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ON M-ESTIMATORS AND NORMAL QUANTILES

BY ANDRZEJ S. KOZEK
Macquarie University

This paper explores a class of robust estimators of normal quantiles fill-
ing the gap between maximum likelihood estimators and empirical quantiles.
Our estimators are linear combinations of M-estimators. Their asymptotic
variances can be arbitrarily close to variances of the maximum likelihood
estimators. Compared with empirical quantiles, the new estimators offer con-
siderable reduction of variance at near normal probability distributions.

1. Introduction and summary. In this paper we explore a class of robust
and highly efficient estimators of normal quantiles. For p € (0, 1) the normal
p-quantiles are of the form

() qp=MKn+0-q0,p,

where 1 and o are the mean and standard deviation of N (u, o?), respectively,
and qo, , denotes the p-quantile of the standard normal distribution. Relation (1) is
not valid beyond the normal family of probability distributions. It is not valid even
for approximately normal but nonnormal probability distributions. Consequently,
robust estimation of x and o in (1) cannot produce robust estimators of quantiles
even when the sample probability distribution is near normal. Robust estimators
of normal quantiles should be able to capture changes in shape of probability
distributions near the normal family. This is a very important property because,
by the central limit theorem (CLT), probability distributions which are close to
normal distributions, but which are not exactly normal, are frequently observed in
practice.

Clearly, one can use empirical quantiles as estimators of g,; however, their
asymptotic variance is much higher than the variance of the maximum likelihood
estimator and higher than the variance of the robust estimators considered in
this paper. Kernel-smoothed empirical quantiles [Nadaraya (1964), Parzen (1979)
and Reiss (1989)] are also known to be superior to the standard empirical
quantiles [cf. Azzalini (1981), Falk (1984), Mack (1987) and Falk and Reiss
(1989)]. We achieve a convolution-type smoothing by considering properly chosen
nonsymmetric M-functionals. In the M-functional approach, there is a scaling
parameter o which corresponds to a smoothing parameter / used in the kernel-type
estimators. In the literature on robust estimation, the scaling parameter o does not
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vary with the sample size, while in the kernel smoothing, the window width & = h,,
converges to zero when the sample size increases to infinity. The M -functionals
are more convenient to work with and our robust estimators of quantiles are linear
combinations of M -estimators, with either constant or estimated coefficients.

In Section 2 we consider statistical functionals, which are either M -functionals
or linear combinations of M-functionals. We show how these functionals are
related to quantiles of smoothed probability distributions. To recover quantiles of
the sample distribution we consider simple linear combinations of M -functionals
(10) and (14) which coincide with normal quantiles for F ~ N (u, 02). Following
the standard approach, going back to von Mises (1947), we obtain estimators from
functionals by evaluating them at the empirical distribution function. We deduce
robustness of our estimators from the standard robustness theory, presented, for
example, in Huber (1981).

In Section 3 we present the main results of the paper, given in Theorems
1 and 2. These theorems state that, under the normality assumption, the asymptotic
variances (3) of the maximum likelihood quantile estimators provide a lower
envelope for the asymptotic variances of our estimators of normal quantiles.
A similar result holds true also in the case of a known variance [cf. Kozek (2001)].

In Section 4 we report results of simulations. We show that the Huber
M -function can be safely used in our estimators and thereby replace the more
sophisticated probit M-function. We also show that our estimators capture
departures of quantiles from the normal probability distribution for near normal
distributions.

In the Appendix we give short proofs of the results stated in the paper. More
details are available in Kozek (2001).

The literature on quantiles, quantile-like functionals, M -functionals and on
the corresponding estimators, is enormous. We cite here, chronologically, a few
additional important references on topics relevant to the present paper: Pfanzagl
(1976), Bassett and Koenker (1978), Kemperman (1987), Milasevic and Ducharme
(1987), Newey and Powell (1987), Breckling and Chambers (1988), Antoch
and Janssen (1989), Efron (1991), Kaigh and Cheng (1991), Chaudhuri (1992),
Ralescu (1992), Jones (1994), Chaudhuri (1996), Cheng and Parzen (1997) and
Koltchinskii (1997).

Throughout the paper we use the following notation. N(u,o?) denotes
the normal probability distribution with mean g and standard deviation o.
The symbols ® and ¢ denote the cumulative distribution function (c.d.f.) and the
probability density function (p.d.f.) of the standard normal probability distribution,
respectively. Y ~ F means that a random variable (r.v.) Y has c.d.f. F. & denotes
the set of all c.d.f’s on R; g, (F), or, equivalently, g,(Y), denotes the p-quantile
of F given by

qp(F) =qp(Y) =inf{x: F(x) = p},

where Y ~ F. Var(G), where G is a c.d.f., denotes the variance of ar.v. Z ~ G.
Fy denotesac.d.f. F (), coinciding with the c.d.f.of o-Y, where Y ~ F and o > Q.
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For any 1 and o > 0 we have
ap(@Y + 1) =qp(Fo(- — ) =0gqp(¥) +u
and in particular,
qp(F5) =0q,(F).

Let us recall that if ¥ ~ N(u, o?), with both u and o unknown, then the
maximum likelihood estimator of the normal quantile g, is given by

) dp="Yn+5-qo.p,

where 6 = ,/3_(Y; — Y)2/n. The asymptotic variance of § p 18 given by
. AN 2 1.2

3) nlglgon -Var(g,) =o0°(1+ 2qo’p).

2. M-functionals. Let Y ~ F be a sample random variable representing the
data and let G be an arbitrary c.d.f. to be chosen by the analyst. Let Z denote
a random variable independent of ¥ and such that Z ~ G. If Y ~ N (i, 0%), and
Z~N(@,s*)thenV=Y—-2Z~ N(u, o2+ s?) and we have the following relation
between quantiles of ¥ and quantiles of V:

o2
“4) qp(Y)=q12(V) +‘/m(qp(v) —q12(V)).

One of the advantages of using quantiles of V instead of quantiles of F is that
the distribution of the random variable V can be considered as a “smoothed”
distribution of Y. Quantiles of kernel-smoothed empirical distributions are known
to have better asymptotic performance than the sample quantiles [cf. Azzalini
(1981), Falk (1984), Mack (1987) and Falk and Reiss (1989)]. Moreover, smoothed
empirical processes converge to a Brownian bridge [cf. Yukich (1992) and van der
Vaart (1994)], as do the standard empirical processes. Therefore, even if we were
to choose a nonnormal distribution for Z, we can still obtain robust and efficient
estimators.

The convolution-type smoothing effect and the distribution of V can also be
obtained using M -functionals and M -estimators. Let M be a convex function on R
with a bounded right-hand side derivative ¥ (x) such that

(5) —oo<—a= lm ¢(x) <0< lim ¢(x)=p <oo.
Let
(6) MO, F)=Ep[MY —0)—M(Y)] =/[M(y —0)—M)IF(dy),

where 6 € R. Any function @(F) from the set of all distribution functions F
into R minimizing M(6, F) is called an M-functional. Let G be a c.d.f. given by

1
) G(z) = m(lﬂ(z) +a).
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LEMMA 1 [Kozek and Pawlak (2002), Lemma A.1]. The M -functional Q(F)
minimizing M(0, F) coincides with a p-quantile of V =Y — Z, where Z is a
random variable independent of Y with c.d.f. G given by (7) and

B

®) P=aip

Without loss of generality we can set values « = 2(1 — p) and B8 =2p in (7)
and (8). Then we get the following:

LEMMA 2. Let Y ~F, Z~ G and let Z and Y be independent. Given
p € (0,1), the M-function meeting conditions (5), (7) and (8) for which
the corresponding M -functional Q(F) minimizing M(0, F) coincides with a
p-quantile of V. =Y — Z, is given by

M, c(y)=Mg(y)+Q2p—1y,

(©)]
Mg (y) = /Oy (26 @) - 1)dz.

As we shall consider simultaneously several M-functionals based on
M -functions given by (9) it will be convenient to use notation @ , ¢ (F) indicating
the actual values of p and G, instead of the general symbol Q(F).

EXAMPLE 1. Let G(z) = ®4(z) = ®(3), where ®(z) is the c.d.f. of the

standard normal distribution N(0,1). Then Z ~ N(0,s?). The corresponding
M -function is called a probit M -function with parameter s and is given by

= [ 1) -)cs(ee(2) 1) 26(2) -s0)

For every p € (0, 1) the M-functional @, ¢, (F) coincides with the corresponding
p-quantile of U =Y — Z. In particular, if ¥ ~ N(u,0%) then V=Y — Z ~
N(i,0% 4+ 52), @po,(F) equals g,(V) = u + vo2+52qp,, and we have
lgp — 1l > o - |qo,pl. It is clear that the difference between g, (V) and g, (F) =
u+ o -qo,p, the p-quantile of N (u, o2), may be arbitrarily large for large s.

EXAMPLE 2. Let G(z) = Us(z) = U(%), where U(z) is the c.d.f. of the
uniform probability distribution on [—1, 1]. Then Z is uniformly distributed on
the interval [—s, s]. The corresponding M -function is called a Huber M -function
with parameter s and is given by

1 2 .
—y°, if y e [—s, 5],
My, (y) = /Oy (w(f) _ l)dz _ |2

s .
§ ly] — 3 otherwise.
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The M-functional @ y,(F) coincides with the p-quantile of U =Y — Z. If
Y ~ N(u, o?) then no closed formula for ¢ p(U) is available; however, Anderson’s
lemma [Anderson (1955)] implies that |g, — | > o - |qo,p|.

EXAMPLE 3. Let G(z) be the c.d.f. of a degenerate probability distribution
concentrated with probability 1 at 0 and given by
0, if z <0,
1, otherwise.

G(z>=A(z>={

Then Z = 0 with probability 1 and the corresponding M -function is the absolute
value function given by

Ma(y) =yl

For M, o given by (9) and the absolute value function, the corresponding
M-functional @, 4(F) equals g, (F), the p-quantile of Y. If ¥ ~ N (p, o2) then

qp(F)=u+0o-qo,p-

Let us note that condition (5) implies weak continuity of M -functionals,
whenever they are unique. Using similar arguments as in Huber [(1981), page 48],
we obtain the following.

PROPOSITION 1. Let M(y) = M, (y) be given by 9). If F or G is
strictly increasing on R, then the M-functional @ ¢ (F) minimizing M(0, F) is
continuous at F in the topology of weak convergence. In particular, the probit
functional @, ¢ (F) is continuous at every F and the Huber functional @, y, (F)
is continuous at every F (-) = CID(%)for nweRando > 0.

By evaluating M-functionals @, ¢(F) at the empirical c.d.f. ﬁn, we obtain
natural estimators @, (ﬁn), called M -estimators or empirical M -functionals.

Since the Glivenko—Cantelli theorem implies that the empirical c.d.f. F,
converges with probability 1 and uniformly to the sample c.d.f. F, it does so, also,
in the weak topology. Hence, we have the corollary.

COROLLARY 1. The empirical probit M-functional @ p,q>s(ﬁn) is strongly
consistent for @, o (F) at every F € F, that is,

nll>n(;lo @P,Cbs (ﬁ”) = @P,(Ds (F)

holds with probability 1 for every F € ¥ .

COROLLARY 2. The empirical Huber M -functional @ p,US(IA’n) is strongly
consistent for @ y, (F) at every F () = CID(%), weRando > 0.
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By the Hampel theorem [Huber (1981), page 41], the continuity of Q(F) is
equivalent to the robustness of the corresponding M -estimators. Hence we have
the corollary.

COROLLARY 3. For any c.d.f. G the empirical M-functional (,‘vag(ﬁn) is
robust at the normal family.

It is clear that any linear combination of M -estimators is also robust at the
normal family.

Following the pattern given by (4) we define @Z,G (F), an approximate quantile
functional or a-quantile functional, for short, given by

(10) 5.6(F)=@Q12.6(F)+ So(F) - (Qp.6(F) — Q12,6(F)).
The shrinking factor So(F) is given by
1D So(F) —\/ S(F)

O TN S(F)2 4 Var(G)’

where S(F) is a scale functional which is continuous with respect to weak
convergence of the c.d.f’s on R, satisfies S(P;) = s and is used to replace

o = 4/ Var(F).

PROPOSITION 2. Let S(F) be a continuous scale functional such that
S(®5) = s for s > 0 and let the M -function used in (10) be a probit M -function. If
F()= @(%) then the a-quantile functional (QZ’@S (F), given by (10), coincides
with a p-quantile of F. Moreover, the probit M -functions are the only M -functions
having this property.

By using the Huber M-function, corresponding to a uniform distribution
of Z, one can achieve for p € [0.05,0.95] good approximations of normal
quantiles by use of Q‘;’US(F ). This is a nice and rather unexpected feature of
Huber M -functions, because the uniform distribution differs significantly from the
normal one.

Table 1 contains maximal discrepancies between the standard normal quantiles
and their approximations @?77U9(F ), given by (10), for p € [Pmin, 1 — Pmin]
and for several values of s. It shows that, for probability distributions F
close to the standard normal distribution, one can achieve, for s < 1.5, very
good approximations of the normal quantile function go , by using a Huber
M -function in (6). The limitation to s < 1.5 shows that the ratio of variances
of F and G should not exceed 1.5. Such a balance is of no importance in the
case of the probit M-functions because on the family of normal distributions
the functional @;,és (F) coincides with normal quantiles for any s > 0.
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TABLE 1
Discrepancies between qq, ,, standard normal quantiles, and (éZ’Il) u. (®), their
’ Vs

a-quantiles approximation. (:‘2‘;J U, (@) is given by (10) with G = Uy and corresponds
to the Huber M -function; [max{lqo,,, — (:‘2’;J U, (®)|: p €Pmin> 1 — Pminl}]

s=1 s=1.5 s=2.0 s=2.5 s=3.0
Pmin = 0.01 0.021 0.066 0.127 0.188 0.243
Pmin = 0.05 0.000069 0.004 0.013 0.025 0.037

The proper balance between variances of F' and G can be automatically retained
by using scaling, a procedure recommended by both the theory and practice of
M -estimators [cf. Huber (1981) or Hampel, Ronchetti, Rousseeuw and Stahel
(1986)]. By replacing M(0, F) with

(12) M. (0. o, F):/ [M(y_e) —M(%)} F(dy),

o

we obtain scaled M-functionals. Given o > 0, any function Q4. (o, F) from F
into R minimizing M (0, o, F) will be called a scaled M -functional. Let us note
that if, for a given c.d.f. G and p € (0, 1), the M-function is defined by (9) then

Qs (0, F) = @p,G(r (F).
We have the following interpretation of scaled M-functionals.
LEMMA 3. Let the M-function be given by (9) and random variables Y and Z

be independent and such that Y ~ F and Z ~ G. Then the scaled functional
Qp.c, (F) coincides with a p-quantile of Y — o - Z, that is,

Qp.G,(F)=qp(Y —02).
Now, consider the case where Y ~ F is N (u, 62), Z~ N(0,s%) and Y and Z

are independent. Then W =Y — oZ ~ N(M,O’Z(l + s2)) and we have the
following relation between quantiles of ¥ and quantiles of W:

1
qp(F) =q12(W) +,/ m(qp(W) —q12(W)),

which can be rewritten using the scaled M -functionals notation

1
(13)  qp(F) =Qip.0,,(F) + ] m(@p,QUS(F) - Qi2,0,,(F)).

Clearly, by replacing ®; with another c.d.f. G we lose the equality. Table 1
shows, however, that in the case of the Huber M-functions M, y, and when the
ratio between variances of Y and Z does not exceed 1.5, one obtains very good
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approximations of g, (F). In the case of a-quantiles (10), these variances are
o2 and 52, respectively, and it is not possible to control their ratio, as o is not
known and has to be estimated. The present case is more convenient because

Var(Y)=0? and Var(o-Z)=o02s°

so that the ratio of these variances equals 1/s2. Hence, the quality of the approxi-
mation depends only on the choice of s and does not depend on the unknown
parameter 0.

We define a scaled a-quantile functional Q;C’GJ (F) by replacing ®; in (13)
with a general distribution function G,

5.6, (F)=Q12.6,(F)+S1-(€).6,(F) = Qi2.6,(F)),

S1 =/1/(1 + Var(G)),

where S is a constant shrinking factor, depending only on the choice of G. Let us
note that in (14) we use simultaneously @1, G, (F), & G, (F) and 0. It requires
minimization of the following scaled convex functionals:

—0
M (61, 0, F):/[MI/Z,G(y . 1) _MI/Z,G(£>i| F(dy),

—0
Miels,0 F) = | [MP,G(%) _ Mp,G(g)} F(dy),

under the condition

(14)

(15)

Y —6;
(16) Erx ( ) =0.
o
We assume that the function y (y) is symmetric, differentiable, bounded and bowl-
shaped.

An argument similar to that of Proposition 2 implies the following property of
the scaled functionals Q‘Z;C G, (F).

PROPOSITION 3. Let F(y) = <I>(y;—“) for some u and for o > 0. Assume
that the scale functional Ss.(-) solving (16) coincides at F with the standard
deviation o . Then, for the probit M -function the scaled a-quantiles given by (14)
and the quantiles of F coincide.

3. Asymptotic properties of estimators. Conditions for consistency and
asymptotic normality of M-functionals are well known [cf. Huber (1967, 1981)]
and we shall not recall them here explicitly. We shall consider estimators of
quantiles which are empirical a-quantiles and empirical scaled a-quantiles, given
by (10) and (14), respectively. They are linear combinations of M -estimators.
Under the normality assumption we explore in more detail the surprisingly good
behavior of their asymptotic variances.
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Using the asymptotic normality of M-estimators we first get the asymptotic
distributions of our estimators in the case of a general sample c.d.f. F and
a general c.d.f. G. Next, in the case of a normal sample c.d.f. F and probit
M-function M, ¢ , we use the resulting limit distributions to show that the
asymptotic maximum likelihood variances (3) form lower envelopes, as s — oo,
for variances of the estimators under consideration. This is the main result of the
present paper, stated in Theorems 1 and 2. Let us note that when s — 0 then our
estimators converge to empirical quantiles. Hence, our class of robust estimators
of normal quantiles fills the gap between empirical quantiles and maximum
likelihood estimators.

We shall use continuous bowl-shaped functions y (y), which are differentiable
at all but a finite number of points, such that

(17a) yx'(y) >0 for all y where x/(y) exists,
(17b) yx'(y) >0 on a nondegenerate interval, (c1, ¢2),
c1, 2 € [—00, 00],
(17¢) |yl‘i_r)noo x(y)=c3>0,
(17d) x(0)=cq4 <0.

In the case of the a-quantile functional (10) we need to minimize
(18) My, 01, F) = [ (M. =00 = My, 6] F(dy)

fori =1,2, with p; = % and py = p, respectively, under the condition

(19) Ex(—) =0

where x(y) is a function meeting conditions (17a)—-(17d). Let {@;, c(F),
Qp.g(F),S(F)} be a solution to this problem. The estimator of the a-quantile
functional (10) is given by

20) @4 6 =@Q% c(Fn) = Q6 (Fn) + S0 (Qp.c(Fn) — Qija.c(Fy)),

where Ql/z,g(ﬁn) and (,‘Zp,G(ﬁn) minimize M, (6;, F) for i = 1, 2, respectively,
condition (19) is met with S= S(ﬁn) and

. $2
(21) So= | ——.
S2 4+ Var(G)

Let 512, be given by

2
(22) Sy = bS,b’,
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where

(23) b=[1—So(F), So(F), So(F)" - (€p,6(F) — Qi172,6(F))],

So(F)" is the derivative of Sp(x) given by (11) at x = S(F), and Sp is
the covariance matrix of {@; /Q’G(ﬁn),@p’G(ﬁn),g} given by the sandwich
theorem [Huber (1981), Chapter 6, Corollary 3.2].

PROPOSITION 4.  Let M), ¢ be an M-function given by (9) with Var(G) < oo
and let x(y) meet conditions (17a)—(17d). Let Y1,...,Y, be i.id. r.v.’s with a
cdf. F.If 512, given by (22) is finite and positive then @Z,G is asymptotically
normal, that is,

Q% . — Q% .(F)
lim Pr<ﬁ pG_"pG <t)=CI>(t).

n—00 Sp

The derived asymptotic distribution is needed to prove the following theorem.
Theorem 1 shows that, at the normal family, estimators C‘Z‘]’, o, May have variances
arbitrarily close to the variances of the maximum likelihood estimator.

THEOREM 1. Let F(-) = ®(=F) for some € R and o > 0 and let M),
in (18) be probit M-functions M2, 4, and M, ¢ , respectively, with parameter s.
Moreover, let the function x(y) in (19) be given by

(24) X5 () = min(s?, y?) — B(s),

where B(s) = fmin(sz, yz)CD(dy). Then, for every p € (0, 1), we have
sl—ifgosi(s) =0?(1+ 345 ,)-

where SIZ, (s) is given by (22).

Let us recall that the x function (24) was introduced in Huber (1964). As we
have already mentioned, Table 1 in Section 2 implies that, in the case of the Huber
M -functions, a-quantiles (10) provide good approximations to normal quantiles
only when the ratio of variances of F and G is kept smaller than 1.5. This ratio is
beyond our control when o2 is unknown. Therefore, the estimator (20), considered
in Proposition 4, is recommended in estimation of normal quantiles only in the case
of probit M-functions given by (1).

By Lemma 3, the proper balance, independent from the unknown scale, can
be automatically retained by using M -functions with scaling parameters. Hence,
in the case of unknown scale factor o, one should minimize the empirical
version of functionals (15) under condition (16) and consider the scaled a-quantile
functional (14). Then both functionals (14), based on the probit M-functions with
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any s > 0 or on Huber M -functions with s < 1.5, can be safely used. The resulting
estimators, empirical scaled a-quantiles, are given by

Asc __ s0SC r
.Go = Lp.G;, (Fn)

) = Q12,65 (Fa) + 81 - (Qp.c;, (Fn) — Qi)2.6,, (Fn)).
Let

oﬁ’sc =¢Zp5cC,
where

c=[1-35,5,0],

Sy is given by (14) and X, is the covariance matrix of {@1/2,(;&"(15,,),

Q p.Gs, (ﬁn), 6y} given by the sandwich theorem. With this notation we have the
following proposition, similar to Proposition 4.

PROPOSITION 5. Let M), G be an M-function given by (9) with Var(G) < 00
and let x(y) be a continuous and bounded function for estimating the scale
parameter S(F). Let Y1,...,Y, bei.id. rv.’s with c.df. F. Then, the estimator

;C G, is asymptotically normal and

~
sc — Q%

(F)
nli)rr&)Pr(ﬁ p.Go  7p.Go <t)=CI>(t).

Op,sc

By Theorem 2 below, if F(-) = CD(%) for some u € R, o > 0 and if the probit
M -functions with parameter s are used then, for every p € (0, 1), the asymptotic
variance of the estimator Q;C G, of p-quantiles approaches the asymptotic variance
of the maximum likelihood estimator when s — co. Hence, in the case of
translation and scale parameters, both unknown, the empirical scaled a-quantiles
Q;C G, are robust and highly efficient.

THEOREM 2. Let F(-) = CD(%)for some € R and o > 0. If M-functions
are probit M -functions M, », with parameter s and the x function in (16) is given
by (24) then, for every p € (0, 1), we have

Jim o) o (8) =0 (1 4 340,,)-

4. Simulations. To show the behavior of empirical a-quantiles and scaled
empirical a-quantiles in the case of unknown o, we report results of 1000
simulations for p = 0.8 and p = 0.95 for sample size N = 100. Table 2 contains
results for the standard normal and Table 3 for the standardized X220 probability
distribution, respectively.
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TABLE 2
Means and standard deviations of estimators of quantiles for p = 0.8 (gg.g = 0.8416)
and p =0.95 (gg.95 = 1.6449) for the standard normal population distribution

)/, N M E(a-q) E'(sc-a—q) SD(a-q) SD(sc-a-q) SD(ML)

0.8 100 P 0.8451 0.8353 0.1199 0.1199 0.1163
H 0.8423 0.8457 0.1199 0.1214
A 0.8424 0.1364

095 100 P 1.6319 1.6332 0.1587 0.1561 0.1533
H  1.6400 1.6458 0.1622 0.1639
A 1.6533 0.2087

For each generated sample of size N reported in Table 2, we calculated
five estimators of p-quantiles: two empirical a-quantiles, two empirical scaled
a-quantiles and the empirical quantiles. Each type of estimator was calculated for
three M -functions: probit, Huber and the absolute value function. In Table 3 we
additionally calculated maximum likelihood estimators (ML). Let us note that the
estimators corresponding to the absolute value function coincide with the empirical
quantiles, both in the case of a-quantiles and in the case of the scaled a-quantiles.
Therefore, we report only one case.

Empirical a-quantiles (20) are referred to in the tables in columns marked a-g
and empirical scaled a-quantiles (25) in columns marked sc-a-g. References to
M -functions M, My, and M 4 are made in rows of the tables. Column M refers to
labels of the M -functions: P for the probit M -function with parameter s = 1, H for
the Huber M -function with parameter s = 1 and A for the absolute value function.
In columns marked E(ML) and SD(ML) we report in Table 2 the corresponding
theoretical standard deviations of the maximum likelihood estimator g, given
by (2) and in Table 3 empirical means and standard deviations of this estimator.

The obtained empirical standard deviations of empirical a-quantiles and empir-
ical scaled a-quantiles are very close to the theoretical standard deviations of the

TABLE 3
Means and standard deviations of estimators of quantiles for p = 0.8 (go.g = 0.7965)
and p =0.95 (g9.95 = 1.8041) for the standardized X220 population distribution

p N M E(aq) E(sc-a-q) EML) SD(a-q) SD(sc-a-q) SD(ML)

0.8 100 P 0.8093  0.8041 0.8432  0.1371 0.1437 0.1408

H 0.8030  0.8091 0.1355 0.1414
A 0.7956 0.1595
0.95 100 P 1.6790 1.6916 1.6425  0.2157 0.2007 0.1975
H 17214 1.7345 0.2319 0.2269
A 1.8173 0.2835
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maximum likelihood estimators. Our simulations also confirm that the considered
estimators have variances much lower than the variances of the empirical quan-
tiles. Since our estimators are robust, they can be safely used to estimate quantiles
of distribution functions F being approximately normal, as in the case reported in
Table 3. As noted earlier, this is an important feature as, by the CLT, approximately
normal distributions frequently occur in practice. Let us note that, in contrast to the
maximum likelihood estimator, our a-quantile estimators show how the scaled X220
distribution differs from the normal one.

APPENDIX: PROOFS

PROOF OF PROPOSITION 2. The first part of the proposition is a simple
consequence of Lemma 1. The second part of the proposition follows from
Cramér’s characterization of the normal distribution [Feller (1966), Section 15.8,
Theorem 1]. [0

PrROOF OF LEMMA 3. The proof follows from Lemma 1 after changing
variables Y/ =Y /o in (12). O

PROOF OF PROPOSITION 3. The proof is similar to the proof of Proposition 2.
O

PROOF OF PROPOSITIONS 4 AND 5. The asymptotic normality of the
considered estimators follows by direct application of the sandwich and delta
theorems. [

PROOF OF THEOREM 1. By applying L’Hopital’s rule we get

_ ) 2
lim s(ZCID(y Ko NST 00

§—>00

)—1+(2p—1)>

h)
=2(y — o (qo,p),

where ¢ = ®’. Moreover, by continuity and symmetry of ¢, we have

. y—u—~s2+0%q,
lim ¢
S

§—>00

= ¢(CJ0,p)-

Let us note that Sy(F)" in (23) is given by
, d o2 52
So(F)' =~ =
do\V o245  (Jo?+52)3

Jim s (v) =y" — 1.

and that
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Moreover, we have
Jlim b(s) = (1,0, o, ).
Hence, and by the Lebesgue dominated convergence theorem, we obtain
o2 0 0
[ lim 5,5 bi)b;)] =0 0 U

The sum of all elements of the right-hand side array equals the limit of sf, (s) and
this completes the proof of the theorem. [

PROOF OF THEOREM 2. The proof is similar to the proof of Theorem 1. By
applying L’Ho6pital’s rule we get

— _ /1 2
lim s<2<1><y poovi+s qo’p) +(2p—2))
o

S—>00 K
y—u
_ 2(T)¢<—qo,p).

Moreover, by the continuity of ¢ we have

lim ¢

§—>00

<y—u—o\/1+s2q0,p
o

N

)= (-0,
Let us note that in the present case we have

. . _ . 2_
Jim s Sl(s)—sli)ngos/\/l-i-s =1.

Hence, and by the Lebesgue dominated convergence theorem, we obtain

The sum of all elements of the array on the right-hand side equals the required
limit and this concludes the proof of the theorem. [J
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