
(1996) extended Buckley—James—Ritov-type regression estimators from the right-
censored case to the linear regression model with random design and doubly
censored response observations, and Ren and Gu (1997) constructed and studied
M -estimators for the same model using a functional of a Campbell-type estimator
for a bivariate d.f. based on data which are doubly censored in one coordinate. In
this article, we consider the doubly censored linear regression model with fixed
design (1.1), and construct and study an M -estimator for this model.
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To be precise, in this study we do not observe the X;’s in model (1.1), but a
doubly censored sample,

Xi, if Bi < X; <C; with §; =1,
(1.2) Vi=4Ci, if X; > C; with §; =2,
Bi, if X; < B; with §; =3,
where B; are C; are left- and right-censoring random variables, respectively, that

satisfy P{B; < C;} =1, and (B;, C;) are i.i.d. and independent of X;. This means
that (B;, C;) is independent of ¢; and the problem considered here is to estimate the

regression parameter 8 in (1.1) consistently using data (V;, §;, 1), i =1,2,...,n.
Note that in (1.1), X; are independent random variables, but not i.i.d. (unless
t; = 1) because t; are constants. Thus, (V;,8;,¢),i =1,2,...,n,in(1.2) is a non-

i.i.d. doubly censored regression sample. For the i.i.d. doubly censored sample
(Vi,8;), 1<i <n, in (1.2) with #; = 1, examples encountered in practice have
been given by Gehan (1965), Turnbull (1974) and others. In particular, Ren and
Gu (1997) discussed an example of doubly censored regression data (V;, §;, t;)
with random design, that is, # are i.i.d. r.v.’s, that occurred in recent research on
primary breast cancer [Peer, Van Dijck, Hendriks, Holland and Verbeek (1993)
and Ren and Peer (2000)]. Since the sample (V;, §;, t;) considered in their paper,
as well as in Zhang and Li (1996), is an i.i.d. doubly censored regression sample,
the methods developed in Zhang and Li (1996) and Ren and Gu (1997) do not
have direct extensions to the problem we are considering here. It is precisely the
non-i.i.d. property of our doubly censored regression sample (V;, é;, ;) in (1.2)
that causes considerable difficulties in the construction and study of a consistent
estimator of 8 in (1.1).

In Section 2, to allow construction of an M-estimator with data (1.2), we
first express the usual M -estimator En as a functional of a generalized weighted
bivariate empirical process, where a complete non-i.i.d. sample (X;, #;), 1 <i <n,
in (1.1) is used. Then in Theorem 1 (with proofs given in the Appendix) we
derive its asymptotic normality via the Hadamard differentiability property of this
functional and the weak convergence of this empirical process. The implication
of Theorem 1 is twofold: (1) It reveals the direct relationship between the
M -estimator and the d.f. F of the error variables ¢; in the linear model (1.1),
which in Section 2 leads to the construction of the M -estimator 8, for 8 using the
non-i.i.d. doubly censored regression sample (V;, 6;, #;), 1 <i <n, given by (1.2).
(2) Whereas in the literature, the Hadamard differentiability approach has been
successfully used to study the asymptotic properties of various important statistics
based on i.i.d. random samples by such researchers as Bickel and Freedman
(1981), Fernholz (1983), Sen (1988), Gill (1989), Groeneboom and Wellner
(1992), Ren and Sen (1995, 2001), van der Vaart and Wellner (1996) and Ren
and Gu (1997), among others, Theorem 1 shows that this attractive formulation
can also be used to deal with problems based on non-i.i.d. samples.
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In Section 3, the strong consistency and the asymptotic normality of the
proposed regression M -estimator 8, with non-i.i.d. doubly censored regression
data are established; the proofs are deferred to Sections 4 and 5.

Due to the complexity of the problem studied in this article, the extension of the
proposed M -estimators to multiple regression models is considered in a separate
article.

2. M -estimator with non-i.i.d. doubly censored regression sample. When
there is no censoring on the response variables in (1.1), the robust M -estimator S,
for B is given by the solution of the equation

2.1) Y v(Xi —16) =0,
i=1

where ¥ is the score function [Huber (1981)]. Considering the case ¢; € [0, 1],
1<i < n, throughout, we let

22) n=0-8. T=B—B  Yi=Xi—1p
Then Y; are i.i.d. with d.f. F, and for

23) Wa(y.n=n"'Y I{Yi<y. i <t},  EWy(y.0) = F()un(0),

i=1

(2.4) W (G. n)=/f0 G —mdGG.,
<t<l,ye

where
n
(2.5) Un(t) = n! Zl{ti <t} for constants 7, ..., 1, in [0, 1]
i=1
and G € D, ={G|G is a function: R x [0, 1] — R with defined integral in (2.4)},

straightforward algebra shows that (2.1) is equivalent to

2.6) an,n)://O = m AW =0,
<t<l,ye

Define the statistical functional 7 : D — R as the solution of W (G, n) = 0, that
is,

2.7) T(G) satisfies W (G, T(G))=0 for G € D;.
Then
(2.8) T(Wy) =7 =Py — B

and Theorem 1 gives the asymptotic normality of B, under the following
assumptions:
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(A1) The function ¥ is nondecreasing, bounded, continuous and piecewise
differentiable with bounded derivative v/ satisfying ¥'(x) = 0 for x outside
of some finite interval [A, B], while for x in some neighborhood of 0,
Y (x) has positive and negative values with ¥'(x) > ¢ > 0 for a constant
0<c<oo.

(A2) The function ¥’ is of bounded variation.

(A3) The integral [ ¢ (x)dF(x) =0.

(A4) Fori=1,2,...,n,0<t <1.

(AS) Asn — 00, supg,<; |n(t) — u(t)| — 0, where () is nondegenerate.

THEOREM 1. Under (A1)—(AS), we have that as n — o0:

(i) /n(W, — EW,) weakly converges to a centered Gaussian process G on a
Banach space (D2, D, || - ), where D5 is the closure of Da, || - || stands for the
uniform norm and D, is the o -field generated by open balls;

(i) v/n(Bp — B) = V/nlT(W,) — T(EWp)] = Ty, (VnlW, — EW,]) +
0p(1) > p T}, (G)=p N(0,03), where W (y, 1) = F(y)u(1),0 < o4 < 0o, and T{,
is a linear functional.

While the proof of Theorem 1(i) is given in the Appendix, it is easy to see
the proof of (ii) from the following. From (A1), (A3) and (2.3), we know that
for any fixed n, W(EW,, n) is strictly decreasing in n and T (EW,) =0 is the
unique solution of W(EW,,, n) = 0. Noting that (AS) implies | EW,, — W| — O,
as n — 00, a slightly modified proof of Theorem 3.1 in Ren and Gu (1997) gives
that 7'(-) is Hadamard differentiable at £ W,, for any fixed » and it satisfies

V[T (Wy) = T(EW,)]

(2.9)
=Ty, (VnlW, — EW,]) +0,(1)  asn— oo,

where 0, (1) converges to 0 in probability as n — oo. The proof of Theorem 1(ii)
follows from Theorem 1(i) and the continuity of 7, (in G) in the neighborhood
of W based on Theorem 3.1 of Ren and Gu (1997).

Theorem 1(ii) shows that the M-estimator B, and its asymptotic properties are
totally determined by the generalized weighted empirical process W,, via W given
by (2.6). From Theorem 1(i), we know that

1 poo
(2.10) wwn,n)wwwn,n):/o /_ootlﬁ(x—IQ)dF(x—tﬂ)dun(t)

implies that if the error d.f. F can be estimated, say by F,, based on available data,
then from (2.6), an M -estimator should be given by the solution (in 6) of

1 poo
(2.11) /0/_ 1y (x —10)dF,(x — 1B) dun(t) = 0.
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In this context, we study the estimation of F' using the non-i.i.d. doubly censored
regression sample (V;, §;, t;), 1 <i <n, given (1.2) as follows.
First, we observe that for each 1 <i <n and any x € R,

PV x)=P{V; <x,8 =1} = P{X; <x, Bi < X; < C})
- /_XOO(FB(u) — Fe() dF(u— 1),

PP (x)=P{V; <x,8 =2} = P{C; <x,X; > Ci}
_ /_"00[1 — F(u—1:B)1dFe),

PP (x) = P{V; <x,8 =3} = P{B; <x,X; < B}
:[;Fm—nmdﬂm&

0 1 2 3
PP =PV )+ PP + PP )

= Fc(x) + [Fp(x) — Fc(0)]F(x —1; B),

where Fp and F¢ are the d.f.’s of B; and C; in (1.2), respectively, and from (2.7)
of Gu and Zhang (1993), we know that F, satisfies the integral equation

Fx;(x) = Pi(O)(x) — /ufx 71 : I;i g;
Fx,(x)

x<u m

Noting that Fy, (x) = F(x —t;8) for any x € R, (2.12) can be written as

1—Fx,(x +¢
FX,‘(X+ti,3)=Pi(0)(X+ti,3)—/ X'( iB)
u<x+up 1 — Fx,(u)

dP? (u)
(2.12)
dr? ).

dP? (u)

Fyx. ti

n X}EX‘(F)ﬂ) dPi(3)(u)
x+ti f<u \u

2.13) il X

0, [ 1=FyG+6B)
=P (x + 1) /yix 1 — Fx,(y +t:8)

F Xi (x + tilB)
x<y Fx;(y +1B)
which gives that for each i, F(x) is the solution of the integral equation

APy +1;)

dPP(y + 1),

) Ty 1-Fx) o .
Fx)=POx +14p) /MSX —Fe dP? u+ 1)
+ @da@(u +4).

x<u F(u)
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Hence, the sum of these integral equations divided by # is given by

Feoy=n"'Y PO +1p)

i=1

1 —F(x) I L2
(2.14) —fwmdca 1;& (u+tiﬁ))

FQ (i85 p®y s
» F(u)d(n ;Pi (u—i—t,,B)).

Let, for any 6 € R,

. n
0V ) =n"' S Vi <x 446,85 =j), j=12.3
(2.15) i=l

00 () =00} @) + 0%y () + 0 () =n ! Y IV < x +1;6).
i=1

Then (2.14) becomes

() 1 — F(x) @
2.16) = B /ugx T Fan AEQup@)
| Fx) 3)
+ x<u F(u) d(E Qn’ﬂ(u))

and the self-consistent estimator fn, g for F' [Mykland and Ren (1996)] should be
given by the solution of the integral equation

Fop0) = 000 - [ 1200 46wy

u<x 1 — Fy p(u)

F, g(xX) . 3)
+/ B 108 ).
i B gy 128

Equations (2.11) and (2.17) imply that the M-estimator with non-i.i.d. doubly
censored regression sample in (1.2) should be given by the solution (in 6) of

2.17)

1 poo -
(2.18) /0/_ootw(x—t9)dF,,,5(x—t,3)d,un(t):0.

However, in practice the parameter 8 in (2.18) is unknown. Thus, the equation is
naturally replaced by

1 poo .
[ ] e —10)aFuoe -0y =0,
0 J—o0
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where for any 6, F\n’g is a solution of the integral equation

~ 1 — Fpo(x)
Fn,e(x) = Qi,(’))g(x) —/ m
usx L — I'p,

Fuo(x) 3)
+ / ARAS .
e B gy 2o ™)

The existence of Fnﬂ is shown in the Appendix. Note that if F\nyg(—oo) =0 and
F, 9(0c0) = 1, then from (A1), change of variables and integration by parts, we
have

1 poo . _ B _
[ ] e = 10)dFot =16 dan v = tn[wue) -/ Fn,e@)dw(y)],
0 J—o0 A

d Q)7 (u)
(2.19)

where 7, =n~! >, t. Hence, we define the M-estimator B, for the doubly

censored regression sample (V;, §;,t;),i =1, ... ,n, given in (1.2) by the solution
of

B —~
(2.20) My (0) = ¥ (B) — /A Fus () dy () =0,

where = means “as near 0 as possible.”

Note that the use of = in (2.20) is because M,(6) = 0 may not have any
solutions due to the fact, discussed in the Appendix, that M, () is piecewise
continuous and piecewise nonincreasing in 6. In practice, for each 6 one may treat
the sample (V; — 1,60, 6;), 1<i <n, as a usual i.i.d. doubly censored sample and
compute fn,g as in Mykland and Ren (1996), while the M -estimator 8, defined
by (2.20) can be found using the piecewise nonincreasing property of M, (6). See
the Appendix.

REMARK 1. Assumptions (A1) and (A2) are required in Ren and Gu (1997) to
show that the statistical functional 7 (-) in Theorem 1 is Hadamard differentiable,
but (A2) is not needed for our asymptotic results on proposed the M -estimator §,
in Section 3.

REMARK 2. In the linear model (1.1), if all design points #; are restricted to
a compact set, the problem can be reduced to the case of (A4). Assumption (AS5)
is used in the proof of the weak convergence of process W,. In practice, there
are many examples which satisfy (AS). For instance, (AS) holds if the design

points are evenly distributed on [0, 1], that is, t; =i/n, i = 1,...,n, or if the
design points are proportionally distributed on finite points by, ..., b, according
to weights py, ..., pn, thatis, #; are selected such that (np; — 1) <n; <np; and

Z’}’:l nj=n,wheren; =37, I{t; = b;}. On the other hand, noting that p(¢) is
ad.f, itis easy to see that the design points #; may be easily selected to satisfy (AS5)

for a known w(-).
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REMARK 3. Note that our proposed M -estimator B, is based on the direct
relationship between the usual M-estimator and the error distribution F shown
by (2.10), which is revealed by Theorem 1. This idea is different from Lai and
Ying’s (1994) missing information principle for an M-estimator with incomplete
regression data. In fact, (2.10) may be applied in other linear regression problems
with a fixed design as long as the error d.f. F' can be estimated consistently using
available data.

3. Consistency and asymptotic normality. To study the asymptotic proper-

ties of the proposed M-estimator B, defined by (2.20), for the doubly censored
regression sample (V;, §;, t;) given in (1.2), we introduce the notion of Qé’ )(x) as

follows. .
Note that for any 6 and x, the expectation of Qfl] é (x) in (2.15) is given by

1 px+10

E{0%) ) = /0 /_ PR — Fe))dF = 18)dpy ()
1 px+t6

ol wl= [ [0 - Fu—ipnarewduo.

1 px+t6
G E{e% )= /0 /| P tB)dFa) a0,
E{0\) (0} = E{0) )} + E{0T) ()} + E{QL) (x))

1
:/0 {Fe(x +10) + [Fp(x +10) — Fc(x +16)]
x F(x +1(0 —B))}dpn(t).

Based on assumption (AS), we define for the d.f. ;(¢) on [0, 1],
1 px+10
0" = [ [ 1Fa) ~ Feld P — 1) duc),
1 px+10
0P = [ [ 1= Plu—ipaFewdu),

1 px+t6
32 0Px) = /0 /_ Pt dFp) dp(),
0P (x) = 0 (x) + 0 (x) + 0F (x)

1
:/0 (Fe(x +16) + [Fg(x +10) — Fe(x +10)]
X F(x+10—p8))}du@).
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Thus, letting f, fp and fc be the density functions of F, Fp and Fc, respectively,
we have

(1) {EQ;l)e(x)}
p(X) = ———
dx

1
=/0 [Fp(x +18) — Fo(x +t0)1f (x +1(0 — B)) dpin(0).

d{EQ®
@()—w—/ 1= F(x+10 — B) | fox +10) dpa (1),
d{EQ®)
g\ (x )-M—/ (x+10 = B) f(x +10)du, (1),
(3.3) oV
1) _ g X
9o (X)_idx
1
:fo [F(x +10) — Fo(x +10)1f (x + 10 — B)) diu (),
d 2) 1
qe(z)(x)zgzix(x)zfo [1—F(x+100—pB)]fclx+10)du(),

dog’x) _ !
g =0 /0F(x+t(9—ﬂ))fB(ert@)dM(t),

and for any 6, we define [0, 1]-valued nondecreasing F}, y and Fy as solutions of

Fro@ = EQ0) 0 L2 P g 0@

usx 1 — Fyo(u)
Fn,G(x)
(3.4) x<u Fuo(u)
) 1 — F,
Fao) = 00— [ 71-1%?3 407 w)
Fo(x) | @3
B dQy " (u),

respectively. While the existence of F;, ¢ and Fyp is shown in the Appendix, the
next proposition, with proofs deferred to Section 4, gives some basic results on

dE Q) (u),

+

Qfl] é, Q(J ) F, ¢ and Fy under some of the following conditions:

(B1) The function F has support (—oo, co) and has a continuous and bounded
density function f.

(B2) Forany x e R, Fp(x) — Fc(x) > 0.

(B3) The functions Fp and Fc have bounded density functions fp and fc,
respectively.
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(B4) The density functions fp and fc both satisfy the Lipschitz condition of
order 1 on R.

(BS) There exist constants Mp and M¢ such that fc(x) =0 for x < M¢ and
fe(x)=0forx > Mp.

(B6) If 0 # B, Fy # Fg.

PROPOSITION 1. Under (AS) and (B1)-(BS), for j =0,1,2,3 and 0 <
p, M < oo given by (3.5) and (3.6), we have:

(i) supy , |E{QY) ()} — 05 )| — 0 as n — oo;
(i) Fup=F=Fg;
(iii) ||Fp — Fgll - 0as6 — B;
(v) | Fn0 — Fuglly < Mol0 — B|, wheren > 1, 10| < p, M is a constant and
Il - a2 denotes the uniform norm on [—M, M ];
(V) supjg <, |l Q(J) Qijén L 0asn— oo;
(vi) Supjg|<p 1 ||Q(]) EQ;{éHMa—'SXO asn — 0o, where ) < A < %

To state Theorem 2, which is proved in Section 5, we let p be a large constant
such that || < p, and we note that under (B5) and (A1), we have for any |6] < p,

q,(lzé(x) =0 forx <—M and q(3) (x)=0 forx > M,

3.5) (2) @
(x) = forx <—M and ¢, (x)=0 forx > M,
where
(3.6) M = p + max{|Mg|, |Mc|, |Al, |BI}.
Since (3.5) implies that for x € [-M, M] and |0| < p, (3.4) is equivalent to
1 — I'n, ()C)
Fop(x) = EQ)(x) — / 120ty 0@ )
1 — Fyou)
M Fnp(x)
F’Q( ) E Q%) w),
(3.7) ! "
(0) Fy(x (2)
Fy(x) = _ A
(x) = Q()/ s d 0w

Fe(x) (3)
+/ F() (u).

Thus, Proposition 1(v) leads us to treat F,,,g in Theorem 2 as a solution of

~ x 1—F,
Foo(x) = Q) (x )—f 7_52?; dQ,y(w)

L2400 ).

(3.8)
Fy, G(X)

X FnG( )
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Moreover, we define

~

_ B Myl Ag )
(3.9) A,g_/A ((1 R e Jodv,
where for
@) IREPPNG
Cplx) = /M 1—F( el [ )dQ (w).
__[1-F® , @ F(x) 3) }
Kpte,) = | s e < x1gs” 0+ 20 1 < ulgf .

~ 1
(3.10)  Apgx) = f(x)/o [Fp(x +1B) — Fc(x +1B)]tdu(t)

+/ /1[1—F(u)]fc(u—i-tﬂ);du(,)d“%m}

-/ / F) fatu+ i) d Fﬁg}

and
~ M Kg(x,u)
3.11 KM h x=/ ﬂi’hudu, xe[—-M, M],
(3.11) (Kg h)(x) —Ml—Cﬁ(X)() [ 1
(I-K g’[ )~ ! denotes the inverse of the operator I — K /]3"’ , the existence of which
is established in Lemma 1 of Section 4.

THEOREM 2. Assume (A1), (A3)—(AS), (B1)~(B6) and Ag # 0. Then for the
doubly censored regression M -estimator B, given by the solution of (2.20) in the
interval [—p, pl, where Fn g is a solution of (3.8), we have:

() n*|Bn — ﬁ|—>0asn—>oo whereO<k<2,
() /n(Byn—B+nm)—p N(O,oz) asn — 0o, where 0 < o2 < 00 and Np IS
some quantity satisfying n*|n,| B 0asn— 00, forany 0 < A < %

REMARK 4. In Theorem 2, condition (B2) is usually required in the studies of
asymptotic properties with i.i.d. doubly censored data; see Gu and Zhang (1993),
Ren (1995) and Ren and Gu (1997), among others. Assumption (B5) is needed
to avoid some technical difficulties in the proofs. In practice, it means that there
is no right (left) censoring when X; is sufficiently small (large), which is not an
unreasonable assumption in many situations. Also, it is worth noting that the strong
consistency of 8, in Theorem 2(i) was not studied in Zhang and Li (1996) and Ren
and Gu (1997).

REMARK 5. From the proofs of Theorem 2, we know that we have /n(8, —
B) —p N(O, 02) as n — oo if we can show Jn|My(By)| — p 0 as n — oo. Since
the current article is already considerably technical, this detail is not studied.
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4. Proof of Proposition 1.

PROOF OF PROPOSITION 1(i). Noting that u,(0) = ©(0) =0 and p,(1) =
w(l) =1, from (B1), (B3) and integration by parts, we have for j =1,

) x+6
E{0") ()} = f_  1Fa(0) = Fe)dF(u—p)
1
- /0 1n(O[Fp (x +16) — Fe(x +10)1dF (x +1(6 — B))

-5 1 unm( [ X:G Flu—tB) dIFyu) — Fc(u)]) dr

and

x+6
oM () = /_  1Fs(0) = Fe)dF(u = p)
1
—/0 ([ Fp(x +10) — Fo(x +10)1dF (x +1(0 — B))

1 x-+10
y /0 M(ﬂ(/ f(u—tﬁ)d[FB<u>—Fc<u>])dr.

—0o0

Thus, the proof for j =1 follows from (AS5) and
sup| E(Q),5)} = 0§ ()] < Nl = pull(1 + 2111 £ 1.
X

Similarly, we can complete the proof for j =2 or3. [

PROOF OF PROPOSITION 1(ii). From Theorem 1 of Gu and Zhang (1993),
we know that under (B2), Fy; is the unique solution of (2.12). Thus, as derived in
Section 2, F' satisfies (2.16) for any . In turn, (2.16) and (3.4) imply F,, g = F'.

To show Fg = F, we let n — o0 in (2.16), which from Proposition 1(i) gives

— F(x) F(x)

@n Fo=0lw- [ T ra0Pw+ [ T8 aodw.
p u<x 1 — F(u) v<u F 1)
Hence, it suffices to show that (4.1) has a unique solution. Denote
h=Fg—F,
1
H =
w2 2= [ fale+18)du)

1
He) = [ et +18)du.
Then from (3.3) we have
@3) g @ =[1-FlHcx) and qf (x)=F(x)Hp(x).
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To show i = 0, we subtract the integral equation (4.1) from (3.4) with 6 = g to
obtain

1 — Fp(x)

o h(x)K(x) = —/I;SX T Fﬁ(u)h(u)Hc(u)du
| [ Y i d,
x<u Fﬁ(u)
where
4.5) Kx)=1 —/ Hc(u)du —/ Hpg(u)du.

Noting that

[ = [ [~ ara+prano =1,

by (B2) and (AS), we have that for any x,

Kx) = ' Hp(u)du — ' He(uw)du
RN

1
- fo [Fp(x +18) — Fo(x + 18)1du(r) > 0.

From (4.6), we know that (4.4) above is the same as (3.1) of Gu and Zhang
(1993), where their density functions Fy and Fz correspond to Hp and Hc,
respectively. Moreover, since F is continuous and Fg is nondecreasing, then
h(t+) # h(t) = Fg(t+) # Fg(t) = Fg(t+) > Fg(t), which gives (3.2) of Gu and
Zhang (1993). Hence, from (4.6) and Lemma 1(i) of Gu and Zhang (1993), we have
h = 0 if we can establish Gu and Zhang’s (3.3), that is, Fg(x) =1 = F(x) = 1 and
Fg(x) =0= F(x)=0.

If Fg(x) =1, then (3.4) with 6 = B becomes 1 = 0 (x) + 05 (00) —
05() = 09°(x) + 05 (x) + 0§ (00), which along with Q(c0) = 1 implies
0 (00) + 0§ (00) = 0’ (1) + 0 (x). Since QF’(x). j = 1,2.3, are

nonnegative and nondecreasing, we have Ql(gz)(OO) = Q/(gz) (x) and

1 poo
0= 000 = 0 )= [ [ "1Fatu+1B) = Fetu+1p)ldFw (),

which by (B1) and (B2) gives d F(#) =0 for u > x and, in turn,
1
0= 07 (00) = 0 ) =1 = F()] [ 11 = Fe(x +1B)lduu(r).

Note that (B2) implies [1—Fc(u)] > [Fp(u) — Fc(u)] > 0 for any u € R. Hence
Fx)=1.
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If Fg(x) =0, then (3.4) with & = B becomes 0 = Q(O)(x) Q(z)(x) =
Q(l)( )+ Q(3)(x) which implies Qfg)(x) =0and Q(3)(x) = 0. Since
0=0"(x = /0 [ FB(u+18) = Feu+ 1)) dF (u) du(o)
we know that d F'(u) = 0 for u < x, which gives
0=0fw)= [ 1 | xoo F(u)dFau+18) du(n) = F(o) a8 du).

Note that (B2) implies Fp(u) > [Fp(u) — Fc(u)] > 0 for any u. Hence, F(x) =0.
O

PROOF OF PROPOSITION 1(iii). First, it is easy to see that from (B1), (B3),
(B4) and (3.1)—(3.3), there exists a constant M g such that

@7 |EQY, - EQYL| <Mpclo—pl. |0 — 0F’| < Mpclo — Bl
where j =0,1,2,3 and
@8) gy —a il <Mpclo —Bl. g — a5’ < Msclo - BI.

where j =2,3. Let 6, — B as n — oo. Then from Helly’s theorem Fj, has a
convergent subsequence Fy,, such that for any x, limg_, o Fo,, (x) = Hp(x). Since
ank satisfies

— Fy, (%) Fo, (x)
Py = 050 = || e [ R 40w,

ny x<u F@,,k (M)

from (4.7) the limit of this equation for each fixed x as k — oo is given by

0) 1 — Hp(x) 2) HO(X) 3)
(4.9) Ho(x)= Qg (x) /ugxl—Ho() Qg (u) + o How) dQg’ (u).
From the uniqueness of the solution of (4.9) or (4.1), shown in the proof of
Proposition 1(ii), we know Hy = Fg = F. Thus, lim;_, ank (x) = Fg(x) for any
fixed x. Since Fg = F is continuous, we have ||ank — Fg|| — 0, as k — oo. Hence,

| Fp, — Fgll = 0, as n — oo, which gives the proof. [J

Before proving Proposition 1(iv), we first establish the following lemma. Let

F
Kn,ﬂ(X,M)= {ﬁ{ X}Q(Z)(M)
F(x) 3) }
+[F(u)]2{ <ulq, g(u)

(4.10)
nqﬂ u<x 1 _ F(M) n,ﬂ

1 3)
+ e Fu ) { ing(l/t)}
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and

M Kn,,B(x» I/l)

~ _ _
4.11) (Knsﬁh)(x) _/;M 1=C (0 _Cn’ﬁ(x)h(u)du, xel[-M,M].

LEMMA 1. Assume (AS), (B1)—(BS5), and let D|—M, M] denote the space of
all functions on [—M, M| which are right continuous and have left-hand limits,
where M is given by (3.6). Then,

@) K g’[ given by (3.11), there exists a bounded measurable function fg’ on
[—M, M], such that for any g € D[—M, M, the integral equation

(4.12) (1 RMyh =g

has the unique solution
_ = My\—1 _ M =M .
(4.13) h(x)=(I —Kg') g(x)=g(x)+ MF,g (x, u) g(u)du;

(i) for any n, part (i) holds for 1%34/3 given by (4.11);
(iii) for any sequence g, € D[—M, M] satisfying sup,~ llgnllm < 00, we
have

(4.14) H(I—I?%ﬁ)_lgn—(I—Eg’[)_lg,,||M—>0 as n — o0o.
PROOF OF (i). From the proof of Theore~m 2.1 in Chang (1990), it suffices
to show that for any h € D[—M, M], (I — Kg”)h =0 if and only if # =0 on

[—M, M].
First, we notice that from (3.10), (4.2), (4.3), (4.5) and (4.6) we have

1
1= Cplx) = /0 [Fp(x +1B) — Fox + 18)]dpu(t)

=K(x) >0, x € R,

(4.15)

and that ( — fé"’)h = 0 implies I?é”h = h. Hence, from (3.2), (3.3), (3.10), (3.11)

and (4.15) we know that & is continuous. Note that (I — Izg”)h =0, (4.15), (3.5),
(3.10), (4.2) and (4.3) imply

M 00
h(x)K(x):/_M K,g(x,u)h(u)du=/_ Kg(x,u)h(u)du

1—F F
= —/ Jh(u)Hc(u)du - ﬁh(u)HB(u) du,
u<x 1 — F(u) x<u F(u)
which is the same as (3.1) of Gu and Zhang (1993). Since # is continuous and the
support of F is (—o0, 00), Gu and Zhang’s (3.2) and (3.3) also hold. Hence, from

(4.15) and Lemma 1(i) of Gu and Zhang (1993), we have h =0. O
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PROOF OF (i1). From (4.10), (3.3), (B2) and (A5), we have
1
1= Cop) = [ FaCx+1B) = Felx +18)]diun )

=K,(x)>0, x eR,

where, for the derivation, we use

(4.16)

1
9% (x) = /0 [1— FOO1fe (x4 18) dpn(t) = [1 — F(O)1Hyc(x),

1
g3 = [ F @ fa+ 1) dpn(t) = F) Hy, )
4.17) 0

1
Hy p(x) = /0 Fo(x + 18) dn (1),

1
Hyo(x) = /0 fo@ +18) dun (o).
Since (1 — KM;)h =0, (4.10), (4.11), (4.16), (4.17) and (3.5) imply

M 00
h(x)Kn(x)zf_M K,,,/g(x,u)h(u)duzf_ Ky g(x,u)h(u)du

= [ Oty cdu— [ Tty ) du
u<x 1— F(M) ' x<u F(M) '
thus the rest is the same as the proof of part (i). [
PROOF OF (iii). Let (I — E,yﬂ)—lg,, =h, and (I — I%é”)_lgn = h,. Then we
need to show
(4.18) |hp —hplly =0  asn— oo.

Note that in (3.10) and (4.10), from (4.15), (4.16), integration by parts, (A5) and
(B2), and from (4.2), (4.3), (4.17), integration by parts, (AS) and (B1), we have

ICnp —Cgll =0 asn — oo,

(4.19) K p(x,u) Kg(x,u)
S _

xuel-mMmI1—Crp(x) 1—Cp(x)

—0 asn — oo,

where inf|y|<p |1 — Cg(x)| > 0. Also note that (4.13) implies sup,,- nllar < o00.
Thus, from

0= (I = K)o)hy — (I — K§')h,
= (I = KM)(hy — hy) + [(I = K)g) — (I = K]k
= (I - E%ﬁ)(hn - f_ln) - (E,%s - [?,jgw)ﬁn
(3.11), (4.11) and (4.19) we know
(4.20) (1 = KY5)(hy — b))y —> 0 asn— oo.
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It sup, > {llh, — hyllm) < oo, then let (hy, — i_znk) be any convergent subse-
quence with limit vy. From (4.19), we know that (I — K fl‘f ’ 5)(11,,,( — ﬁnk) converges
to (I — Kj")vo. Thus, (4.20) gives (I — K }')vg = 0 , which implies v = 0. Hence,
we have (4.18). B

If sup,> 1 {llhn — hnllm} = 00, then there exists a subsequence such that ||, —
Il — 00 as k — 00. Let vy, = (huy, — i)/ IWhng — gl Then [vg [y =1
and from (4.20) we have ||(I — I?,%ﬁ)vnk lar = 0 as k — oo. From above, we
know that v,, has limit 0, which contradicts ||v,, [y =1. U

PROOF OF PROPOSITION 1(iv). From Proposition 1(ii), we subtract (2.16)
from (3.4) to obtain

Fn,@(x) - Fn"B(.x)
=EQ\)(x) — EQ{)(x)

[ =R @ @
v/ugx 1— Fnﬁ(u) d[EQn,Q(M) EQnﬁ(M)]
1 — Fpo(x) I—Fn’ﬁ(x)} ?)
4.21 - _
( : /usx{ 1 —F,o(u) 1 — Fn,ﬂ(l/t) dEQn,Q(”)

n {Fnﬁ(x) _ Fn,,B(x)
x<ul Fro(u) Fn,ﬂ(”)

Fn,ﬂ()C) 3) _ 3)
x<u Fn,ﬂ(”) d[EQnﬁ(u) EQn,ﬁ(”)]

}dE 0%) w)

Letting

B®) 4(x) = [Fuo(®) — Fup(0)]

b1 @)
X ./ugx{ 1—Foo) 1—F,pu) } dEQn’Q(M)

+ [Fno(x) — Frp(x)]

- 2) _ )
X /I:ifx 1— Fn,ﬂ(l/l) d[EQn,G(M) EQn’ﬂ(M)]

(4.22)
—[1- Fn,ﬂ(x)]
! - 1 (0 PN )\
x /g{ 1= Fugu) 1—Fppu) }d[E Qo) = EQ, 5 ()]
—[1- Fn,ﬂ(x)]

y / [Fuo(u) — Fypu)]?

2)
<x [1 = Fno)][1 — Fn’ﬂ(u)]z dEQn,ﬂ(M)
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and
Br(z?g,ﬁ(x) = [Fnﬁ(x) — Fnﬁ(x)]
! — 1 3)
X L<M{Fn,9(u) Fn,ﬁ(l/t)}dEQn’e(u)
+ [Fro(x) — Fyp(x)]
AEO® () — EO®
4.23) i Frptay LE Qo () = £ (0]
’ + Fup(x)
! — ! 3) - 3)
8 /).c<u{ Fro(u) Fn’ﬂ(u)}d[EQn,e(u) EQnﬁ(M)]
+ Fn,ﬁ(x)

y / [Fo(u) — Fyp(u)]?

3
dEQ, z(u),
Fo(u)F2 g(u) P
we can easily derive

_/ {I_Fn,e(x)_l_Fn,ﬂ(x)
u<x 1 — Fpo(u) 1 - Fn,,g(u)

}dE 0 ()

I
424) =[Fe() - Fn,ﬂ(x)]/< 1= Fupw)

[Fno() — Fppu)]
[1— Fyp@)]?

dEQ ()

dEQ () + By ()

— (1= Fyp)] /Mix

and

[ { Fap()  Fapx)

3)
Fy0(u) Fn’ﬂ(u)}dEQn,e(u)

1
@425 = = Fap@l [ oS dEO

Fuo(u) — Fy g(u)
- n,ﬂ(x>/ - 72 ( )ﬂ dEQ L) + By 45(x).
x<u n,ﬁ u

Hence, from (3.5) and Proposition 1(ii) we can write (4.21) as
Fpo(x) — Fy p(x)
(4.26) = Ano.p(¥) + BY) () + BY) 4 () + [Fuo(x) — Fy g(x)1Cp p(x)

M
+ /_ K01 Fr () = Fy )]
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where x € [-M, M], C, g and K, g are given by (4.10) and

Ano.p(x) = EQL)(x) — EQ\ 4 (x)

—F(x) @ @
4.27 —/ 7d E u)—E u
(4.27) TR Qe — EQ )]
F(x) 3) 3)
d|E u)—E u)l.
T B — EQ @)
Moreover, from (4.7) and integration by parts in (4.27), we have
(4.28) An,0,llm <3Mpcl6 — B,

and from (3.5), (4.22), (4.23) and (4.8) we have
_ 201Fnp — Fupllyy +4MMpcl Fup — Faplimld — Bl
[1—=Fpo(M)][1 — Fy g(M)]

20 Fug — Fupll3y +4MMpc || Fuo — Fupllml0 — Bl
Fpo(—M)F, g(—M) '

4.29) | B@ )al <

’

3)
@30) B sly =

Suppose that Proposition 1(iv) is false. Then there exists a sequence |6;| < p
such that

”Fnkﬂk - Fnk,ﬂ”M

4.31) — 00 as k — oo,
0k — Bl
which implies
4.32) |6 — Bl — 0 as k — oo.
From Proposition 1(i), (4.7) and (4.32), we have
@) ( ) @) () () _ ( )
1EQuca — Q8 <IEQu s, — Q4 | + 125" — 4" =0
as k — oo. Thus, Proposmon 1(ii) and the proof of Proposition 1(111) give
(4.33) HFﬂkﬁk _Fﬂ”M: ”Fnkﬂk _FﬂkﬁHM_)O as k — oo.
Let

4.34) o) = Do) = a0y

||Fnk,9k nk,/3||M

Then noting that (4.26) can be written as
435 (I = KY))(Fao— Fup) =1~ Cup) (Anop+ By s+ Bos s).

where K s 1s given by (4.11), we have

) (3)
Ankﬁk,ﬂ + Bnkﬁk,ﬁ + Bﬂkﬂksﬁ)

~ —1
4.36) (I =Ky gl =(1-Cy,
( nk,ﬁ) ( n /3) ”Fflk,ek — Fnk,ﬁHM
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Since from (4.28)—(4.33) we have

3
| Ang.o0pllag + 1B, gllar + 1B g sllua

—0 as k — oo,
||Fnk,9k nk,,8||M

then letting vo be the limit of any convergent subsequence of vy, from (4.19),
(3.11), (4.11) and (4.36) we have (I — Kg”)vo = 0. However, Lemma 1 implies
vg = 0, which contradicts (4.34). [

PROOF OF PROPOSITION 1(v). Following the notation in Pollard (1990),
we have & = (V;,6;,t), i = 1,2,...,n, as the independent random vectors.

Since £V (w,1,0) = I{F(Vi(w) — 1;6) < 1,8 = j} for 1 €[0,1] and |6] <p

is an indicator function with envelope | fi(j )(a), I < Fi(j )(a)) = 1, the process

{ fl-(j )(a), t,0)} is manageable [see examples on VC index in Chapter 2.6 of van

der Vaart and Wellner (1996)]. The proof follows from n! "l fi(j )(a), t,0) =
", OY)(F~(1)) and Theorem 8.3 of Pollard (1990). [J

PROOF OF PROPOSITION 1(vi). Without loss of generality, we only need to
consider the case 0<6 <1and0<x <1.Letk be a positive integer such that
A< 2k+2 <3 | and let y be a constant satisfying k —2(k+1)A—1 > 2y > 0. Then,
for any 0, x € [0, 1] and positive integer m = n*t7  there exist 0 < p,.g<(@m-—1)
such that £ < x < 2t and 4 < 9 < 2t1 Thus, from (B1), (B3), (3.1) and (4.7),
we can show for j =1,2,3,

20 (x,0) = [0Y) () — EQY) ()]

<Pl g+l
- m ~ m

+E{Q,ﬁ{2q+1)/m(p7H)} E{0) )

) +2Mpem ™!,
m m

and from a similar lower bound for Z,(,j )(x, 0), we have

sup | Q(]) Q;(zje I [0,1]
0<6<1

4.37)
< max{

Z,Ef)(ﬁ, 1)‘;05 p.q Sm} +2Mpem™,
m m

where || - ||[0,1] stands for the uniform norm on [0, 1]. Note that for any p and ¢, it
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can be shown that ElZ,(,j)(%, 4|2k < n=*Cy, for C = k(8k)X. For instance,

n
E|Z'(’j)(x’9)|4 =n”" ZE[I{Vi <x+10,8 =j}
i=1
— P{V; <x+10,6; :j}]4

+> Y E[I{V, <x+1,0.5, =]}
p#q
— P{V, <x+1,0,8,=j}]

x E[I{Vy < x + 140,84 = j}
—P{Vqsx+tq9’54=i}]2}

<n*m2* +n220Y) = 1en 3 +16n2 <3272,

Hence, for k — 2(k + 1)L — 2y > 1 and any ¢ > 0, the Markov inequality gives

Zﬁj)<£,1>‘;0§p,q§m} >8}
m m

2k

o N N 2% |0 (P4
<> > > e *nME|Z; i

e o0
5 Ck8_2k Z(m 4 1)2,12]()\”—]{ 5 4Ck8_2k Z n2()u+)/)n2k)\—k < 00

n=1 n=1

and, in turn, from the theorem in Section 1.3.4 of Serfling [(1980), page 10], we

know that

(4.38) max{nA

Z,(lj)<£,1>’;0§p,q§m}is>'0 asn — 00.
m m

Therefore, the proof follows from (4.37), (4.38) and n*m~! =n~" — 0 as
n— oo. [

5. Proof of Theorem 2. In this section, E QLJ /)3,1 always denotes the expecta-

tion that treats 8, as a constant in (3.1) and (3.3). We begin by establishing the

following lemma, which is needed to prove Theorem 2(i).
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LEMMA 2. Assume (AS5) and (B1)—~(BS). For M given by (3.6) and 0 < A < %,
if

0}’1 IB’ I’l)L ” Q;{én - E Qilj,gn ” M 0’
5.1 4 4
I Qr(z],g,, - EQ,%n | —0 asn — oo,

where j =0, 1,2, 3, then

(5.2) n*|Fug, — Fug, |y —0  asn— oo.

PROOF. First, we note that (5.1), Proposition 1(i) and (4.7) give

(5.3) |0y — 0P| =0  asn— oo,

n,0,

where j = 0,1,2,3. Thus, from the proof of Proposition 1(iii) and from
Proposition 1(ii) and (iv), we have that as n — oo,

”anen - F,B” g 07
(5.4) ” Fn,@,l - Fn,ﬂ”M —> 0,
” ﬁn,Gﬂ — Fyp, ”M — 0.

From (3.5), (3.7), (3.8) and the derivation of (4.26), we have for any x €
[—M, M],

Foo(x) — Fyo(x)
(5.5) = Ano(¥) + B () + B (1) + [Fup(x) — F6(0)]Cro(x)

M -~
n f_ Ko (5[ P ) = Fog )] du,

where
Y 1—F,
Anp () = 09 x) — EQY)(x) — /_ B ﬁiﬁii [0V} () — EQ\y )]
M Fuox) © G, 03
e — B0 w)

X

Br(lzg(x) = [F;l@(x) - ang(x)]/ dQEzZ)@(M)

—M{ 1= Fpgu) 1— Fn,ew)}

4 [Boo () — Fap()] / d[0%) ) — EQP)w)]

M 1= Fpg(u)
—[1 = Fye(x)]
’ oo 1 @\ @
x /.—M{ 1 — fn,@(”) 1— Fn,@(”) } d[Qn,Q(u) EQn’Q(M)]
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},ew) — Fpg)P?
(1-F, 9<u>][1 — Fuo(u)]?

- F, 9()6)]/ dEQZ)w),

B (x) = [Frg(x) — Fr o ()] / { }dQEf,é(u)

n9<u> Fro(0)
+ [Fro(x) = Fro()] / m d[0%) ) — EQF)w)]

1 NN
 Fap () / { i nﬁ(u)}d[Qnﬁ(u) E0%) )]

M [Fo(u) = Fpo)]?

F, X E0% ().
+Fro | Fro) P2y Cno)
Y R e M 3)
Cro= [ = P AE O+ / o AEew.
Fn,G(x)

{ 1 — Fyp(x) Tu
[1— Fp ()]

Equivalently, (5.5) can be written as

<x}g2w) + u}q“)w}

Kpo(x,u)=—

[F,0(u)]? T

Fup(x) = Fro(x) = Ao (x) + B (x) + BO)(x) + Ko, p(x)
+ [Fn,O(x) - Fn,@(x)]cn,ﬂ(x)

M —~~
+ K 0[P ) = Fr )] du
which gives
(5.6) (I = KMo)(Fup — Fup) = (1= Cup) " (Ang + By + BOy + Kno,p),
where

M
Kno.p(x) = /_ 1K) = Ko ) Fr ) = Fr )] du

+ [Fro(x) = Fuo(x)][Cpo(x) — Cpp(x)].
Since 6, — B as n — 00, we have from Proposition 1(ii), (5.4) and (4.8),
(5.7 |Cno, —Cnpllyy >0 and |Kn6, — Knp|y2 =0 as n — 00.

Next, we establish (5.2) by discussing the cases with bounded and unbounded
{n*||Fy 0, — Fn.0,|lm} separately.

CASE (a). supnzl{n’\llfnﬁn — Fy.0,llm} < 0o. Note that (5.7) gives

(5.8) n*| Kn 6,8l — 0 asn — 0o.
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Also, from (5.1), (5.4), Proposition 1(ii) and (B1) we have that
(5.9) n*|Ane, |y —0  asn— oo,

because from integration by parts,

Ang, () =[0) () = EQL) ()]

+102, (-1 - FOR, anly
10 #1080 - B0, wla| =)

+[0%), () — EQ), (M )]%

- [0~ £oS, e )

and we have that as n — o0,

n* | Fn g, — Fu, 134105, (M) — Q) (—M)]
[1 — g, (M1 — Fpg,(M)]

2
n| Br(l,é,, | <

20| Fg, — Fuo, IM1QS), — EQSY Il
1— M
S - [ ne,,<(2)>] .
2n* | Fu,0, — Fn0, M1 Qg — EQy g M
- n,en<M>]
~ 2 2
n* | Fe, — Fug, I3 [EQL), (M) — EQY) (—M)] o
[1 — g, (M)I[1 — Fpg,(M)]
and

= 3 3
n* (| Fn6, — Fu, 13105, (M) — Q%) (—M)]
Fy6,(—=M)Fyg,(—M)
=~ 3 3
L 21, Fug, lnl Q%) —EQY) Il
Fy, (—M)
=~ 3 3
L 21 g, — Fy 9,1||M||Q( b, —EO) llu
n,@,, (_M)
= 3 3
L ", = Fag, IEQY) (M) — EQL) (—M)] -
Fn,G,,(_M)Fn,O,,(_M)

n 1B, s <

(5.12)
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Hence, (5.6), (5.8)—(5.12) and (4.19) give

-~

(5.13) |(1 = KY ) [0 (Fuo, — Fro)]lyy—0  asn— oo.

Since supnzl{n)‘HF\n,@n — Fu6,llm} < oo, then (5.13), (3.11), (4.11) and (4.19)
imply that 1£ a convergent subsequence of I’l)‘(fn’gn — F, p,) has limit vg, then we
have (I — K g’[ )vg = 0, and Lemma 1 implies vg = 0. Hence, we have (5.2).

CASE (b). sup,~{n*|Fu, — Fne,llm} = 00. Let u, = n*(F, 9, — Fu,).
Then there exists a subsequence u,,, such that ||u,, ||;s — oo as k — oo and for
Up,

(5.14) U, =
O Nung v

= vy llm =1,

equation (5.6) becomes

2) 3)
b, T B0, T Kni6n,.8)

lun g (1 = Cy )
Clearly, from (5.10), (5.1), (5.4) and (5.7) we have that as k — o0,

n/}; (Ankaenk + Br(z

(5.15) (1=K} g)v,, =

A A
1 Ang.6, I W Koy 0,611

(5.16) — 0 and — 0.
llotn; M| a1 llotn; M| a1
Moreover, (5.1), (5.4), (5.11) and (5.12) give
- nlBy, 0 n By, Nl . .
. — and ——— — as k — oo.
ety || s llotn; M| a1

Hence, (5.15)—(5.17) and (4.19) imply ({ — E%’ﬂ)vnk — 0 as k — oo. From the
proof of Case (a), we know that v,, — 0 as k — oo which contradicts (5.14). [

PROOF OF THEOREM 2(i). From (A1), (A3) and (2.20), we know for any
0 €[—p,pl,

B -~
My(6) = — /A [Boo(r) — FO]dw(x)
B -~ P
(5.18) — /A [Boo(0) — Fo ()] dyr(x)

B —~~
- /A [Fo.p(x) = Fy g (x)]dyr (x),
and from Lemma 2 and Proposition 1(v) and (vi), we have

(5.19) n*|Fup = Fuply 50  asn— oo.
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Since | M, (Bn)| < |M,(B)|, we know that (5.18), (5.19) and Proposition 1(ii) imply

(5.20) WMy (B30 asn— oo
and, in turn,
B - -
(5.21) n)‘/ [Fop () — Fup0]dy() 0 asn— co.
A

Because of Proposition 1(v) and (vi), it suffices to show that for j =0, 1, 2, 3,

A”Q(j) _ (j)

g~ EQply—0 and [0y —EQ]L | -0

asn — oo

(5.22)

implies n*|B8, — B| — 0 as n — oo.
Let {85, } be a subsequence of {B,} such that

(5.23) lim ng|By, — B| =limsupn*|B, — B|
k— 00 n—o0
and denote
I Fo . — e gl
(5.24) g = inf P TP
ng=1 |,Bnk - :B|
Then

/BFnkﬂn ()C) nkﬂ()
A ﬁnk_

and from (5.21) we have

Jim | Boy, — BIELY (B) — v (A)]

dwx)‘ > E[Y(B) — v (A)],

5.25 ~ ~
( ) < 1 A B Fnksﬁnk (x) - Fnkvﬂ(x) d _
= kggonkmnk - ﬁ|‘./A ,Bnk —B V()| =

Moreover, we know from (5.23) the proof follows by showing

Jim nt[g, — B| =0

If limk_wonilﬂnk — Bl # 0, then we have £ = 0 in (5.25), which by (5.24)
means that there exists a subsequence, still denoted as {ni |Bn, — Bl}, such that

1P, — Fuypllva
(5.26) lim —kP TP
k— 00 |Bni — Bl
If By # B. then limy _, oo | Fyy 5, — Fuy.plli =0 and, in turn, (5.19) implies

=0 and lim B, = Bo.
k— o0

(5.27) Jim | Fugpo, — Fpllpyy =0
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On the other hand, from (5.22), Proposition 1(i), (4.7) and lim_, o By, = Bo, We

fljk) Bup Qg)) || =0, which from the proof of

Proposition 1(iii) gives that for any convergent subsequence of fnk, By, » Still de-

know for j =0,1,2,3, lim;_ || O

noted as {Fnk,ﬁnk }, and for any fixed x € [—M/,\M], we have limy_, fnk,ﬂnk (x)=
Fg,(x). However, (5.27) implies limg_ o0 Fyy, Bu (x) = Fg(x), which contra-
dicts (B6) because Bg # .

If Bp = B, from (5.22) and Lemma 2 we have

. =
(5.28) [ Fag g = Fuge |y =0,
which from the assumption limy_, o nil Bni — Bl #0, (5.26) and (5.19) implies
(5.29) Jim e Fuy g, = Fplla =0

Note that (5.18), (5.20), (5.28), (4.35), Lemma 1, (4.29), (4.30), (5.29) and (4.19)
imply

B
o) = — fA (B, () = Frg p(0)] dv ()
B T
= [u-R1y)

(5.30) A
2) 3)
(Ankvﬁllkvﬁ + B"k,ﬂnkvﬂ + Bﬂk,ﬂnk,ﬂ

X
1—Cup

)(X)dl/f(X)

B sm =1 Ancbuy.B _
== fA (I = K p) l(lj‘ﬁ)@)dw(x) +o(n ™).

From (3.1), (3.10), integration by parts in (4.27), limy_ By, = B, (B1), (B3),
(B5) and (AS5) we have

—1 ~
(5.31) [(Br = B) " Ang o — Aplyy — 0 ask— oo,

Hence, the dominated convergence theorem, (5.31), (4.19), Lemma 1 and (3.9)
give

_ B ~ _ An B, B
(Bu — B) 1/ (I-K) ) 1(#>(x)d1/f(x) — Ag #0
A 1— an’lg
(5.32)
as k — oo.
Hence, by (5.30) and (5.32) we have limy_, o n,’}l Bn, — Bl =0, which contradicts

the assumption limy_, o n%lﬂnk —B1#0. O

The following lemma is needed in the proof of Theorem 2(ii).
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LEMMA 3. Under the assumptions of Theorem 2, we have for M given
by (3.6),

(5.33) \/E(Q,(fl)gn - EQi(zj/)S,,) weakly converges to ng) asn — oo
on[—M, M], where G(]) is a centered Gaussian process for j =1, 2, 3.

PROOF. From the notation in the proofs of Proposition 1(v) and (vi), we know
that fpi(w, x,0) =n"Y2I{V;(w) <x +1;0,8; = j} for |x| <M and || < p is an
indicator function with envelope | f;;; (@, -)| < Fpi(w) = n—1/2. Thus the triangular
array of processes { f,; (w, x, )} is manageable. Noting that

VI ZD (x,0) =Y [ fui(w,x,0) — Efpi(-, x,0)],

i=1

from (AS) and Pi(j ) in (2.12), straightforward verification of the sufficient
conditions of Theorem 10.6 in Pollard (1990) shows that /n Z,(,j )(x, 0) weakly
converges to a centered Gaussian process on [—M, M] x [—p, p]. This means
that nZ (-, B) = /n (Q(J) E Q;{,)B) weakly converges to a centered Gaussian
process on [—M, M] as n — oo and that from Neuhaus [(1971), page 1291] we
have that for any ¢ > 0, when § — 0,

lim sup P{sup{«/ﬁ]Z,@(x, 0) —
n—oo

y|<5,|9—n|<8}28}—>0.

Since from v/nZ (x, 0) = /[ QY (x) — EQY) (x)], we have that forn~'/3 < 5,

sup{/n |[foé<x> —EQy ]
< sup{ﬁ|Z£f)<x,9> - Z,§f><y, Bl Ix —yl <8, 10 — Bl <6},

x| <M, n'Pl0 - Bl <1}

thus as n — oo,

sup  {Val[0Y) ) — EQY) )] — [0V () — EQVy 0]} 50

Ix|<M,n!/310—B|<1

From Theorem 2(i), we know that n'/3|8, — B| 230 as n — oco. Hence, we
have that \/n (Q(] ) —E Q(J ) ) weakly converges to the same centered Gaussian

process as f(Q(J) EQ(])) O
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PROOF OF THEOREM 2(ii). From (5.6) we have that on [—M, M],

(I - E%ﬂ)[\/ﬁ(fnsﬁn - Fnsﬁn)]

(5.34) Anp, + B,?}g + Bfﬁg +Kup, p
— ﬁ 2 Pn s Pn
1— C,,,,g

’

and from Theorem 2(i), Proposition 1(iv)—(vi) and Lemma 2, we have

(5.35) nt ” ﬁn,ﬂn — Fu.p, HMa—'SiO and nA” Fop, — Fn,ﬁ”M as
asn — 00,

where 0 < A < % By (5.11), (5.12) and Proposition 1(vi), we know (5.35) implies
(5.36) \/EHB,EZ%” It 230 and V| Br(t?/)% Iy 220 as n — 0o.
From (3.3), (4.8) and Proposition 1(iv) there exists 0 < Mo < 00 such that
|Cn.p = Cupllag
Mol — B Mol — B

+
=0 Fupy DI = Fp g (M1 Fy g, (—M)Fy g (— M)

and similarly

” K"sﬁn - K”aﬂ ”M2

- Mol - BI Mo\, — B
== Fug, (MPI = Fug(MP T 2, (~M)F4(~M)

In turn, from Theorem 2(i) and (5.35) we have, in (5.6),
(5.37) Vi|Kngply =0  asn— cc.

Hence, from (5.36), (5.37), Lemma 1 and (4.19), equation (5.34) gives

~ ~rg o nA
Vi(Fu = o) =0 = R (Y222 ) o)
—Cp,

where 0,5 (1) converges to 0 almost surely as n — oo. Thus, (5.10), Lemma 3,
(5.35), (4.19) and Lemma 1 imply that on [-M, M],

(5.38) V(. 5, — Fy.p,) weakly converges to Gg as n — o0,

where Gg is a centered Gaussian process.
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Now, (5.18), (4.35), Lemma 1, (4.29), (4.30), (5.35), Theorem 2(i) and (4.19)
give

B P
My () =~/ fA [By g (0) — Fop, (0] dvr(x)
B
—Jn /A [Fop, (¥) — Fo ()] v (x)
B P
- n /A [Fop, (6) — Fo g (0] dr(x)

_ ﬁ/j(] — kM)

A, 3@ e
(5.39) x( b +1 ””é"’ﬂJr n’ﬂ"”s>(x)d1p(x)
“Cup
B o~
——Vn /A [Fopy @) = Fop, (0] (x)
B > —1 Ans,an/g
—/n fA (I = K'p) (m)mwuwoa.&(l)
B —~~
——Vn /A [Bop, @) = Fop, (0] dr (x)
- \/E(,Bn - ﬁ)An + 045.(1),
where
(5.40) A= (B —ﬁ)—lfB(I — KM )_1<M)(x)dw0c)
. n n 4 n,B 1— Cnﬁ .

If we let n,, = M, (B8,,)/ A, then from Theorem 2(i) and (5.32) we have
(5.41) A Ap#£0  asn— oc.

In turn, (5.20) implies n*|n,| 220 as n — oo, where 0 < A < % Hence, from
(5.38)—(5.41) we have

B _
\/E(IB}’! - /3 =+ Un) = _\/EA};1 /;4 [Fn,,B,, (.X) - Fn,,B,, ()C)] dw(X) + oa~s'(1)
B
2 —AEI/A Gpdy 2N(©0,0%)  asn— oo. -
APPENDIX.

PROOF OF THEOREM 1(i). If we denote Z,(s,t) = /n[W,(F~1(s),1) —
EW,(F~(s), )], where s, t € [0, 1], then it suffices to show that Z, (s, 1) weakly



1216 J.-J.REN

converges to a centered Gaussian process. Following the notation in Pollard
(1990), we have & = (F(Y;),t;),i =1, ..., n, as the independent random vectors
and fyi(w,s,t) = n12[{F(Y;(w)) <s,t; <1t} is an indicator function with
envelope | fi(w, )| < Fni(w) = n~'/2. Thus the triangular array of processes
{ fni(w, s, 1)} is manageable [see examples on VC index in Chapter 2.6 of van
der Vaart and Wellner (1996)]. Noting that Z,(w,s,t) = > /[ fai(w, s, 1) —
Ef,i (-, s,1)], the proof follows from straightforward verification of the sufficient
conditions of Theorem 10.6 in Pollard (1990). O

Computation of Fn,g and properties of M, (#). For any 6, let
(A.1) Vi(0) =V; — 10, i=1,...,n.

Then one can compute F\n’g as in Mykland and Ren (1996), treating (V; (0), §;),

1 <i < n, like their doubly censored sample, because the integral equation (2.2)

in Mykland and Ren (1996) is exactly the same as (2.19) in Section 2.
Furthermore, from their paper we know that for any 6, fn,g is given by

n
(A2) Fuo(x) =Y pni@I{Vi(6) <x},
i=1
where 0 < p,,;(0) <1,1 <i <nand0 <> " | pni(0) <1, anditis easy to see that
Pn1(0), ..., pun(0) are deteerined by the ranks of V; (6) among Vi@, ..., V,(0).
This means that for any 6 < 0, if the ranks of V; () and V;(6) are exactly the same

for every i, then we should have p,; (6) = pni(g) for every i.
Now, without loss of generality, assume V] <V, <..- <V,,. Let

Vi—V; ., .
(A.3) = i Ftj,i#j, 1<i,j<n
L — 1t
and let 6;,...,0y be all distinct points of ', with —co =6y < 0] < --- <

On < On41 = oo. It is straightforward to show that for any 0 < k < N and any
O <6 < 0 < Or+1, we have {rank of V;(6)} = {rank of V,~(9~)},i =1,...,n.Thus
for each i, p,; (0) is a constant on every interval (6, 6x+1),0 <k < N. Since by
(2.20), (A1) and (A.2),

(A4) M, (0) = {1 - anxm}ww) + Y P @)Y (Vi — 1;6),

i=1 i=1
then for each 0 < k < N and any 0 € (6, Ox+1), we have

My (0) == pui@®tiy'(V; — 1;6) <O0.
i=1

Hence, M,,(0) is continuous and nonincreasing in € on every interval (6, Gx11).
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Existence of F, g and Fy. Because of (3.1), (3.2) and Proposition 1(i), the
arguments for showing the existence of F, g and Fy are similar. Thus, we consider
only the case of Fy.

For any 0, clearly all Q(J )(x) are nonnegative, continuous and nondecreasing
inx with 05 (c0) =aj <1, j=1,2,3,and 03" (c0) =aj +ay+ a3 =1.Let N
be any large positive integer andletn; =o;N, j =1,2,3. Thenn; +ny+n3 = N.
For o ! Qél)(x) we can choose points vy, .. vnl such that the uniform distance
between G, (x) = n, -1 Zl 1 Hvi < x} and of Q )(x) is no larger than nl_l.
Similarly we can choose points vy, 41, ..., Un 41, a0d U 4y 415 - - - Uny4ngtny fOT
G, (x) and G, (x), respectively. Let §; = 1,1 <i <ny;2,n1 +1<i <ny +ny;
3,ni+ny+1<i<N.Then

N ny
OV =N Iy <x,. 8=l =an]' ) I{vi <x} = a1Gp, (),

i=1 i=1

N
OV () =N Iy <x,8 =2} =2Gp, (),
i=1

N
OV () =N""Y Iy <x,8 =3} = 3G, (1),
i=1

N
OV ) =0 () + 0P () + oY (x) = N"' 3 I{y; <x).

Let Hy be the solution of

1— H
HN<x>=Q§8><x>—f< ?NEX; 40 )
(A5) . ‘;‘;‘ N
N(X 3)
o w.

Then from Mykland and Ren (1996), we know that Hy(x) is a [0, 1]-valued
nondecreasing function. From Helly’s theorem, Hy has a convergent subsequence
Hy, such that for any x, lim_, o, Hy, (x) = Hy(x). Since for j =1, 2, 3, we have

Q%) =Gy, converges to Q(J )(x) uniformly, we have that for each fixed x, the
limit of equatlon (A.5)is

l—Ho(x)dQ(z)( )+ Hp(x)

1= Hox) Ho®) 453 0.
<x 1 — Hp(u) x<u Ho(u) Q5700

Ho(x) = 00 (x )—/

which shows the existence of Fy = Ho, a [0, 1]-valued nondecreasing function.
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