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We suggest two new, translation-based methods for estimating and
correcting for bias when estimating the edge of a distribution. The first
uses an empirical translation applied to the argument of the kernel, in
order to remove the main effects of the asymmetries that are inherent when
constructing estimators at boundaries. Placing the translation inside the
kernel is in marked contrast to traditional approaches, such as the use of
high-order kernels, which are related to the jackknife and, in effect, apply the
translation outside the kernel. Our approach has the advantage of producing
bias estimators that, while enjoying a high order of accuracy, are guaranteed
to respect the sign of bias. Our second method is a new bootstrap technique.
It involves translating an initial boundary estimate toward the body of the
dataset, constructing repeated boundary estimates from data that lie below
the respective translations, and employing averages of the resulting empirical
bias approximations to estimate the bias of the original estimator. The first of
the two methods is most appropriate in univariate cases, and is studied there;
the second approach may be used to bias-correct estimates of boundaries of
multivariate distributions, and is explored in the bivariate case.

1. Introduction. Many boundary or endpoint estimation problems in statis-
tics are closely related to problems involving nonparametric curve estimation. The
methods used are generally biased, and in fact the sign or direction (in the case of
spatial problems) of bias is generally known. However, the relative error of bias
estimators is typically of larger order than would be found in the related curve es-
timation setting, owing to marked asymmetries inherent to boundary estimation.
In the present paper we suggest two new methods for overcoming these types of
difficulty. Both techniques are translation-based, and they use translations in ways
that have not been considered before.

The first method, which seems most appropriate in univariate settings, is
introduced in Section 2. It incorporates a translation-based correction inside
the kernel, and thereby respects the sign of the bias that is being estimated.
More traditional approaches to high-order bias estimation, such as the jackknife,
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incorporate the correction in a directly additive way, with the result that stochastic
fluctuations can render the sign of the bias estimator incorrect. High-order kernel
approaches to bias estimation can be viewed as examples of the jackknife, and their
tendency to reverse the sign, too, is one aspect of this difficulty, which our approach
overcomes. Our technique also has application to density estimation, where it
allows the boundary bias of conventional kernel estimators to be greatly reduced
without using kernels that take negative values. We briefly discuss this application.

Our second approach to bias correction has versions in any number of
dimensions, and we illustrate it in Section 3 in the bivariate case. It is a new
form of the bootstrap, and might be termed the translation bootstrap because of
its reliance on averaging over repeated empirical translations. Operationally, it
involves temporarily taking the true boundary B to equal to its estimator, B̂ ,
say, and moving the latter steadily into the body of the data, recomputing the
boundary estimator from data below B̂ as we go. The bias of the latter estimate is
approximated by the difference between the estimate and the respective translated
position of B̂; and the average of these bias approximations over the translations
of B̂ is an estimator of the bias of B̂ as an estimator of B .

The translation bootstrap can be viewed as a competitor with subsampling-
bootstrap approaches to boundary-bias estimation; see Bickel, Götze and van
Zwet (1997) and Politis, Romano and Wolf (1999) for discussion of subsampling.
The two methods have similar theoretical properties, although giving different
numerical results, in the univariate case. It is in bivariate settings that the
translation bootstrap comes into its own. More conventional bootstrap techniques
for inference at the edge or boundary of a distribution do not perform well, not
least because relatively conventional resampling approaches do not capture the
relationships among extremes of a resample drawn by resampling in conventional
ways. See, for example, Athreya (1987a, b), Knight (1989) and Hall (1990) for
accounts of aspects of this issue, and Simar and Wilson (1998) for discussion of
bootstrapping in frontier models.

The subsampling approach to estimating bias at an endpoint has links to
techniques for estimating a quantile density, discussed by, for example, Siddiqui
(1960), Bloch and Gastwirth (1968), Bofinger (1975), Reiss (1978), Csörgő
[(1983), page 32], Falk (1986), Welsh (1988), Jones (1992), Cheng (1995) and
Cheng and Parzen (1997). Recent work on boundary estimation problem includes
Hall, Park and Stern (1998), Gijbels, Mammen, Park and Simar (1999) and
Hall, Park and Turlach (1998). They are closely related to estimation of density
support, considered earlier by, for example, Chevalier (1976), Ripley and Rasson
(1977), Mammen and Tsybakov (1995), Korostelev, Simar and Tsybakov (1995)
and Härdle, Park and Tsybakov (1995). Some particular methods for estimating
monotone (concave) boundary have been analysed theoretically by Kneip, Park
and Simar (1998) and Park, Simar and Wiener (2000).

A variety of bias reduction methods, usually not applicable to estimation at
the boundary, has been suggested for nonparametric curve estimation. See, for
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example, the survey by Jones and Signorini (1997), and in particular the data
adjustment technique of Samiuddin and El-Sayyad (1990) and the multiplicative
adjustment approach of Linton and Nielsen (1994). In one-dimensional problems
our method is in the spirit of the former, which has been termed “data sharpening”
by Choi and Hall (1999). In effect we add a data adjustment term, α̂, to the
argument of the kernel.

2. One dimension: Bias reduction at endpoints. Let X = {X1, . . . , Xn}
denote a random sample from a univariate distribution F of which the upper
endpoint or boundary, a, say, is finite but unknown. Write X(1) ≤ · · · ≤ X(n) for
the ordered sample values. We take â = X(n) to be our estimator of a. Of course,
â is biased downwards; let β = E(a − â) ≥ 0 be the negative of the bias. Then,
under mild regularity conditions, β is asymptotic to {nf (a)}−1, where f denotes
the density of the sampled distribution. Therefore, estimating β is tantamount to
estimating f (a), at least to first order, and so bias estimation has some of the
features of density estimation. See pages 46–49 of Wand and Jones (1995) for
discussion of kernel methods for estimating densities at endpoints.

One estimator of β is β̃m = m−1(X(n) − X(n−m)), which may variously be
interpreted as a nonparametric inverse-density estimator [Siddiqui (1960), Bloch
and Gastwirth (1968)] or as the m-out-of-n subsampling bootstrap estimator of β .
It has a more general, kernel form,

β̃m =
∑

i (X(n−i+1) − X(n−i))K(i/m)∑
i K(i/m)

,(2.1)

where K denotes a nonnegative function supported on the positive half-line.
The estimator at (2.1) suffers from poor convergence rate, resulting from its

inherent asymmetries. The main effects of the asymmetries may be removed by
incorporating an empirical translation correction, α̂, into the kernel at (2.1), giving

β̂m =
∑

i (X(n−i+1) − X(n−i))K{(i + α̂)/m}∑
i K(i/m)

.(2.2)

There are several different ways of defining an appropriate α̂, but in this paper we
consider only one:

α̂ = −m

∑
i (X(n−i+1) − 2X(n−i) + X(n−i−1))iK(i/m)∑

i (X(n−i+1) − X(n−i))K
′(i/m)

.(2.3)

Note particularly that, without regard for the sign of α̂, we have β̂ ≥ 0. Therefore,
our bias-corrected bias estimator β̂m respects the sign of bias. We may regard α̂ as
a data perturbation constructed specifically to adjust bias; it is in effect an estimator
of the ratio

m2

n

G′′(1−)

G′(1−)

∫
u>0 uK(u) du

K(0)
,

where G = F −1 and F is the sampled distribution function.
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As we shall show in Section 5, for distributions with three derivatives the bias
estimator defined by (2.2) and (2.3) achieves the optimal convergence rate n−2/5,
in terms of relative Lp error for any 1 ≤ p < ∞, when m is chosen to be of
size n4/5. This is of course an order of magnitude faster than the relative rate n−1/3

for the estimator β̃m that is obtained by choosing m to be of size n2/3. However,
the simulations in Section 4 show that our bias estimator does not outperform
the simpler technique (2.1). The superior convergence rate of the method (2.2)
with (2.3) seems to take effect only for very large sample sizes.

The problem of estimating f at or near an endpoint is related to that of
estimating the endpoint, and may be addressed using ideas similar to those
suggested above. To this end, note that a conventional, reweighted kernel estimator
of f (x), for x ≤ a, is given by

f̃ (x) =
{

n−1
n∑

i=1

K

(
x − Xi

h

)}/{∫ a

−∞
K

(
x − y

h

)
dy

}
,(2.4)

where the integral in the denominator adjusts for a deficit of probability mass in
the neighborhood of the endpoint. Without the adjustment, f̃ (a) would not be
consistent for f (a).

However, even with the adjustment the estimator f̃ converges slowly to f at
points that are close to a. For example, the optimal convergence rate of f̃ (a) to
f (a−) is generally only n−1/3. As in the case of the estimator β̃m, this difficulty
may be removed by making a simple, empirical translation correction, leading to
the estimator

f̂ (x) =
{

n−1
n∑

i=1

K

(
x − Xi + α̂(x)

h

)}/{∫ a

−∞
K

(
x − y

h

)
dy

}
,(2.5)

where on the present occasion,

α̂(x) = h2 f̄ ′(x)

f̃ (x)
ρ

(
x − a

h

)
,(2.6)

f̄ ′ is an estimator of f ′, and ρ(u) = K(u)−1 ∫
v≤u vK(v) dv; here we define 0/0 to

be 0. We shall show in Section 5 that f̂ converges to f at the optimal second-order
rate n−2/5, in a left-hand neighborhood of a, provided h is of size n−1/5. Away
from this neighborhood, f̂ is identical to the conventional density estimator based
on the kernel K and bandwidth h.

Note particularly that, provided only that K is nonnegative, f̂ ≥ 0. Therefore
the translation correction has preserved positivity. More traditional techniques
for kernel density estimation at boundaries, based on boundary kernels, exhibit
increased oscillation due to side lobes in the kernel and need to be spliced to
conventional estimators away from the boundary, in addition to suffering from
negativity.
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The kernel K in (2.4)–(2.6) would be a smooth, symmetric, compactly
supported, probability density that was nondecreasing and nonincreasing on the
negative and positive half-lines, respectively. Thus, it would be a kernel of the
type that is conventionally used for nonparametric density estimation. In this
case the denominator at (2.4) is of course identically 1 if K is supported on the
interval [−1, 1] and x < a − h. Given that K is of this type, the function ρ in (2.6)
is bounded on the negative half-line (which is the only region where it is required),
and vanishes on (−∞,−1). The same kernel type is appropriate in the problem of
estimating a, which is why we have not altered our notation.

In the definitions of f̃ and f̂ we have assumed a to be known, which is usually
the case in this class of problems. For example, the distribution of the breaking
strength of a fibre would be known to be supported on the positive half-line, and in
particular would not take negative values, even though the corresponding density
might not vanish at the origin. The convergence rate does not deteriorate, however,
if we replace a by â = X(n) in (2.4) and (2.5).

3. Two dimensions: Translation bootstrap.

3.1. Basic estimators. Suppose we observe data P = {(X1, Y1), (X2, Y2), . . . }
from a Poisson process in the plane, and that the intensity function of P
is supported in the half-plane below the curve represented by the equation
y = g(x). We wish to estimate the boundary function, g. A well-known estimator
is the free disposal hull, or FDH, introduced by Deprins, Simar and Tulkens
(1984) in the context of measuring the efficiency of enterprises. There, g is
generally a monotone increasing function, and the FDH is designed for that setting.
Geometrically, the FDH is the lowest monotone step function above all the data
(Xi, Yi). An obvious enhancement of the FDH is its linearly interpolated form,
which we shall call the LFDH estimator. It is constructed by connecting the
left-hand ends of the steps of the FDH. Below, we define these two estimators
concisely.

Given a point (x, y), let SE(x, y) denote the “south-eastern” quadrant of the
plane with its vertex at (x, y),

SE(x, y) = {(u, v) : u ≥ x, v ≤ y};
and similarly define NW(x, y) to be the “north-western” quadrant. Then, the FDH
estimator ĝFDH is defined to be the upper boundary of the set

⋃
i SE(Xi, Yi):

ĝFDH(x) = max

{
y : (x, y) ∈ ⋃

i

SE(Xi, Yi)

}
.

Obviously, the FDH is biased downward since it never exceeds g. Theoretical
properties of the FDH were investigated by Park, Simar and Weiner (2000) in the
multidimensional case.
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Next we define the LFDH estimator. A data point (Xi, Yi) is called a boundary
point of the FDH if there is no other point in the region NW(Xi, Yi) other than
itself. The LFDH estimator is obtained by linearly interpolating these boundary
points. Formally, define for a given x,

XL
1 = XL

1 (x) = max{Xi ≤ x : (Xi, Yi) is a boundary point},
XL

k+1 = XL
k+1(x) = max

{
Xi < XL

k : (Xi, Yi) is a boundary point
}
,

(3.1)

for k = 1, 2 . . . and let Y L
k be the concomitant of XL

k , for k = 1, 2, . . . . Likewise,
define (XR

l , Y R
l ), for l = 1, 2, . . . on the right-hand side of x, with the ordering

x < XR
1 < XR

2 < · · · . The LFDH estimator is then given by

ĝ(x) = Y L
1 + (Y R

1 − Y L
1 )(x − XL

1 )/(XR
1 − XL

1 ).(3.2)

Note that the definition of the boundary points (XL
k , Y L

k ) and (XR
l , Y R

l ) depends on
the point x where we wish to estimate g. Also, with this definition we can write
ĝFDH(x) = Y L

1 . The boundary points (XL
k , Y L

k ) and (XR
l , Y R

l ), for k, l = 2, 3, . . . ,
are not required for the definition at (3.2); they are introduced here for later use.
At the left- and right-hand edges of the dataset the LFDH estimator is not defined,
and there one may use the FDH estimator instead.

Theoretical properties of the LFDH estimator will be derived in Section 4. In
asymptotic terms, if the point process is Poisson with intensity nλ, where λ is a
fixed function in the plane and strictly positive at the boundary, and if the boundary
is differentiable, then as n diverges to infinity, the LFDH estimator converges to g

at rate Op(n−1/2) in a pointwise sense. It may be shown, as in Härdle, Park and
Tsybakov (1995), that this is the minimax-optimal rate for boundaries that satisfy
a Lipschitz condition of order 1. If the boundary is continuously differentiable then
bias of the LFDH estimator is also of size n−1/2.

The LFDH estimator has less asymptotic bias and variance than its FDH
counterpart. Indeed, it can be shown that the ratios of the bias and the variance
of the LFDH estimator to those of its FDH counterpart are

5
16

/ 1
2 = 0.625 and

(8
9 − 25

128π
)/(

2 − 1
2π

) � 0.641,

respectively, independent of λ and g. [Asymptotic bias and variance of ĝFDH can be
deduced from results of Park, Simar and Weiner (2000). Analogous results for the
LFDH estimator may be derived similarly.] Because of its theoretical superiority
and apparent practical advantages, we shall apply our bias correction method to
the LFDH estimator rather than to its FDH counterpart.

3.2. Bias correction of LFDH estimator. Define ĝy(x) = ĝ(x) − y, and let
γ̂y be the LFDH estimator of ĝy computed from Py = {(Xi, Yi) ∈ P : Yi ≤
ĝy(Xi)}. We estimate the bias of ĝ as the average, over values y in an
interval (u, v), of the empirical bias of γ̂y as an estimator of ĝy :

β̂uv(x) = (v − u)−1
∫ v

u
{ĝy(x) − γ̂y(x)}dy.(3.3)
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Our bias-corrected estimator of g is

ǧ = ĝ + κβ̂uv,(3.4)

where κ , an absolute constant, is a correction factor. The integrand at (3.3) is
piecewise linear in g, and the integral is piecewise quadratic. This property is
exploited to construct the estimator and implement the method.

Unlike the one-dimensional case encountered in Section 2, the bias correc-
tion κβ̂uv , divided by the true bias, does not converge to 1. Nevertheless, the ex-
pected value of the ratio converges to 1, and so the bias correction does effectively
reduce bias. Moreover, the stochastic fluctuations of the bias correction are of the
same order as those of the uncorrected estimator ĝ, and so they do not degrade the
rate of convergence. The reason for this behavior is that the estimator ĝ, which is
used as the “template” against which repeated bias approximations are computed
and then averaged in the translation bootstrap algorithm, does not have the same
smooth structure as the true function g; the stochastic fluctuations of the template
manifest themselves as random variation of the bias correction.

If desired, this feature may be substantially removed by passing a second-order
smoother through ĝ before implementing the argument leading to (3.3) and (3.4).
This is extremely easy to do; a standard local linear regression routine with a
relatively small bandwidth, and passed through the continuum of “data pairs”
(x, ĝ(x)), is suitable for this purpose. This substantially reduces the variability
of β̂uv without significantly impairing its bias reduction abilities. Subsequently, to
ensure the monotone increasing character of ĝ is retained in passing to ǧ, we start
at one point on the estimator (say at the left-hand end) and, computing ǧ on a grid
of points x1 < x2 < · · · , take

ǧ(xi) = max
{
ĝ(xj ) + κβ̂uv(xj ) : j ≤ i

}
.(3.5)

An alternative way of monotonizing suggested by one of the referees is to use
ǧ(xi) = 1

2 [max{ĝ(xj ) + κβ̂uv(xj ) : j ≤ i} + min{ĝ(xj ) + κβ̂uv(xj ) : j ≥ i}].
Next we define κ . Consider the special case where y = g(x) is the equation

of a straight line, L, say, of unit slope passing through the origin, and the point
process in the half-plane below L is homogeneous and Poisson, of unit intensity.
Call this Poisson process Q0. Write ḡ for the LFDH estimator of g in this special
case, and conditional on ḡ, let Q be another Poisson process of unit intensity,
independent of Q0, in the region {(x, y) : y ≤ ḡ(x)}. Write γ̄ for the LFDH
estimator of ḡ computed from Q, and let β̄ = ḡ − E(γ̄ |ḡ) denote the translation
bootstrap estimator of bias. It is clear that there exists a unique constant κ > 0 such
that in this special case, ḡbc(0) = ḡ(0) + κβ̄(0) has zero bias: E{ḡbc(0)} = g(0).
We claim that this value of κ is appropriate in (3.4).

Exact computation of κ seems out of reach, but we can calculate a Monte Carlo
approximation. To this end we worked out the exact joint distribution of β̄ and γ̄ ;
it is given in a longer version of this paper, obtainable from the authors. From that
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result we calculated an exact formula for E{γ̄ (0)|ḡ}. The formula depends on the
boundary points of the process Q0, denoted by (V L

k , W L
k ) and (V R

l , W R
l ) which are

defined as at (3.1) with x = 0. We simulated 5000 realizations of these boundary
points according to their joint distribution. The numbers of boundary points in
each realization were 500 and 1000. For each realization we calculated β̄(0). The
5000 values of β̄(0) based on the same number of boundary points were then
averaged to give an approximation to E{β̄(0)}. There were only minor differences
between the two different numbers of boundary points, and we took that for 1000
boundary points, 0.7325, as our final approximation to E{β̄(0)}. Now, E{ḡ(0)}
can be computed exactly from the distribution of ḡ(0); it equals −5

√
2π/16.

Therefore, our approximation to the value of κ = −E{ḡ(0)}/E{β̄(0)} is 1.0694.

4. Numerical properties.

4.1. Endpoint estimation. We present the result of a numerical experiment
demonstrating the effectiveness of the translation-based bias correction in univari-
ate settings. We simulated 10,000 data sets of size n = 100, distributed on the
interval (0, 1) according to the density f (x) = (3/2) − x there. They were used
to approximate the mean squared error of the conventional estimator â = X(n),
and those of the bias-corrected estimators â + β̃m and â + β̂m with β̃m as de-
fined at (2.1), of the true endpoint a (in our case a = 1). The biweight kernel
K(u) = (15/16)(1 − u2)2I (|u| ≤ 1) was used.

Figure 1 illustrates how the mean squared errors of the bias-corrected estimators
varies with m. The horizontal straight line in the figure indicates the logarithm of
mean squared error of the uncorrected estimator, â = X(n), and corresponds to a
mean squared error of 6.91×10−4. By way of comparison the mean squared errors
of the bias-corrected estimators, â + β̃m and â + β̂m, are minimized when m = 29
and m = 18 with minimal values 3.69 × 10−4 and 3.82 × 10−4, respectively,
representing efficiency gains with respect to â by the factors 1.87 and 1.81. The
results also show that our bias estimator β̂m does not outperform the simpler one
β̃m, indicating that the superior convergence rate of β̂m may not take effect for
moderate sample sizes.

4.2. Bias-correcting the LFDH estimator. To see the effect of applying the
translation bootstrap in the bivariate case, 1,000 datasets of size n = 400 were
generated. The boundary function was g(x) = x + 3. The model for the simulated
data (Xi, Yi), i = 1, . . . , 400, was Yi = g(Xi)Vi , where the Xi ’s were uniformly
distributed on the interval (−1, 1) and were independent of the Vi’s, which were
distributed on the interval (0, 1) with density f (v) = (13/9) − (4/3)v2 there. This
means that the joint density of (Xi, Yi) was given by

λ(x, y) = {2(x + 3)}−1{(13/9) − (
4y2/3(x + 3)2)}

I(−1,1)(x)I(0,x+3)(y).
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FIG. 1. Mean squared errors of the endpoint estimators (one-dimensional case). The logarithm of
the mean squared error of the uncorrected estimator is represented by the horizontal dotted line.
Those of the bias-corrected estimators as functions of log m, with β̃m given by (2.1) and β̂m given
by (2.2) are represented, respectively, by the dashed and solid curves.

For the presmoothing of ĝ, the local linear regression was employed with the
Epanechinikov kernel K(u) = (3/4)(1 − u2)I(−1,1)(u) and bandwidth h = 1.0.

For each dataset the LFDH estimate, the bias-corrected estimate defined at (3.4),
and its monotonized version at (3.5) with presmoothing noted in the third
paragraph of Section 3.2, were calculated at the point x = 0. (Bias, variance and
mean squared error are similar at other points, provided one is not too close to the
boundaries at x = ±1.) Figure 2 summarises the results. In particular, panel (a)
shows the logarithms of mean squared errors of the three estimators as functions
of v. The horizontal straight dotted line corresponds to the uncorrected LFDH
estimator. The corresponding mean squared error is 6.834 × 10−2. The bias-
corrected estimator and its smoothed, monotonized version have their minimal
mean squared errors 3.980 × 10−2 and 1.622 × 10−2, for v = 0.75 and v = 0.90,
respectively. Their relative efficiencies with respect to the uncorrected one are thus
1.717 and 4.213, respectively. It is seen that the presmoothing and monotonization
procedure improves the mean squared error of the bias-corrected estimator for a
wide range of v. This is largely because the smoothed, monotonized bias correction
reduces variance and yet retains good bias correction properties, as illustrated by
panel (b) of Figure 2.
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FIG. 2. Mean squared errors, squared biases and variances of the boundary estimators
(two-dimensional case). Panel (a) shows the logarithms of mean squared error, plotted against v,
of the LFDH estimator (dotted line), of the bias-corrected estimator defined at (3.4) (dashed line),
and of the pre-smoothed, monotonized bias-corrected estimator (solid line). The top two curves in
panel (b) show the logarithms of the variances of the bias-corrected estimator (dashed line) and of
its smoothed, monotonized bias-corrected counterpart (solid line). The bottom two curves show the
logarithms of squared squared biases for these two estimators (in the same respective line types).

5. Theoretical properties.

5.1. Endpoint estimation. We begin by describing properties of the bias-
corrected endpoint estimator β̂m, defined at (2.2). Assume E(|X|ε) < ∞ and F

has three continuous derivatives on [a − ε, a), both results holding for some ε > 0.
Suppose too that F (a−) = 1 and F ′(a−) > 0, and put f = F ′ and G = F −1. Let
K denote a continuously differentiable function on (−∞,∞), with support con-
tained within (−∞, 1] and satisfying

∫
[0,1] K > 0 and K(0) �= 0. Finally, assume

that m = m(n) → ∞ and m/n → 0 as n → ∞. Call these conditions (C1). Define

τ 2 =
∫ ∞

0
{2K(u) + uK ′(u)}2 du,

κj =
∫ ∞

0
ujK(u) du,

κ ′
j =

∫ ∞
0

ujK ′(u) du.

[Thus, κ ′
0 = −K(0) and κ ′

1 = −κ0.]
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THEOREM 5.1. Assume conditions (C1). Then, β = E(a − X(n)) =
n−1f (a−)−1 + O(n−2) and

β̂m

β
= 1 + τ

κ0m1/2
Nn +

(
m

n

)2(
G′′(a−)2

G′(a−)2

κ1κ ′
1

κ0κ ′
0

− G′′′(a−)

2G′(a−)

κ2

κ0

)
+ op{(m/n)2},

(5.1)

where the random variable Nn is asymptotically normal N(0, 1).

We can write (5.1) in the form β̂m/β = 1 + c1m−1/2Nn + (m/n)2c2, plus
negligible terms, where c1, c2 are constants. Assuming c2 �= 0 we may deduce
from this formula that the value of m that minimizes asymptotic Lp relative error,
for any given 1 ≤ p < ∞, equals a constant multiple of n4/5; and that the minimum
Lp error is asymptotic to a constant multiple of n−2/5. When F has three bounded
derivatives in a neighborhood of a this is the optimal minimax rate, and is achieved
by β̂m with m � n4/5, as may be seen from the following theorem. There (5.2)
shows that the relative rate n−2/5 cannot be improved upon for distributions with
only three derivatives, and (5.3) demonstrates that the estimator β̂ achieves this
optimal rate. We take a = 0 for simplicity.

Given B > 0, let F (B) denote the class of distributions F that are sup-
ported on [−B, 0], have three bounded derivatives on [−B−1, 0), and satisfy
|F (j)(x)| ≤ B and F ′(x) ≥ B−1 for x ∈ [−B−1, 0) and j = 1, 2, 3. For each
F ∈ F (B) put β(F ) = β(F, n) = EF (−X(n)). Let (C2) denote the conditions im-
posed on K as part of (C1), write β̂0 for the version of β̂m in which m is taken
as the integer part of any fixed, positive multiple of n4/5, and let G be the set of

all measurable functions β̌ of the data. (Each β̌ may be regarded as an estimator
of β .)

THEOREM 5.2. Assume conditions (C2) and that B is so large that F (B) is
nonempty. Then

lim
ε→0

lim inf
n→∞ inf

β̌∈G
sup

F∈F (B)

PF

{|(β̌/β) − 1| > εn−2/5} = 1,(5.2)

lim
C→∞ lim sup

n→∞
sup

F∈F (B)

PF

{∣∣(β̂0/β) − 1
∣∣ > Cn−2/5} = 0.(5.3)

Result (5.3) may be proved using methods from our derivation of Theorem 5.1,
and (5.2) follows using standard techniques for proving minimax bounds in Hölder
spaces. See, for example, Hall (1989) or Chapter 2 in Korostelev and Tsybakov
(1993).
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5.2. Density estimation. Here we describe properties of the bias-corrected
density estimator f̂ , defined at (2.5). Recall from (2.6) that we require an estimator
f̄ ′ of f ′. Simply differentiating the estimator f̃ , or differentiating a standard kernel
density estimator and correcting for a deficit of probability mass, as at (2.4), does
not produce a consistent estimator of f ′ at or near the endpoint a. A consistent
estimator can be obtained in a variety of other ways, however, for example
by differentiating a one-sided, second-order kernel density estimator that uses
bandwidth h. Such an estimator, and a wide range of others, have the property

f̄ ′(x) = f ′(x) + Op

{
h + (nh3)−1/2}(5.4)

for each x.
Assume F has three bounded derivatives on [b, a], for some b < a. Suppose

too that F (a−) = 1 and F ′(a−) > 0, and put f = F ′. Let K denote a twice-
differentiable, symmetric probability density on (−∞,∞), with support contained
in [−1, 1] and nondecreasing on [−1, 0]. Finally, assume h = h(n) → 0 and
nh → ∞ as n → ∞. Call these conditions (C3).

THEOREM 5.3. Assume conditions (C3), and that f̄ ′(x) in the definition of
the translation correction (2.6) satisfies (5.4). Then for each x = a − ch and any
c ≥ 0, and also for each x ∈ (b, a],

f̂ (x) = f (x) + Op

{
h2 + (nh)−1/2}.(5.5)

Furthermore, f̂ (x) is identically equal to the conventional kernel estimator,

1

nh

n∑
i=1

K

(
x − Xi

h

)
,

for all x < a − h.

Condition (5.5) is the usual second-order statement about performance of f̂ as
an estimator of f . By way of contrast, the uncorrected estimator f̃ satisfies only
f̃ (x) = f (x) + Op{h + (nh)−1/2} for x close to a. The larger order of bias in the
latter expansion has been removed by the translation correction.

5.3. Bias-correcting the LFDH estimator. Let P = P (n) be a Poisson process
with intensity nλ, where λ > 0 is a fixed function in the plane and satisfies
λ(x, y) = 0 for each pair (x, y) with g(x) < y. We shall take n to diverge to ∞.
As in Section 3, let ĝ be the LFDH estimator of g, computed from P and define ǧ

as at (3.4).
In this setting, provided g has a continuous derivative, and λ is continuous and

bounded away from 0 and infinity, ĝ converges to g at rate n−1/2:

n1/2{ĝ(0) − g(0)} → {
g′(0)/λ

(
0, g(0)

)}1/2
Q1
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in distribution as n → ∞, where the random variable Q1 = ḡ(0) has a continuous
distribution supported on the negative half-line, not depending on unknowns
such as g or λ. The latter property reflects the fact that ĝ is consistently biased
downward for g. [Here and below we assume, without loss of generality, that
we are estimating g(x) at x = 0.] Our next result shows that the bias-corrected
estimator ǧ satisfies a similar limit theorem, also with rate n−1/2, but, reflecting
the efficacy of bias correction, the limit distribution now has mean 0.

THEOREM 5.4. Assume g is nondecreasing and has a continuous derivative
in a neighborhood of 0; that g′(0) > 0; that λ(0, g(0)) > 0; that λ is continuous
on the set {(x, y) : |x| ≤ ε, 0 ≤ g(x) − y ≤ ε} for some ε > 0; and that u, v in
definition (3.3) of β̂uv are functions of n satisfying 0 ≤ u = o(v), v → 0 and
n1/2v → ∞. Then

n1/2{ǧ(0) − g(0)} → {
g′(0)/λ

(
0, g(0)

)}1/2
Q2

in distribution as n → ∞, where the random variable Q2 = ḡ(0)+κβ̄(0) has zero
mean.

The convergence rate, n−1/2, evinced by Theorem 5.4 is optimal for boundaries
with one derivative; see, for example, Härdle, Park and Tsybakov (1995).

6. Outline technical details.

6.1. Proof of Theorem 5.1. We shall derive only (5.1). It is notationally
convenient to estimate a lower endpoint, and so we take that route in the proof.
Without loss of generality the lower endpoint is the origin, and so we assume F

has three continuous derivatives on (0, ε] for some ε > 0, with F ′(0+) > 0. Also
without loss of generality, F is continuous. Put G = F −1, and let U(1) ≤ · · · ≤ U(n)

be the order statistics corresponding to the sequence Ui = F (Xi) of independent
uniform random variables. Note too that U(i+1) − U(i) = Zi/Sn, where Sn =
Z0 + · · · + Zn and Z0, Z1, . . . are independent, exponentially distributed random
variables with E(Zi) = 1. Arguing thus, and Taylor expanding, we may prove
that

X(i+1) −X(i)

= (U(i+1) − U(i))
{
G′(0) + U(i)G

′′(0) + 1
2U2

(i)G
′′′(0)

} + R1(i),

X(i+2) − 2X(i+1) + X(i)

= (U(i+2) − 2U(i+1) + U(i))G
′(0)

+ {
(U(i+2) − U(i+1))U(i+1) − (U(i+1) − U(i))U(i)

}
G′′(0)

+ 1
2

{
(U(i+2) −U(i+1))U

2
(i+1) − (U(i+1) −U(i))U

2
(i)

}
G′′′(0)+R2(i),

where R1(i) = Op{(n−1 log n)2} uniformly in i, m−1 ∑
i≤m R2(i) = op(m−3/2 +

mn−3) uniformly in m ≤ m0, and we write G(j)(0) to denote G(j)(0+).
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Let Zi be as in the previous paragraph, and define

T1 = m−1
m∑

i=1

(Zi − 1)K(i/m), T2 = m−1
m∑

i=1

(Zi+1 − Zi)(i/m)K(i/m),

V1 = m−1
m∑

i=1

E
{
(U(i+2) − U(i+1))U(i+1) − (U(i+1) − U(i))U(i)

}
(i/m)K(i/m),

V2 = 1
2m−1

m∑
i=1

E
{
(U(i+2) − U(i+1))U

2
(i+1) − (U(i+1) − U(i))U

2
(i)

}
(i/m)K(i/m),

V ′
1 = m−1

m∑
i=1

E
{
(U(i+1) − U(i))U(i)

}
K ′(i/m),

T ′
1 = m−1

m∑
i=1

(Zi − 1)K ′(i/m), T ′ = m−1
m∑

i=1

ZiK
′(i/m).

In this notation,

m−1
m∑

i=1

(X(i+1) − X(i))K
′(i/m)

= S−1
n T ′G′(0) + G′′(0)V ′

1 + op(m−1/2n−1 + mn−2),

m−1
m∑

i=1

(X(i+2) − 2X(i+1) + X(i))(i/m)K(i/m)

= S−1
n T2G′(0) + G′′(0)V1 + G′′′(0)V2 + op(m−3/2n−1 + mn−3).

Now, E(U(i+1) − U(i)|U(i)) = (1 − U(i))/(n − i + 1),

E
{
U(i)(1 − U(i))

} = i(n − i + 1)

(n + 1)(n + 2)
,

E
{
U2

(i)(1 − U(i))
} = i(i + 1)(n − i + 1)

(n + 1)(n + 2)(n + 3)
.

Therefore, V1 = n−2v1 + O(n−3), V2 = (m/n3)v2 + O(mn−4) and V ′
1 =

(m/n2)v′
1 + O(mn−3), where

vj = m−1
m∑

i=1

(i/m)j K(i/m), v′
j = m−1

m∑
i=1

(i/m)j K ′(i/m).

Furthermore, mT2 = −T3 + op(m−1/2), where

T3 = m−1
m∑

i=1

(Zi − 1){K(i/m) + (i/m)K ′(i/m)},
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and T ′ = v′
0 + Op(m−1/2), where the Op(m−1/2) term has zero mean. Hence,

−α̂/m ≡
∑

i (X(i+2) − 2X(i+1) + X(i))iK(i/m)∑
i(X(i+1) − X(i))K

′(i/m)

= −T3

v′
0

+ m

n

G′′(0)

G′(0)

v1

v′
0

+
(

m

n

)2(
G′′′(0)

G′(0)

v2

v′
0

− G′′(0)2

G′(0)2

v1v′
1

(v′
0)2

)
+ op

{
m−1/2 + (m/n)2}

= Op

{
m−1/2 + (m/n)2}

.

Moreover,

m−1
m∑

i=1

(X(i+1) − X(i))K{(i + α̂)/m}

= m−1
m∑

i=1

(U(i+1) − U(i))
{
G′(0) + U(i)G

′′(0) + 1
2U2

(i)G
′′′(0)

}
× {K(i/m) + (α̂/m)K ′(i/m)} + op(m−1/2n−1 + m2n−3)

= S−1
n {(v0 + T1) + (α̂/m)(v′

0 + T ′
1)}G′(0) + (m/n2)v1G′′(0)

+ 1
2(m2/n3)v2G′′′(0) + op(m−1/2n−1 + m2n−3).

Hence,

nβ̂m ≡ n

∑
i (X(i+1) − X(i))K{(i + α̂)/m}∑

i K(i/m)

= (1 + T1v−1
0 )G′(0) + (α̂/m)(v′

0/v0)G′(0) + (m/n)(v1/v0)G′′(0)

+ 1
2 (m/n)2(v2/v0)G′′′(0) + op

{
m−1/2 + (m/n)2}

= G′(0) + (T1 + T3)v−1
0 G′(0)

+ (m/n)2[−1
2G′′′(0)(v2/v0) + G′′(0)2G′(0)−1(v1v′

1/v0v′
0)

]
+ op

{
m−1/2 + (m/n)2}

.

The theorem follows from this expansion on noting that vj = κj + o(1), v′
j =

κ ′
j + o(1), nβ = G′(0) + O(n−1), and m1/2(T1 + T3) is asymptotically normally

distributed with zero mean and variance τ 2.

6.2. Proof of Theorem 5.3. By Taylor’s expansion,

A(x) ≡ 1

nh

n∑
i=1

K

(
x − Xi + α̂(x)

h

)

= 1

nh

n∑
i=1

K

(
x − Xi

h

)
+ h

f̄ ′(x)

f̃ (x)
ρ

(
x − a

h

)
1

nh

n∑
i=1

K ′
(

x − Xi

h

)
+ Op

{
h2 + (nh)−1/2}.
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For j = 0, 1, (nh)−1 ∑
i K(j){(x − Xi)/h} equals its mean, which we shall denote

by Aj(x), plus Op{(nh)−1/2}. Furthermore,

f̄ ′(x)/f̃ (x) = f ′(x)/f (x) + Op

{
h + (nh3)−1/2},

and so, defining t = (x − a)/h < 0, we have

A(x) = A0(x) + hf ′(x)f (x)−1ρ(t)A1(x) + Op

{
h2 + (nh)−1/2}

.(6.1)

Put Ij (t) = ∫
u>t ujK(u) du. In this notation,

A0(x) = I0(t)f (x) − hI1(t)f ′(x) + O(h2), A1(x) = −f (x)K(t) + O(h).

Note, too, that ρ(t) = −I1(t)/K(t). Hence,

A0(x) + hf ′(x)f (x)−1ρ(t)A1(x) = I0(t)f (x) + O(h2).(6.2)

Combining (6.1) and (6.2) we deduce that A(x)/I0(t) = f (x) + Op{h2 +
(nh)−1/2}, which establishes (5.5).

6.3. Proof of Theorem 5.4. Define

λ1(x, y) =
{

λ(x, y), if y ≤ g(x),
λ(x, g(x)), otherwise,

and let P1 be a Poisson process with intensity nλ1 in the plane. Without loss
of generality, P is the restriction of P1 to the region below the curve defined
by y = g(x). Let L denote the straight line passing through (0, g(0)), with
gradient g′(0); let g1 be the linear function such that L has equation y = g1(x);
let P2 be the Poisson process obtained from P1 by deleting each point that lies
above L; and let ĝ1 and ǧ1 denote the versions of ĝ and ǧ, respectively, computed
using the data P2 instead of P . Then, the probability that ĝ1(0) = ĝ(0) and
ǧ1(0) = ǧ(0) converges to 1 as n → ∞. Therefore, we may suppose without loss
of generality that the boundary is linear, and of course also that g(0) = 0; these
assumptions will be made throughout the work below.

Next we change scale by the factor n−1/2 on both axes, altering the difference
between neighboring points in P from O(n−1/2) to O(1). In a slight abuse of
notation we shall continue to refer to the Poisson process as P , and to define the
bias correction by integration over (u, v). [In the original notation this would have
been (n−1/2u, n−1/2v), so we are in effect changing the definitions of u and v.
The conditions imposed on these quantities in the theorem change directly to those
at (6.6) below.] On the new scale, P has intensity νn, say, where νn is a bounded,
continuous function on the half-plane H below the line, and satisfies

sup
|x|≤εnn1/2,−εnn1/2≤y<∞, (x,y)∈H

|νn(x, y) − ν| → 0(6.3)

for each sequence εn ↓ 0, where ν = λ(0, g(0)). We shall use “tilde” rather than
“hat” notation for function estimators, however, for example, writing g̃ for the



1476 P. HALL AND B. U. PARK

LFDH estimator of g computed from P in this setting, taking γ̃y to be the version
of γ̂y after rescaling, and putting g̃y(x) = g̃(x) − y and

β̃uv(x) = (v − u)−1
∫ v

u
{g̃y(x) − γ̃y(x)}dy.

After this change of scale, the assertion in the theorem is equivalent to

g̃(0) + κβ̃uv(0) → {g′(0)/ν}1/2Q2(6.4)

in distribution, for the same Q2 as in the theorem.
Let P # be the Poisson process of intensity ν in the plane, obtained by thinning

points from P , independently and with probability (νn − ν)/νn, in regions where
νn − ν > 0, and adding additional points to P , from an independent Poisson
process with intensity ν − νn, in places where ν − νn > 0. Write g̃# and β̃#

uv for
the versions of g̃ and β̃uv , respectively, that are obtained using the data P # rather
than P . Then, noting (6.3), it may be proved from properties of Poisson processes
that the probability that g̃#(0) = g̃(0) converges to 1, and β̃#(0) − β̃(0) → 0 in
probability, as n → ∞. Therefore, we may suppose without loss of generality that
νn ≡ ν; we shall make this assumption below.

If g has slope s > 0, then by stretching the vertical axis by the factor s−1

we obtain the case s = 1, altering ν to sν in the process. Therefore, we may
assume without loss of generality that s = 1, in which case the assertion in the
theorem is equivalent to g̃(0) + κβ̃uv(0) → ν−1/2Q2 in distribution. Given c > 0,
let Ec denote the event that g̃(0) is completely determined by those points of P that
fall within the region Rc = [−c, c]2; and that the configuration of points within Rc

is such that, no matter what the configuration outside Rc , it cannot influence the
value of g̃(0). Let Fc be the the sigma field generated by the points within Rc.

Define Bc to be the (fragment of an) LFDH boundary estimate constructed
solely from points in Rc. For Ec to hold it is sufficient that the following event, E ′

c,
say, hold: the extrapolation to the right of some line segment L1 of Bc that lies to
the right of the axis A represented by x = 0, and has gradient greater than 1, cuts
the line L (with equation y = x) at a point lying within Rc; and the extrapolation
to the left of some line segment L2 of Bc that lies to the left of A, and has gradient
less than 1, cuts L at a point lying within Rc . (The event E ′

c includes the assertion
that L1 and L2 both exist.)

Result (6.5) below holds if Ec there is replaced by E ′
c. Therefore, it holds for Ec,

lim
c→∞ lim inf

n→∞ P (Ec) = 1.(6.5)

Define g̃(c) = g̃ if Ec holds, and g̃(c) = C otherwise, where C is an arbitrary
constant. Now, Ec ∈ Fc, and so g̃(c)(0) is Fc-measurable. Put g̃cy(x) = g̃(c)(x)−y.

Let P †
c = {(X†

i , Y
†
i ) : i = 1, 2, . . .} denote the Poisson process with intensity ν

constructed from P by removing all points of the latter that lie within Rc , and
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substituting points of a completely independent Poisson process with intensity ν.
Define γ̃ †

cy to be the LFDH estimator of g̃cy computed from

P †
cy = {

(X
†
i , Y

†
i ) ∈ P †

c : Y
†
i ≤ g̃cy(X

†
i )

}
,

and put γ̃ †
c = γ̃

†
c0,

β̃†
cuv(x) = (v − u)−1

∫ v

u

{
g̃cy(x) − γ̃ †

cy(x)
}

dy, β̃c = g̃(c) − E(γ̃ †
c |Fc),

where u = u(n), v = v(n). Assume that as n → ∞,

0 ≤ u = o(v), n−1/2v → 0 and v → ∞.(6.6)

It may be proved that if (6.6) holds,

I (Ec)
∣∣β̃†

cuv(0) − β̃c(0)
∣∣ → 0(6.7)

in probability, where I (Ec) denotes the indicator function of the event Ec. An
outline of the derivation is given two paragraphs below.

Let P ∗ be a new Poisson process, totally independent of P on this occasion and
with intensity ν. Let γ̃ ∗ be the LFDH estimator of g̃ — a version of γ̃c0 — that is
obtained if, in the construction of γ̃c0, P †

c is replaced by P ∗. Put β̃ = g̃−E(γ̃ ∗|g̃).
Note that, with probability 1,

β̃c(0) = β̃(0) on the event Ec.(6.8)

Formal derivation of (6.7) may proceed by proving convergence in L2. Less
formally, note that conditional on the sigma field Fc, and on the event Ec holding,
the sequence {g̃cy(0) − γ̃ †

cy(0) : u < y < v} has the same finite-dimensional
distributions as the sequence {g̃cy(0) − γ ∗

cy(0) : u < y < v} (where γ ∗
cy has the

definition of γ †
cy except that P ∗ replaces P †). Call this result (R1). Since the

numbers and distributions of points of a Poisson process that lie in disjoint
sets are independent, then by the law of large numbers, the difference between
I (Ec)β̃

†
cuv(0) and I (Ec)E{β̃†

cuv(0)|Fc} converges in probability to 0, for each
fixed c > 0; call this result (R2). By definition of β̃c, I (Ec)E{β̃†

cuv(0)|Fc} equals
I (Ec)β̃c(0), with probability 1, for each c, u, v; call this result (R3). By (R1),
I (Ec)E{β̃†

cuv(0)|Fc} also equals I (Ec)β̃(0) with probability 1; call this result (R4).
Results (R2) and (R3) imply (6.7), and (R3) and (R4) imply (6.8).

A similar law of large numbers argument, using (6.6), shows that for each fixed
c > 0,

I (Ec)
∣∣β̃†

cuv(0) − β̃uv(0)
∣∣ → 0(6.9)

in probability. Results (6.7)–(6.9) imply that

I (Ec)
∣∣β̃uv(0) − β̃(0)

∣∣ → 0
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in probability. From this property and (6.5) we deduce that the bias-corrected
estimator g̃bc(0) = g̃(0) + κβ̃uv(0) satisfies

g̃bc(0) = g̃(0) + κβ̃(0) + op(1).(6.10)

Recall that the Poisson process with which we are presently working is
homogeneous, with an intensity ν that does not depend on n, and the function g

is linear and of unit slope, passing through the origin. Therefore, g̃(0) + κβ̃(0)

has exactly the same distribution as ν−1/2{ḡ(0) + κβ̄(0)} = ν−1/2Q2, where
ḡ(0) + κβ̄(0) was introduced in Section 3. Hence, (6.4) follows from (6.10). The
claimed property E(Q2) = 0 follows directly from the definition of κ .
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