
The Annals of Statistics
2003, Vol. 31, No. 1, 152–173

WAVELET THRESHOLD ESTIMATION FOR ADDITIVE
REGRESSION MODELS1

BY SHUANGLIN ZHANG AND MAN-YU WONG

Michigan Technological University and
Hong Kong University of Science and Technology

Additive regression models have turned out to be useful statistical tools
in the analysis of high-dimensional data. The attraction of such models
is that the additive component can be estimated with the same optimal
convergence rate as a one-dimensional nonparametric regression. However,
this optimal property holds only when all the additive components have
the same degree of “homogeneous” smoothness. In this paper, we propose
a two-step wavelet thresholding estimation process in which the estimator
is adaptive to different degrees of smoothness in different components and
also adaptive to the “inhomogeneous” smoothness described by the Besov
space. The estimator of an additive component constructed by the proposed
procedure is shown to attain the one-dimensional optimal convergence rate
even when the components have different degrees of “inhomogeneous”
smoothness.

1. Introduction. Nonparametric regression models are flexible. They allow
researchers to evaluate data without knowledge of the shape of the relationship
between response and covariate(s). However, when the explanatory variables
are multidimensional, these methods are less efficient. In particular, the rate of
convergence for the standard estimator is usually poor, while no simple plot is
available for model selection. An elegant solution to this problem is an additive
model, which was proposed originally by Friedman and Stuetzle (1981) and
popularized by Hastie and Tibshirani (1990). Under the additive model, the
conditional expectation function of a dependent variable, Y , given the covariates
X1, . . . ,Xd is expressed as a sum of d terms, that is,

E(Y |X1 = x1, . . . ,Xd = xd) = g(x1, . . . , xd) = g1(x1) + · · · + gd(xd).(1.1)

This model is easy to interpret and is much more flexible than a linear model.
In most previous papers using this model, the back-fitting technique based on

the iterative smoothing process has been used as the main tool for estimating the
additive model [Hastie and Tibshirani (1990)]. Although the back-fitting technique
has proved to be very useful in both application and simulation, it is somewhat
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difficult to analyze theoretically [see the recent work by Opsomer and Ruppert
(1997)]. For this reason, Linton and Nielsen (1995), Tjøstheim and Auestad
(1994), Linton (1996, 1997), Nielsen and Linton (1998) and Fan, Härdle and
Mammen (1998) proposed the use of a direct method based on “marginal
integration” for estimation. It is based on the fact that, up to a constant, gv(xv)

is equal to

E[g(X1, . . . ,Xv−1,Xv,Xv+1, . . . ,Xd)].
Using this idea and weighted local linear fitting, Fan, Härdle and Mammen (1998)
proved that an additive component can be estimated with the same asymptotic bias
and variance as if the other components were known.

In a series of studies, Stone (1985, 1986, 1994) proved that an additive
component can be estimated by the one-dimensional optimal convergence rate
under the assumption that all additive components have the same degree of
“homogeneous” smoothness in Hölder space by using a linear estimator of the
form

n∑
i=1

YiWi(xv,X1, . . . ,Xn),(1.2)

where (X1, Y1), . . . , (Xn, Yn) is an Rd × R-dimensional random sample of size n.
The methods mentioned above, using kernels, local polynomials or splines

directly, construct the estimator of the additive components. It is called a
one-step method. The one-step method, such as the local polynomial method,
implicitly assumes that all additive components possess the same degree of
smoothness and hence that they can be approximated equally well. However,
different additive components possess different degrees of smoothness. The one-
step estimator of a component, gv(·), cannot attain the optimal convergence
rate as if gv(·) were actually smoother than other components. This problem
has been raised explicitly by Fan and Zhang (1999) in the context of varying
coefficient models. Fan and Zhang (1999) have shown that the one-step method
cannot be optimal when different coefficient functions possess different degrees of
smoothness. Furthermore, the linear estimator in the form of (1.2) cannot capture
the “inhomogeneous” smoothness. Donoho and Johnstone (1998) and Zhang,
Wong and Zheng (2002) have demonstrated that, in a one-dimensional regression,
no linear estimator can attain the optimal convergence rate in a ball of Besov
space, Bs

p,q , for p < 2 when the error is measured by L2-norm, while a suitable
wavelet thresholding estimator can attain the optimal convergence rate. Donoho
(1995), Donoho and Johnstone (1994, 1995), Donoho, Johnstone, Kerkyacharian
and Picard (1995), Hall and Turlach (1997), Hall, Kerkyacharian and Picard
(1998), Neumann and von Sachs (1995) and Zhang, Wong and Zheng (2002) have
discussed the advantages of wavelet thresholding estimation for regression and
density functions.

In this paper, a two-step procedure is proposed to construct an estimator for an
additive component. The first step involves establishing the initial estimator, ğv(·),
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of the additive component, gv(·), using local polynomial fitting along with
“marginal integration.” Such an initial estimator is usually undersmoothed so that
its bias is small. Then, in the second step, we transform the initial estimator, ğv(·),
by finite discrete wavelet transformation and use the thresholding technique to
estimate gv(·). As pointed out by Donoho and Johnstone (1995), this step is simple
and practical. It can be handled by an algorithm with functions in O(n) operations
for a sample of size n.

This procedure has the following advantages:

1. Using the proposed two-step procedure, we can construct an estimator that
is adaptive to different degrees of smoothness, sj , j = 1, . . . , d , in different
components. This answers the question implied by Fan and Zhang (1999) for
varying coefficient models.

2. Even if the components have “inhomogeneous” smoothness in Besov space,
with appropriate choices of the bandwidth in the first step and of the threshold
in the second step, each additive component can be estimated with the one-
dimensional optimal convergence rate, which is the same optimal rate as if the
other components were known. This extends the results of Fan, Härdle and
Mammen (1998) in Besov space in terms of convergence rate.

Intuitively, we use a two-step procedure instead of a one-step method to make
the estimator adaptive to different degrees of smoothness in different components.
We also use the wavelet thresholding estimator in the second step instead of a
linear estimator to capture the “inhomogeneous” smoothness.

This paper is organized as follows. In Section 2, we introduce some basic
concepts and properties of wavelet and Besov space in [0,1] intervals. Section 3
proposes the procedure of a two-step wavelet thresholding estimation. Asymptotic
properties of the proposed estimator are presented in Section 4. Section 5 includes
the proofs of the main results. All proofs of the lemmas are given in the Appendix.

2. Wavelet and Besov space of [0,1] intervals. In this paper, we confine
our attention to the wavelet basis of [0,1] intervals given by Cohen, Daubechies
and Vial (1993), that is, the collection of {φJ0,k, k = 0,1, . . . ,2J0 − 1; ψj,k,

j ≥ J0 ≥ 0, k = 0,1, . . . ,2j − 1} forms an orthonormal basis of L2[0,1]. The
wavelet series representation of a function, f ∈ L2[0,1], is then

f =
2J0−1∑
k=0

αJ0,kφJ0,k + ∑
j≥J0

2j −1∑
k=0

βj,kψj,k,

where the coefficients are

αJ0,k =
∫ 1

0
f (x)φJ0,k(x) dx and βj,k =

∫ 1

0
f (x)ψj,k(x) dx.(2.1)

We also denote βJ0−1,k = αJ0,k for simplicity of notation.
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These basis functions are derived from Daubechies’ orthonormal compact-
supported wavelet [Daubechies (1992)] at the interior of the interval and with
boundary correction at the “edges.” This “boundary correction” affects only a
fixed number of wavelet coefficients at each resolution level and does not alter the
qualitative phenomenon we consider here. Thus, in the following discussion, we
assume that φj,k(x) = 2j/2φ(2jx −k) and ψj,k(x) = 2j/2ψ(2j x −k) for all (j, k),
where φ and ψ are compact-supported scaling and wavelet functions, respectively.

DEFINITION 1. A wavelet basis on [0,1] has regularity r if all functions used
in the analysis are compactly supported and have r continuous derivatives.

In practical application, a wavelet transformation is usually carried out by
the manipulation on the filter coefficients, that is, by a finite discrete wavelet
transformation rather than by evaluating the wavelet and scaling functions
explicitly. This transformation, along with a careful treatment of the boundary
correction, has been described by Cohen, Daubechies and Vial (1993) and Donoho
and Johnstone (1994). In the present paper, to focus on our main purpose, we
employ the simple periodic version of a finite discrete wavelet transformation. This
version yields an exact orthogonal transformation between the data and wavelet
coefficients [Donoho and Johnstone (1994)].

Suppose that we have data y = (yi)
N−1
i=0 with N = 2J . For various combinations

of the regularity of the wavelet basis, r , and the low-resolution cutoff, J0, one
may construct the finite discrete wavelet transformation matrix, W , which is an
N × N orthogonal matrix. This matrix yields a vector, w, from the empirical
wavelet coefficients of y via w = Wy and thus the inversion formula y = WT w.

For the vector, w, with N = 2J elements, we index it dyadically as follows:

wj,k(j = J0, . . . , J − 1; k = 0, . . . ,2j − 1)

corresponding to the wavelet coefficients, βj,k, given in (2.1) and the remaining
elements wJ0−1,k (k = 0, . . . ,2J0−1) corresponding to αJ0,k (or βJ0−1,k) given
in (2.1). To interpret these coefficients, denote Wj,k as the (j, k)th row of W .
The wavelet transformation and, thus, the inversion formula become

wj,k =
N−1∑
i=0

yiWj,k(i) and yi = ∑
j,k

wj,kWj,k(i),(2.2)

respectively. Furthermore, if yk is the true wavelet coefficient corresponding
to a scaling function of function f in resolution J , that is, yk = αJ,k =∫

φJ,k(x)f (x) dx, then wj,k given by (2.2) is the true wavelet coefficient, that is,
βj,k, in resolution j given in (2.1).
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DEFINITION 2 [Donoho and Johnstone (1998)]. Let αj0,k and βj,k be the
wavelet coefficients of f corresponding to a wavelet basis with regularity r (> s).
Define the norm

‖f ‖Bs
p,q

= ‖αj0‖p +
( ∑

j≥j0

(
2j (s+(1/2)−(1/p))‖βj‖p

)q)1/q

for 1 ≤ p,q ≤ ∞, where ‖αj0‖p
p = ∑2j0−1

k=0 |αj0,k|p and ‖βj‖p
p = ∑2j−1

k=0 |βj,k|p .
The Besov space of [0,1], denoted by Bs

p,q [0,1], is the set of functions,
f : [0,1] → R with ‖f ‖Bs

p,q
< ∞. A Besov ball, denoted by Bs

p,q(H), is given
by

Bs
p,q(H) = {

f ∈ Bs
p,q [0,1] :‖f ‖Bs

p,q
≤ H

}
for a finite constant H .

Besov space contains many traditional function spaces. We recall some injection
results, from Donoho, Johnstone, Kerkyacharian and Picard (1996) and Triebel
(1992):

Bs∞,∞[0,1] = Cs[0,1] for 0 < s < 1,

Bs
p,q [0,1] ⊂ C0[0,1] ⊂ L∞[0,1] for s >

1

p
,

Bs
p,q [0,1] ⊂ Bs′

p′,q[0,1] for s′ = s − 1

p
+ 1

p′ , p′ ≥ p,

Bs
p,q [0,1] ⊂ Bs′

p,q[0,1] for s ≥ s′,

where Cs[0,1] and C0[0,1] denote Hölder and bounded continuous functional
spaces of [0,1].

Further, we denote

B(x, t) = {y ∈ [0,1] : |x − y| ≤ t}, x ∈ [0,1], t > 0,

and

θ
(M)
j (x) = inf

P
sup

y∈B(x,2−j )

|f (y) − P (y)|

in which the function, f , is clearly understood, where inf is taken over all
polynomials P with degree no greater than M ; ξm = 2−J (m + 1/2) and N = 2J

for an integer J . Using this notation, we present the following propositions.

PROPOSITION 1 [Propositions 3.4.2 and 3.4.3 in Triebel (1992)]. For any
function f , there exist a positive constant, C, an integer, j0, independent of
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j and f , a function, f1, and an optimal polynomial Px(y) = ∑M
α=0

Dαf1(x)
α! ×

(y − x)α , such that:

(a) supy∈B(x,2−j ) |f (y) − Px(y)| ≤ C,θ
(M)
j−J0

(x);

(b) Dαf1(z) ≤ C2jαθ
(α−1)
j−j0

(x) for z ∈ B(x,2−j ), α = 0,1, . . . ,M ;

(c) θ
(α−1)
j (x) ≤ C

∑j
l=0 2−(j−l)αθ

(α)
l (x) + C2−jα

∫
B(x,c) |f (y)|dy

for integers M and j ≥ 0.

PROPOSITION 2 [Proposition 2.4 in Zhang, Wong and Zheng (2002)]. If
f ∈ Bs

p,q(H), s > 1/p and M ≥ [s], then, for any integer, l, satisfying 0 ≤ l ≤ J ,

2J −1∑
m=0

|θ(M)
l (ξm)|p ≤ C2−lsp+J ,

where the constant, C, does not depend on f , J and l.

Using Definition 2 and Propositions 1 and 2, we attain the following lemmas.
Their proofs are given in the Appendix.

LEMMA 2.1. For any constant, C′, there exists a constant, C, such that

1

N

N−1∑
m=0

sup
y,y′∈B(ξm,C′/N)

|Pξm(y) − Pξm(y′)| ≤ C
J

N

for all f ∈ Bs
p,q(H) with 1 ≤ p,q ≤ ∞, where Px(y) is the optimal polynomial of

degree M = [s] corresponding to f .

We allow

β = (βj,k) = WαJ and β∗ = (β∗
j,k) = W f/

√
N,

where αJ = (αJ,k)
N−1
k=0 and f = (f (ξk))

N−1
k=0 . For a smooth function f , the

wavelet coefficient corresponding to the scaling function given in (2.1), αJ,k ,
approximately equals f (ξk)/

√
N and the wavelet coefficient corresponding to the

mother wavelet function, βj,k , approximately equals β∗
j,k. More specifically, we

have:

LEMMA 2.2. If f ∈ Bs
p,q(H) with 1 ≤ p, q ≤ ∞ and s > max{1

2 , 1
p
} and the

wavelet and scaling functions used are continuous, then there exists a constant, C,
such that

N−1∑
k=0

(
αJ,k − 1√

N
f (ξk)

)2

≤ C
J 2

N
and

∑
j,k

(βj,k − β∗
j,k)

2 ≤ C
J 2

N
.
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3. Estimation procedure. Let (X1, Y1), . . . , (Xn, Yn) be a random sample
from an Rd × R random vector (X, Y ), where Xi and X are (Xi,1, . . . ,Xi,d ) and
(X1, . . . ,Xd), respectively. We consider the following additive model:

Yi = g(Xi) + σ(Xi)ei = α + g1(Xi,1) + · · · + gd(Xi,d ) + σ(Xi)ei,(3.1)

where e1, . . . , en are independent of each other and independent of (X1, . . . ,Xn)

with E(ei) = 0 and Var(ei) = 1. To ensure the identifiability of the functions, gv(·),
for v = 1, . . . , d , we include the intercept α and assume E(gv(Xi,v)) = 0 for
all v. Furthermore, we assume that X is distributed with density f (x) on the
interval [0,1]d .

As discussed in the Introduction, a one-step procedure cannot be optimal when
the additive components have different degrees of smoothness and we do not know
in advance which component is smoother. In the proposed two-step procedure, we
construct the estimator of the additive component gv(·) such that the estimator is
adaptive to different degrees of smoothness in additive components and use the
wavelet thresholding estimator in the second step to capture the “inhomogeneous”
smoothness in the additive components. First, we introduce the following notation:

N = 2J � n

ln2 n
,

Ax = {
i :N1/d |Xi,j − xj | ≤ 1

2 , j = 1, . . . , d
}
, |Ax | = card(Ax),

�x = {u′V −1
x u ≤ KA|Ax |−1, Vx > 0},

zi,j = N1/d(Xi,j − xj ),

Zx,i = (
1, zi,1, . . . , z

D
i,1, . . . , zi,d , . . . , zD

i,d

)T
,

Vx = ∑
i∈Ax

Zx,iZ
T
x,i ,

u(dD+1)×1 = (1,0, . . . ,0)′,

g(v)(x, ξ) = g(x1, . . . , xv−1, ξ, xv+1, . . . , xd)

ξm = 2−J
(
m + 1

2

)
,

(3.2)

where x = (x1, . . . , xd)T , KA is a positive constant, D is a nonnegative integer,
and an � bn means that 0 < inf lim an

bn
≤ sup lim an

bn
< ∞. With this notation, we

construct the estimator of gv(·) by the following two steps:

Step 1. We use the local polynomial with degree D and the idea of “marginal
integration” to determine an initial estimator for gv(·). For any given point, xo, we
approximate the function locally as

g(yo) = α + g1(yo1) + · · · + gd(yod) ≈ η0 +
d∑

i=1

D∑
j=1

ηi,j (yoi − xoi)
j ,
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where yo = (yo1, . . . , yod)
T is in the neighborhood of xo = (xo1, . . . , xod)

T . This
leads to the following local least-squares problem: minimize∑

i∈Ax

(Yi − ηT Zx,i)
2,

where ηT = (η0, η1,1, . . . , η1,D, . . . , ηd,1, . . . , ηd,D). If Vx > 0 (that is, Vx is a
positive definite matrix), then we derive the unique local polynomial estimator
of g(x), that is, the local least-squares estimator of η0, as

g̃(x) = ∑
i∈Ax

u′V −1
x Zx,iYi.

Since this estimator is not defined in the case of det(Vx) = 0, we modify the
estimator to

ĝ(x) = ∑
i∈Ax

u′V −1
x Zx,iYiI�x .(3.3)

Note that gv(xv) = E(g(v)(X,xv)) − α. The idea of “marginal integration”
yields the initial estimator of gv(xv) as

ğv(xv) = 1

n

n∑
i=1

ĝ(Xi,1, . . .Xi,(v−1), xv,Xi,(v+1), . . . ,Xi,d ) − Y(3.4)

where Y = 1
n

∑n
i=1 Yi .

Step 2. We use a finite discrete wavelet transformation and the threshold idea
to determine the wavelet thresholding estimator of gv(·). The procedure is as
follows:

(a) Take the value of the initial estimator at equally spaced points ξ0, . . . , ξN−1.
Treat ğv = (ğv(ξk))

N−1
k=0 as our data and apply a finite discrete wavelet transforma-

tion to obtain N empirical wavelet coefficients, w
(v)
j,k ,

w(v) = (w
(v)
j,k) = W ğv,(3.5)

where W is a finite discrete wavelet transformation matrix with regularity, r , and
low resolution cutoff, J0, as given in Section 2.

(b) Choose threshold λj and apply either a hard or soft threshold. We attain
empirical wavelet thresholding coefficients

ŵ(v) = (ŵ
(v)
jk ) with ŵ

(v)
j,k = δ(w

(v)
j,k, λj ),(3.6)

where δ(·, ·) denotes either the hard thresholding function, δ(h)(y, λ) = yI{|y|≥λ},
or the soft thresholding function, δ(s)(y, λ) = sgn(y)(|y| − λ)+.

(c) Invert the finite discrete wavelet transformation. We obtain the wavelet
thresholding estimator of gv(·) at points ξk(k = 0, . . . ,N − 1) denoted by

ĝv = (ĝvk)
N−1
k=0 = WT ŵ(v).(3.7)
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(d) The wavelet thresholding estimator of gv(·) at continuous points is thus
given by the linear interpolation

ĝv(x) =



ĝv0, for x ≤ ξ0,

ĝvm + (ĝv(m+1) − ĝvm)N(x − ξm), for ξm ≤ x < ξm+1,

ĝv(N−1), for x ≥ ξN−1.

(3.8)

REMARK 1. Theoretically, we can choose a constant, KA, such that, for
any integer h, P (

⋂
x∈[0,1] �x) = 1 − O(n−h). This means that if we choose the

bandwidth with an order of ln2 n/n in the estimation of a local polynomial with
degree D, we guarantee that, with probability approximately equal to 1, there
are enough data in the local neighborhood of any point to fit the polynomial.
For a given data set, there may not be enough data in the neighborhood of some
points. In this case, we set the initial estimated value to be zero at these points.
In practice, other methods, such as interpolation using the estimated values from
nearby points, may be more appropriate. Moreover, a data-driven method for
choosing the bandwidth needs further investigation.

4. Theoretical results. In this section, we show that, by the appropriate
choice of threshold, λj , and the low resolution cutoff, J0, the estimator of gv(·)
constructed above can attain the optimal one-dimensional convergence rate (i.e.,
the optimal rate as if we knew all other components) when the additive components
have “inhomogeneous” smoothness described by Besov space and when we do
not know in advance which component is smoother. Furthermore, we show that
even if we do not know the degrees of smoothness in the additive components,
the estimator constructed above can attain the optimal convergence rate up to a
logarithmic factor by choosing suitable λj and J0. We first assume some conditions
under model (3.1).

CONDITION 1. The density function, f (x), is continuous on interval [0,1]d
and bounded from zero and infinity; that is, there exist constants, k∗ and k∗, such
that

0 < k∗ ≤ f (x) ≤ k∗ < ∞ for x ∈ (0,1]d .

CONDITION 2. The variance function, σ(·), in model (3.1), is bounded; that
is, there is a constant, σ0, such that σ(x) ≤ σ0 for x ∈ [0,1]d .

CONDITION 3. E|ei|l ≤ 1
2 l!Hl−2

0 for i = 1, . . . , n, l ≥ 3 and a constant H0.

CONDITION 4. r ≥ max{s1, . . . , sd} and D ≥ max{s1, . . . , sd}, where r and D

are the regularity of a wavelet basis and the degree of a local polynomial,
respectively.
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REMARK 2. The moment assumption in Condition 3 is not strong. For
example, if ei has a normal distribution, N(0,1), then E|ei|l = ( l

2 −1)( l
2 −2) · · · 1

2 .
It is clear that there exists a constant, H0, such that Condition 3 holds. In fact, most
textbook distributions satisfy this condition.

For any v, let threshold λj = K(j − J0)+
√

N/n where K is a constant and low
resolution cutoff, J0, has an order of 2J0 � n1/(2sv+1). Then, under Conditions 1,
2, 3 and 4, we have the following theorems.

THEOREM 1. Let 1 ≤ pt , qt ≤ ∞ and st > max{d
2 , d

pt
} for t = 1, . . . , d . Then,

for any given v, there exist constants, K ′ and K∗
A, such that

sup
gt∈B

st
pt ,qt (Ht ): t=1,...,d

E

(
1

N

N−1∑
m=0

(
ĝv(ξm) − gv(ξm)

)2
)

= O(n−2sv/(2sv+1))

for K ≥ K ′ and KA ≥ K∗
A.

THEOREM 2. Under the same conditions as Theorem 1, for any given v, there
exist constants, K ′ and K∗

A, such that

sup
gt∈B

st
pt ,qt (Ht ): t=1,...,d

E

∫ 1

0

(
ĝv(xv) − gv(xv)

)2
dxv = O(n−2sv/(2sv+1))

for K ≥ K ′ and KA ≥ K∗
A.

It is noted that the wavelet thresholding estimator of gv given above depends on
the smooth parameter, sv . However, slightly modifying the wavelet thresholding
estimator can render it adaptive, in the sense that it attains the optimal convergence
rate up to a logarithmic factor without specifying the value of sv . We apply the
same estimation procedure but change the values of wavelet threshold, λj , and
low resolution cutoff, J0, to

√
tnN/n and a constant independent of n, respectively.

Denote the wavelet thresholding estimator of gv corresponding to such values of
λj and J0 by ĝvA. Then, under Conditions 1, 2, 3 and 4, the following theorem
holds.

THEOREM 3. If tn satisfies the condition that tn
ln2 n

→ ∞, then, for any given v,
there exists a constant, K∗

A, such that

sup
gt∈B

st
pt ,qt (Ht ): t=1,...,d

E

(
1

N

N−1∑
m=0

(
ĝvA(ξm) − gv(ξm)

)2
)

(4.1)

= O

((
tn

n

)−2sv/(2sv+1)
)
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and

sup
gt∈B

st
pt ,qt (Ht ): t=1,...,d

E

∫ 1

0

(
ĝvA(xv) − gv(xv)

)2
dxv = O

((
tn

n

)−2sv/(2sv+1)
)

(4.2)

for all st , pt and qt satisfying 1 ≤ pt , qt ≤ ∞, max{ d
pt

, d
2 } < st for t = 1, . . . , d ,

and KA ≥ K∗
A.

REMARK 3. If tn satisfies the conditions that tn
ln2 n

→ ∞ and tn
(ln2 n)β

→ 0 for

any β > 1 (e.g., tn = ln2 n · ln(lnn)), then

(
tn

n

)2sv/(2sv+1)

= o(ln2 n n−2sv/(2sv+1)).

5. Proofs of theorems. In this section, we offer the proofs of Theorems 1, 2
and 3. For simplicity, we assume that d = 2 and v = 1; that is, we consider only
the estimator of the first additive component in a two-dimensional additive model.
Furthermore, without loss of generality, we assume α = 0 and Y = 0 in the model
of (3.1).

In order to prove the theorems, we present several lemmas and their proofs are
given in the Appendix. First of all, we introduce some notation:

Ax,δ = {i :
√

N |Xi − x| ≤ δ}, Bm =
{
i : |Xi,2 − ξm| ≤ 1

2N

}
,

Cm,l,i = u′(Vxm,l
)−1Zxm,l,i, εi = σ(Xi)ei,

αJ = (αJ,0, . . . , αJ,2J −1)
T , β = (βj,k) = WαJ ,

g1 = (
g1(ξ0), . . . , g1(ξN−1)

)T
, β∗ = (β∗

jk) = Wg1/
√

N,

β̂ = (β̂jk) = ŵ(1)/
√

N, β̃ = (β̃jk) = w(1)/
√

N,

Am,l = Axm,l
,

(5.1)

where, for x = (x1, x2) and x′ = (x′
1, x

′
2), |x − x′| ≤ δ implies that |x1 − x′

1| ≤ δ

and |x2 − x′
2| ≤ δ; u, Vxm,l

and Zxm,l,i are given in (3.2) for xm,l = (ξm,Xl,2);
αJ,k = ∫

φJ,k(x)g1(x) is the true wavelet coefficient of g1(·) corresponding to the
scaling function; w(1) and ŵ(1) are given in (3.5) and (3.6), respectively.

Using this notation, we can write the initial estimator given in (3.4) as ğ1(ξm) =
1
n

∑n
l=1

∑
i∈Am,l

Cm,l,iYiI�xm,l
. From Lemma 2.2, we conclude that β∗ and β̂ are

the asymptotic wavelet coefficients of g1(·) and the estimator ĝ1(·), respectively.
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With the notation given in (3.2) and (5.1), we have the following lemmas.

LEMMA 5.1. (a) For any constant δ, there exist constants C∗(δ) and C∗(δ)
such that, for any h > 0,

1 − P

(
C∗(δ) ≤ N

n
|Ax,δ| ≤ C∗(δ) for all x ∈ [0,1]2

)
= O(n−h).(5.2)

(b) For any h > 0, there exists a constant, C0, such that

1 − P

(
|Bm| ≤ C0

n

N
, m = 1, . . . ,N

)
= O(n−h).(5.3)

LEMMA 5.2. Under Condition 1, for any h > 0, there exists a constant,
K∗

A, such that 1 − P (�) = O(n−h) for KA ≥ K∗
A, where � = ⋂

x∈[0,1]2 �x =
{u′V −1

x u ≤ KA|Ax |−1, Vx > 0, for all x ∈ [0,1]2}.

In the following discussion, we assume that the constant, KA, satisfies the
condition KA ≥ K∗

A, where K∗
A is given by Lemma 5.2. Denote

1 =
{
C∗ ≤ N

n
|Ax | ≤ C∗ for all x ∈ [0,1]2

}
,

2 =
{
|Bm| ≤ C0

n

N
, m = 1, . . . ,N

}
,(5.4)

 = � ∩ 1 ∩ 2,

where C0, C∗ = C∗(1/2) and C∗ = C∗(1/2) are given in Lemma 5.1. From
Lemmas 5.1 and 5.2 , we have, for any h > 0,

1 − P () = O(n−h).(5.5)

LEMMA 5.3. Under Conditions 1 and 4 , if gt ∈ B
st
pt ,qt (Ht ) with st >

max{ 2
pt

,1} for t = 1,2 , then

(β̃j,k − β∗
j,k)I� = 1

n
√

N

N∑
m=1

n∑
l=1

( ∑
i∈Am,l

Cm,l,iεi

)
Wj,k(m)I�

+ ajk

n

n∑
l=1

g2(Xl,2)I� + o

(
1√
n

)

for (j, k) in the domain, where ajk is a constant with a2
jk ≤ 1 and o(·) is uniform

for gt ∈ B
st
pt ,qt (Ht ) and t = 1,2.
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LEMMA 5.4. Under the same conditions as in Lemma 5.3 and Conditions
2 and 3 stated in Section 4, for any (j, k) in the domain, then

E
∣∣β̃j,k − β∗

j,k

∣∣τ = O(n−τ/2)

for τ ≥ 2.

LEMMA 5.5 [Petrov (1975), Zhang, Wong and Zheng (2002)]. Let Zi be a
sequence of independent random variables such that

E(Zi) = 0, E(Z2
i ) ≤ σ 2

i < ∞ and |E(Zh
i )| ≤ 1

2h!σ 2
i Hh−2

for i = 1, . . . , n, h ≥ 3 and a constant H . Then, for S = ∑n
i=1 Zi and Bn ≥∑n

i=1 σ 2
i , the inequalities

P (|S| > λ) ≤ 2e−λ2/(4Bn)

for 0≤ λ ≤ Bn

H
and

P (|S| > λ) ≤ 2e−λ/(4H)

for λ > Bn

H
hold.

In the remainder of this section, we present the proofs of three theorems. In the
proofs, we denote C,C1, . . . to be constants having different values at different
places and use the Hölder-type inequality

(
m∑

i=1

|ai|q
)1/q

≤
(

m∑
i=1

|ai |p
)1/p

for p ≤ q and

(
1

m

m∑
i=1

|ai|q
)1/q

≤
(

1

m

m∑
i=1

|ai|p
)1/p

(5.6)

for p ≥ q . Moreover, we use the following inequality [Petrov (1975)]. Assume
Z1, . . . ,Zn to be independent random variables with zero mean. Then, for any
τ > 0, there exists a constant, C, independent of τ such that

E

∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣
τ

≤ C

[
n∑

i=1

E|Zi|τ +
(

n∑
i=1

EZ2
i

)τ/2]
.(5.7)

PROOF OF THEOREM 1. Denote λ∗
j = λj/

√
N . Using the notation given

above and noting that β̂ and β∗ are orthogonal transformations of ĝ1/
√

N =
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(ĝ1(ξ0)/
√

N, . . . , ĝ1(ξN−1)/
√

N)T and g1/
√

N , respectively, it follows that

E

(
1

N

N−1∑
m=0

(
ĝ1(ξm) − g1(ξm)

))2

= E(β̂ − β∗)T (β̂ − β∗)

= E
[
(β̂ − β∗)T (β̂ − β∗)I

] + O

(
1

n

)

= ∑
j,k

E
[(

δ(β̃j,k, λ
∗
j ) − β∗

j,k

)2
I

] + O

(
1

n

)
.

From Lemma 2 of Delyon and Juditsky (1996), we note that there exists a
constant, C, such that(

δ(x,λ) − y
)2 ≤ C

[
min{|y|, λ}2 + (x − y)2I{|x−y|≥λ/2}

]
,

for both hard and soft thresholding functions, δ(·, ·). Using this result, we have

E

(
1

N

N−1∑
m=0

(
ĝ1(ξm) − g1(ξm)

))2

≤ C
∑
j,k

[
min{|β∗

j,k|, λ∗
j }2

+ E
[
(β̃j,k − β∗

j,k)
2II{|β̃j,k−β∗

j,k |I≥λ∗
j /2}

]] + O

(
1

n

)

≤ C
∑
j,k

[
min{|βj,k|, λ∗

j }2 + (βj,k − β∗
j,k)

2

+ E
[
(β̂j,k − βj,k)

2II{|β̂j,k−βj,k |I≥λ∗
j /2}

]] + O

(
1

n

)

� I1(n) + I2(n) + I3(n) + O

(
1

n

)
.

Intuitively, the sum of I1(n) and I2(n) is the bias and I3(n) is the variance. The
orders of I1(n) and I2(n) can be deduced by the properties and the definition of
the Besov space and the order of I3(n) can be obtained using the inequality given
in Lemma 5.5.

Clearly, from Lemma 2.2, I2(n) = O(n−2s1/(2s1+1)). Noting that λ∗
J0−1 =

λ∗
J0

= 0, it follows from Definition 2 that

I1(n) ≤ C
∑
j,k

|βj,k|p1(λ∗
j )

2−p1

≤ C

J−1∑
j=J0

(
j − J0√

n

)2−p1

2−j (s1p1+p1/2−1)

= O(n−2s1/(2s1+1))
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for p1 ≤ 2 and

I1(n) ≤ C

J−1∑
j=J0

2j −1∑
k=0

β2
j,k ≤

J−1∑
j=J0

2j (1−2/p1)

(2j−1∑
k=0

|βj,k|p1

)2/p1

= O(n−2s1/(2s1+1))

for p1 ≥ 2 uniformly for gt ∈ B
st
pt ,qt (Ht ) and t = 1,2.

Now, we need to prove I3(n) = O(n−2s1/(2s1+1)) only. For τ > 2, we have, by
using Lemma 5.4,

I3(n) ≤ C
∑
j,k

(
E

(∣∣β̃j,k − β∗
j,k

∣∣τ I

))2/τ (
P

(∣∣β̃j,k − β∗
j,k

∣∣I ≥ λ∗
j /2

))(τ−2)/τ

≤ C

n

∑
j,k

(
P

(∣∣β̃j,k − β∗
j,k

∣∣I ≥ λ∗
j /2

))(τ−2)/τ
.

Denote

S1(n) = 1

n
√

N

N−1∑
m=0

n∑
l=1

∑
i∈Am,l

Cm,l,iεiWj,k(m)I

and

S2(n) = ajk

n

n∑
i=1

g2(Xi,2)I.

Then, it follows from Lemma 5.3 that

I3(n) ≤ C

n

[∑
j,k

(
P

(|S1(n)| ≥ λ∗
j /6

))(τ−2)/τ + ∑
j,k

(
P

(|S2(n)| ≥ λ∗
j /6

))(τ−2)/τ

]
.

Note that g2(·) is bounded. Using Bernstein’s inequality, it is easy to obtain

C

n

∑
j,k

(
P

(|S2(n)| ≥ λ∗
j /6

))(τ−2)/τ = O(n−2s1/(2s1+1)).

In the remainder, we prove that

C

n

∑
j,k

(
P

(|S1(n)| ≥ λ∗
j /6

))(τ−2)/τ = O(n−2s1/(2s1+1)).(5.8)

Let ηmt = ∑
l∈Bt

∑
i∈Am,l

Cm,l,iεiWj,k(m)I. Then

S1 = 1

n
√

N

N−1∑
m=0

N−1∑
t=0

ηmt .
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Since the ηmt are correlated, we decompose S1(n) into blocks each with
independent items. Denote

V (l1, l2) = ∑
m∈Il1

∑
t∈Il2

ηmt ,

where, for an integer li , Ili = {2√
N(li − 1),2

√
N(li − 1) + 1, . . . ,2

√
Nli − 1}.

Then

S1(n) = 1

n
√

N

√
N/2∑

l1=1

√
N/2∑

l2=1

V (l1, l2)

= 1

n
√

N

√
N/4∑

l1=1

√
N/4∑

l2=1

(
V (2l1,2l2) + V (2l1 − 1,2l2)

+ V (2l1,2l2 − 1) + V (2l1 − 1,2l2 − 1)
)

� T1(n) + T2(n) + T3(n) + T4(n).

(5.9)

In order to prove (5.8), we need only to prove

C

n

∑
j,k

(
P

(|Ti(n)| ≥ λ∗
j /24

))(τ−2)/τ = O(n−2s1/(2s1+1))

for i = 1, . . . ,4. The proofs of these four terms are similar. We give the proof of
the first term only. Note that V (2l1,2l2) (l1, l2 = 1, . . . ,

√
N/4) are independent

of each other and E(V (2l1,2l2)) = 0. We use Lemma 5.5 to evaluate the upper
bound of P (|Ti(n)| ≥ λ∗

j /24). Denote EX(·) as the conditional expectation for
given X1, . . . ,Xn. If we use (5.7), it is not difficult to verify that

EX

(
V (2l1,2l2)

)2 ≤ CN1/2n
∑

m∈Il1

W2
j,k(m) � σ 2

l1,l2
(5.10)

with
√

N/4∑
l1=1

√
N/4∑

l2=1

σ 2
l1,l2

≤ C2Nn � Bn

and, for any h > 0,

EX|V (2l1,2l2)|h ≤ (4N)h−1
∑

m∈Il1

∑
t∈Il2

Ex |ηml|h

(5.11)
≤ 1

2h!Hh−2
n σ 2

l1,l2
,

where Hn = H1
√

nN and H1 is a constant. Let λ = √
Nnλ∗

j /24. Then, there exists
a constant, K ′, such that

λ >
Bn

Hn

and k∗ = K

24H1

τ − 2

τ
> ln 2
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for K > K ′ and j > J0. Using Lemma 5.5, we have, for K > K ′,
1

n

∑
j,k

(
P

(|T1(n)| ≥ λ∗
j /24

))(τ−2)/τ

= O(n−2s1/(2s1+1)) + 1

n

J−1∑
j=J0+1

2j−1∑
k=0

e−k∗(j−J0) = O(n−2s1/(2s1+1)).

We have completed the proof of Theorem 1. �

PROOF OF THEOREM 2.

E

∫ 1

0

(
ĝ1(x) − g1(x)

)2
dx

=
N−2∑
m=0

∫ ξm+1

ξm

(
ĝ1(x) − g1(x)

)2
dx

+
[∫ 1/2N

0
+

∫ 1

1−1/2N

](
ĝ1(x) − g1(x)

)2
dx

� T1(n) + T2(n).

We prove only T1(n) = O(n−2s1/(2s1+1)) here. Using the same argument, we
get T2(n) = O(n−2s1/(2s1+1)).

Decompose T1(n) as

T1(n) ≤ C

N−2∑
m=0

∫ ξm+1

ξm

[(
ĝ1(x) − ĝ1(ξm)

)2

+ (
ĝ1(ξm) − g1(ξm)

)2 + (
g1(ξm) − g1(x)

)2]
dx

� S1(n) + S2(n) + S3(n).

Following the proof of Theorem 1, S2(n) = o(n−2s1/(2s1+1)). Denote Pξm(·) as the
optimal polynomial corresponding to g1(·). Then,

S3(n) ≤ C

N−2∑
m=0

∫ ξm+1

ξm

[(
g1(ξm) − Pξm(ξm)

)2

+ (
Pξm(ξm) − Pξm(x)

)2 + (
Pξm(x) − g1(x)

)2]
dx

� S31(n) + S32(n) + S33(n).

If we use Lemma 2.1, it is easy to show that S32(n) = O(n−2s1/(2s1+1)). Further-
more, S31(n) ≤ C

N

∑N−2
m=0(θ

(M)
J (ξm))2. Using Proposition 2 and inequality (5.6),

we have

S31(n) ≤ C

N

(
N−2∑
m=0

(
θ

(M)
J (ξm)

)p1

)2/p1

≤ C2−J (2s1−2/p1+1) = O(n−2s1/(2s1+1))
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for p1 ≤ 2 and

S31(n) ≤ C

(
1

N

N−2∑
m=0

(
θ

(M)
J (ξm)

)p1

)2/p1

≤ C2−2s1J = O(n−2s1/(2s1+1))

for p1 > 2. Similarly, we show that S33(n) = O(n−2s1/(2s1+1)) and thus S3(n) =
O(n−2s1/(2s1+1)).

By the same argument as the proof for the order of S3(n), it follows S1(n) =
O(n−2s1/(2s1+1)). We thus complete the proof of Theorem 2. �

PROOF OF THEOREM 3. Using the same notation as the proof of Theorem 1,
we have

E

(
1

N

N−1∑
m=0

(
ĝ1A(ξm) − g1(ξm)

))2

� I1(n) + I2(n) + I3(n) + O

(
1

n

)
.

By the same argument as the proof of Theorem 1, we find

I2(n) = O(n−2s1/(2s1+1)) and I3(n) = O(n−2s1/(2s1+1)).

Define j2 by

2j2 �
(

n

tn

)1/(2s1+1)

.

We then decompose I1(n) as

I1(n) =
j2∑

j=J0

∑
k

min{βj,k, λ
∗
j }2 +

J−1∑
j=j2

∑
k

min{βj,k, λ
∗
j }2

� I11(n) + I12(n).

Clearly,

I11(n) ≤ C

j2∑
j=J0

(λ∗
j )

22j = O

(
tn

n

)2s1/(2s1+1)

.

Similar to the proof for the order of I1(n) in Theorem 1, we have

I12(n) = O

(
tn

n

)2s1/(2s1+1)

.

We thus complete the proof of the first half of Theorem 3 [i.e., (4.1)]. Using
the same argument as in the proof of Theorem 2, we prove the second half of
Theorem 3 [i.e., (4.2)]. �
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APPENDIX

Proofs of lemmas. In this Appendix, we briefly prove all lemmas. The de-
tailed proofs can be found on the web page of the first author (http://www.math.mtu.
edu/~shuzhang).

PROOF OF LEMMA 2.1. If 0 < s < 1, then M = 0 and thus Lemma 2.1 is
obviously true. Thus, we assume s ≥ 1. Using Proposition 1, we have

1

N

N∑
m=1

sup
y,y′∈B(ξm,C′/N)

∣∣Pξm(y) − Pξm(y′)
∣∣ ≤ C

N

M∑
t=1

N∑
m=1

θ
(M−t)
J (ξm).

Noting Bs
p,q ⊂ BM−t+1

p,q and using Propositions 1 and 2, we can verify that

1

N

N∑
m=1

θ
(M−t)
J (ξm) ≤ C

J

N

for any integer t satisfying 1 ≤ t ≤ M . Then Lemma 2.1 follows. �

PROOF OF LEMMA 2.2. Let M = [s]. Let Pξm(·) denote the optimal
polynomial corresponding to f (x). It follows from Proposition 2, Lemma 2.1 and
inequality (5.6) that(

αJm − 1√
N

f (ξm)

)2

≤
[

1√
N

∫ L

−L
|φ(y)|

(∣∣∣∣f
(

y − 1/2

N
+ ξm

)
− Pξm

(
y − 1/2

N
+ ξm

)∣∣∣∣
+

∣∣∣∣Pξm

(
y − 1/2

N
+ ξm

)
− Pξm(ξm)

∣∣∣∣
+ ∣∣Pξm(ξm) − f (ξm)

∣∣)dy

]2

≤ C

N

N∑
m=1

[(
θ

(M)
J−j0

(ξm)
)2 +

(
sup

x,y∈B(ξm,C′/N)

∣∣Pξm(x) − Pξm(y)
∣∣)2]

= O

(
J 2

N

)
.

Furthermore, since β and β∗ are orthogonal transformations of αJ and (f (ξm)/√
N)N−1

m=0 , respectively, we have
∑

j,k(βj,k − β∗
j,k)

2 ≤ C J 2

N
. �

PROOF OF LEMMA 5.1. By Bernstein’s inequality [page 192 in Pollard
(1984)], it is easy to show that, for any fixed x, there exist positive constants,
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C1(δ) and C2(δ), independent of x such that, for any h > 0,

P

(
N

n
|Ax,δ| ≥ C2(δ)

)
= O(n−h) and

(A.1)

P

(
N

n
|Ax,δ| ≤ C1(δ)

)
= O(n−h).

Note that we can find discrete points xl, x
′
l ∈ [0,1]2 such that

⋃
x∈[0,1]2(

N
n
|Ax,δ| ≥

C) ⊂ ⋃
l(

N
n
|Axl,δ1| ≥ C) and

⋃
x∈[0,1]2(N

n
|Ax,δ| ≤ C) ⊂ ⋃

l(
N
n
|Axl,δ2| ≤ C)

for choosing suitable constants for δ1 and δ2. Then, Lemma 5.1 follows
from (A.1). �

PROOF OF LEMMA 5.2. Denote Vx,δ = ∑
i∈Ax,δ

Zx,iZ
′
x,i . Using an argument

similar to the proof of Lemma 1 in Zhang, Wong and Zheng (2002), we can show
that, for any fixed x and constant δ, there exists a constant Kδ such that, for any
h > 0,

P
(
λmin(Vx,δ) ≤ Kδ|Ax,δ|) = O(n−h),(A.2)

where λmin(A) denotes the smallest eigenvalue of a matrix, A. Similar to the idea
used in the proof of Lemma 5.1, we may find some discrete points xl ∈ [0,1]2

such that
⋃

x∈[0,1]2(λmin(Vx,δ) ≤ C|Ax,δ|) ⊂ ⋃
l(λmin(Vxl,δ1) ≤ C|Axl,δ1|). Then

Lemma 5.2 follows from (A.2). �

PROOF OF LEMMA 5.3. We decompose (β̃j,k − β∗
j,k)I� as

(β̃j,k − β∗
j,k)I�

= 1√
N

N−1∑
m=0

Wj,k(m)
(
ğ1(ξm) − g1(ξm)

)
I�

= 1√
N

N−1∑
m=0

Wj,k(m)
1

n

n∑
l=1

∑
i∈Am,l

Cm,l,i

[(
g1(Xi,1) − g1(ξm)

)

+ g2(Xi,2) + εi

]
I�

� I1(n) + I2(n) + 1

n
√

N

N−1∑
m=0

n∑
l=1

∑
i∈Am,l

Cm,l,iεiWj,k(m)I�.

Denote Px(·) as the optimal polynomial of degree M (= [s] ≤ D) correspond-
ing to g1(·). Note that ĝ(x) is fitted with an additive polynomial of degree D in the
neighborhood of x. Thus,

∑
i∈Ax

Cm,l,iPx(Xi,t ) = Px(xt). Using Propositions 1, 2
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and inequality (5.6), we have

|I1(n)| = 1

n
√

N

N−1∑
m=0

|Wj,k(m)|
n∑

l=1

∑
i∈Am,l

∣∣Cm,l,i

[(
g1(Xi,1) − Pξm(Xi,1)

)
+ (

Pξm(ξm) − g1(ξm)
)]∣∣I�

≤ 1

n
√

N

N−1∑
m=0

|Wj,k(m)|
n∑

l=1

∑
i∈Am,l

|Cm,l,i |θ(M)
J/2 (ξm)I�

= o

(
1√
n

)
.

Similarly, we show I2(n) ≤ ajk

n

∑n
l=1 g2(Xl,2)I� and thus complete the proof of

Lemma 5.3. �

PROOF OF LEMMA 5.4. We prove only E|(β̃j,k − β∗
j,k)I|τ = O(n−τ/2)

here. With reference to the notation in the proof of Theorem 1, it follows from
Lemma 5.3 that

(
β̃j,k − β∗

j,k

)
I = S1(n) + S2(n) + o

(
1√
n

)
.

Using the same argument as the proof of Theorem 1 and using Equations (5.10)
and (5.11) [noting that the proofs of (5.10) and (5.11) do not require Lemma 5.4],
we have E|S1(n)|τ = O(n−τ/2). Thus, Lemma 5.4 follows by noting the obvious
fact that E|S2(n)|τ = O(n−τ/2). �
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