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SINGLE OBSERVATION UNBIASED PRIORS1

BY XIAO-LI MENG2 AND ALAN M. ZASLAVSKY3

University of Chicago and Harvard University

This paper studies a class of default priors, which we call single obser-
vation unbiased priors (SOUP). A prior for a parameter is a SOUP if the
corresponding posterior mean of the parameter based on a single observation
is an unbiased estimator of the parameter. We prove that, under mild regular-
ity conditions, a default prior for a convolution parameter is “noninformative”
in the sense of yielding a posterior inference invariant under amalgamation
only if it is a SOUP. Therefore, when amalgamation invariance is desirable, as
in our motivating example of performing imputation for census undercount,
SOUP is the only possible coherent “noninformative” prior for Bayesian pre-
dictions that will be utilized under aggregation. The use of SOUP also mu-
tually calibrates Bayesian and frequentist inferences for aggregates of con-
volution parameters across many small areas. We describe approaches that
identify SOUPs in many common models, in particular a constructive duality
method that identifies SOUPs in pairs of distribution families. We introduce
O-completeness, a necessary and sufficient condition for a prior distribution
to be uniquely characterized by the corresponding posterior mean. Unique-
ness of the SOUP is determined by the O-completeness of the dual family.
O-completeness of a natural exponential family is implied by its complete-
ness. Hence, the Diaconis–Ylvisaker characterization of the conjugate prior
for natural exponential families via linear posterior expectation is a direct
consequence of the completeness of such families. For most of the examples
we have examined, the inverse of the variance function is the SOUP for the
mean parameter of the corresponding family, suggesting that Hartigan’s re-
sults on asymptotic unbiasedness can be generalized to some families with
discrete parameters. We also discuss a possible extension of Berger’s result
on the inadmissibility of unbiased estimators, as the nonexistence of SOUP
can be a first step in establishing such inadmissibility.
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1. Motivations.

1.1. Imputing census undercount. A census was conducted in an area, but
some households were omitted due to undercounting. Given the observed count
Y = y of households in a census block, a small geographical area roughly
corresponding to a city block, we need to impute the correct total, N , for that block.
(Block indices are suppressed here.) The imputation procedure will be repeated
independently several times to create multiple imputations [Rubin (1987)]. To do
so, we need a model to link Y to N . We are willing to assume that omissions
of households are independent, and thus the binomial model Y | N ∼ B(N,p) is
reasonable. The probability of inclusion p is either estimated from a distinct survey
[Hogan (1993)], or, as in many applications of multiple imputation, p itself is first
drawn from some posterior distributions; see Zaslavsky [(1989), part II] for the
details of the imputation procedure for census undercount.

As posterior prediction is the only general procedure currently available for
creating proper multiple imputations [Rubin (1987, 1996), Meng (1994)], we need
a prior for N for each block. In many applications of this sort, the analyst imputes
each block independently (conditional on p) and adopts a default prior for all
blocks because the imputer only has vague information about N , relative to the
information in the data, for individual blocks. In fact, when tens of thousands of
blocks are involved, as in census applications (e.g., for congressional districts), and
block boundaries are drawn in a largely arbitrary manner, constructing a plausible
subjective prior for each individual block is impractical. (On the other hand,
dependencies among blocks can be modeled through appropriate models for p,
which represents a census coverage rate that is determined by the characteristics
of housing units and residents of the block, and is not sensitive to the way block
boundaries are drawn.) Furthermore, the operating properties of procedures using
a common default prior and independence of blocks are easier to characterize than
when many poorly constructed “real” priors are used. Thus, in such applications,
a simple general purpose prior with good properties can be more suitable than
a complicated prior constructed using a full hierarchical Bayes approach.

This raises the question of what default priors are suitable for such problems.
As Kass and Wasserman’s (1996) review illustrates, formal rules for selecting
priors are based on theoretical properties, typically invariance of some sort, that
are considered desirable for the problem at hand. Most questions of importance
in a census concern aggregates of block counts over several or many blocks. It is
thus desirable and important to require that the imputed block totals are consistent
as the number of blocks gets large. (An adequate number of multiple imputations
typically would be chosen so that the mean of the imputations for the area of
interest approximates the posterior mean.) The easiest way of guaranteeing this
consistency is to require the imputed total N∗ to be an unbiased estimator for the
true total N (for each block),

E[N∗ |N ] = E
[
E[N∗ | Y ] ∣∣N]=N,(1.1)
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where the leftmost expectation is over both the undercount model and the
imputation model, P (N | Y = y). The unbiasedness of N∗ is also desirable from
a policy perspective. When benefits are distributed on the basis of population,
a foreseeable bias may be more objectionable, and certainly less defensible, on
grounds of fairness than an unknown error with mean zero [e.g., Schirm and
Preston (1992), Section 4].

We call a prior distribution satisfying (1.1) a single observation unbiased prior
(SOUP), emphasizing the small-sample exact criterion which it must satisfy. By
reduction to sufficient statistics, this definition also applies to many situations with
more than one observation. Since a posterior mean under a proper prior cannot
be unbiased for the corresponding parameter [e.g., Lehmann (1983), Chapter 4]
except for some pathological cases [e.g., Bickel and Mallows (1988)], we know
that a SOUP is almost always improper. For our motivating example, we will
show that there is exactly one SOUP, π(N)∝N−1, corresponding to the unbiased
estimator Y/p. The corresponding posterior is the negative binomial NB(Y,p).

1.2. Coherent noninformative priors for convolution parameters. In the ap-
plication described above, we have argued that the block boundaries are nearly
uninformative about population distribution. This suggests that, as long as p is the
same in several blocks, the inference should be the same regardless of whether we
independently impute for each block and then add the imputed populations, or add
the observed populations and then impute for the aggregated area. Otherwise the
prior incorporates information about the meaning of the original block definitions,
which we have argued should be regarded as completely arbitrary. Under regularity
conditions, we can show that SOUP is the only possible coherent prior satisfying
this amalgamation invariance property for any convolution parameter.

Consider Yi
indep∼ B(Ni,p), i = 1,2, with p known, and suppose the estimand

is N+ = N1 + N2. The amalgamation invariance property for a default prior π
means that we can compute Pπ(Ni | Yi,p), i = 1,2, separately, and then obtain
Pπ(N+ | Y1, Y2;p) via convolution, or we can directly obtain Pπ(N+ | Y1+Y2,p).
In other words, the operator of aggregating data commutes with the operator of
aggregating the convolution parameters under the corresponding posterior.

Suppose π is such an amalgamation invariant prior for B(N,p), and (i) that
the corresponding posterior mean m(y) = Eπ (N | Y = y) is finite for all
y ∈N + = {0,1, . . . , } and (ii) that m(y) is an asymptotically consistent estimator
of N , namely, as N→∞, m(y)/N→ 1. Obviously, both (i) and (ii) are desirable
minimum restrictions on π . Now since the posterior mean operator is linear, the
amalgamation invariance property of π implies

m(y1)+m(y2)=m(y1 + y2) ∀y1, y2 ∈N +,(1.2)

which implies m(y) = cy, ∀y ∈ N +. The consistency requirement (ii) then
implies that c = 1/p and thus m(Y ) = Y/p, the unbiased estimator of N . This
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means that the only candidate for π is the SOUP π(N)∝N−1. Since the resulting
posterior is NB(Y,p), we see π(N) is indeed amalgamation invariant.

This result applies to any univariate family {f (y | θ), y ∈�; θ ∈�} such that

Yj | θj indep∼ f (y | θj ), j = 1,2, �⇒ Y1+ Y2 | θ1, θ2 ∼ f (y | θ1 + θ2),(1.3)

and in particular to convolution families. For this generalization, we need the
regularity condition that the only continuous additive functions [i.e., g(ξ1 + ξ2)=
g(ξ1) + g(ξ2)] on either � or � are constant multiples [i.e., g(ξ) = cξ ]. This
assumption is satisfied by common statistical models where � and � are R,R+
or N +. Assuming Eθ (y) is continuous in � (which is always the case when � is
discrete), (1.3) implies Eθ (Y )= c1θ . The amalgamation invariance property of π
then implies (1.2) with N + replaced by �. Assuming m(y) is continuous in y,
(1.2) implies m(y) = c2y, and thus Eθ [m(Y )] = c1c2θ . Consequently, if m(y) is
consistent for θ , then c2 = c−1

1 , and hence π must be a SOUP.
If we do not insist on using the same form for π(N1), π(N2) and π(N+), then it

may be possible to obtain amalgamation invariance using priors other than SOUP.
But these are no longer default priors, as their construction will generally depend
on information about the blocks, which we are supposing is not available. Thus
the only coherent default prior under aggregation is the SOUP. However, like any
formal rule for choosing prior distributions, SOUP should not be used in contexts
for which it is not designed. A bowl of warm chicken soup is good for some souls,
but certainly not for all.

1.3. Background and overview. With this motivation, this paper provides
some general theory and methods for finding SOUP and studies existence and
uniqueness of SOUP for some common models. For more theoretical studies of
unbiased Bayes estimators, see Bickel and Mallows (1988) and Consonni and
Veronese (1993). Our results differ from theirs in that we are concerned with
the prior distribution only as a means to obtain a posterior prediction, while
they are interested in constructing realistic joint distributions with the “unbiased”
property, and therefore are concerned with the propriety of the priors. Another
related literature concerns finding proper (or limiting improper) priors to show
that a given estimator is generalized Bayes in order to prove admissibility, as
reviewed in Rukhin (1995). Although our objectives are different, the theoretical
results we present may play a complementary role for that purpose because the
nonexistence of the SOUP can be a first step in establishing inadmissibility. There
is also a large literature on formal rules for selecting prior distributions that have
desirable properties, as reviewed by Kass and Wasserman (1996). But this work
typically focuses on properties relevant to inferences about individual parameters,
not on properties of aggregated predictions as in our motivating example and in
many other multiple imputation applications.

The rest of the paper develops theory and examples for SOUPs. Section 2
describes some general methods for finding a SOUP, particularly a duality
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method which identifies SOUPs in pairs. Section 3 introduces the notion of
O-completeness and demonstrates its use for assessing the uniqueness of a SOUP
and for other prior determination problems. Sections 4–6 study SOUP, respec-
tively, for some convolution families, exponential families, and scale and location
families. Section 7 investigates SOUPs for transformations of various mean pa-
rameters. Section 8 presents several informative counterexamples and discusses
related open problems, including connections between the nonexistence of SOUP
and inadmissibility.

2. Methods for finding SOUPs.

2.1. Definition and nonexistence. Let P� = {f (y | θ), y ∈ �,θ ∈ �} be
a family of densities with respect to µ, where � = ⋃

θ∈�{y :f (y | θ) > 0},
π(θ) is a prior density of θ on � with respect to ν, and θπ (y)= Eπ [θ | Y = y] is
the corresponding posterior mean of θ . We call π a SOUP for θ (under f ) if

Ef [θπ (Y ) | θ] = θ ∀ θ ∈�,(2.1)

where Ef is with respect to f (y | θ). Mathematically, (2.1) defines an integral
equation for π with the constraints that π(θ) ≥ 0 for θ ∈ � and (implicitly) that
Eπ (θ | y) exists almost surely with respect to f (y | θ) (but the zero-measure set
can depend on θ ). The quadratic loss underlying (2.1) can be extended to more
general loss functions with corresponding Bayes estimators [Hartigan (1965)]; see
Section 7.

For given f and �, there may be no solution to (2.1). Below are several obvious
situations where SOUP does not exist; less obvious examples appear in Section 8.

(I) Unbiased estimators do not exist (e.g., for the reciprocal of the Poisson
mean parameter).

(II) Any unbiased estimator must assume values outside the parameter space.
This occurs, for example, when the parameter space is restricted (e.g., θ ≥ 0) and
f (y | θ) is not degenerate at its boundary (e.g., when θ = 0); see Berger (1990) for
examples and general theory.

(III) No improper prior can yield a proper posterior. An example is the equal
mixture of N(0,1) and N(2θ,1), namely, f (y | θ)= (φ(y)+ φ(y − 2θ))/2 with
�=R, where θ̂ = Y ∈R is unbiased for θ .

Even when a SOUP exists, directly solving (2.1) for π is generally difficult. One
way to simplify is first to choose an unbiased estimator, say θ̂ (Y ), and then to find
a SOUP by solving E(θ | y)= θ̂ (y), that is,∫

� ξf (y | ξ)π(ξ)ν(dξ)∫
� f (y | ξ)π(ξ)ν(dξ)

= θ̂ (y) ∀y ∈�.(2.2)

Such a SOUP, while still for θ , we call more specifically “a SOUP corresponding
to θ̂ (y).” For complete families (e.g., regular exponential families), the unbiased
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estimator is unique (a.e.), so these two phrases carry the same meaning.
An advantage of (2.2) is that, by selecting a desirable unbiased estimator, we can
exclude pathological SOUPs.

Since solving (2.2) for π is the same as showing θ̂ (y) is a generalized Bayes
estimator, there is a close relationship between the nonexistence of SOUP and the
inadmissibility of θ̂ (Y ), for admissible estimators are typically also generalized
Bayes estimator [e.g., Brown (1971, 1979, 1980), Berger and Srinivasan (1978),
Rukhin (1995)]. However, the two concepts are not equivalent. An obvious
counterexample is the sample mean of a multivariate normal with dimension at
least three (i.e., the Stein paradox), which is inadmissible although the constant
prior is a SOUP (Section 6.2). Nevertheless, if θ̂ (Y ) is inadmissible, then we
should suspect that the corresponding SOUP does not exist and vice versa; see
Section 8.

2.2. Three simple methods for finding SOUPs. Formally solving (2.2) can
still be quite difficult in general. Fortunately, there are a number of simpler
methods for finding SOUPs for parameters of many common models, with or
without transformations, as summarized in Table 1 (discussed in Sections 4–6) and
Table 2 (discussed in Section 7). In particular, for a continuous mean parameter of
the natural observation from an exponential family, under regularity conditions,
a SOUP is given by the Fisher information; see Section 5 for details. This fact was
observed by Hartigan (1965), whose general result on asymptotically unbiased
priors is also quite useful in suggesting candidates for SOUP for other continuous
parameters of an exponential family, as explored in Section 7.

In general, we have identified the following three methods. First, in some
cases, we can directly use the form of the likelihood L(θ | y) = f (y | θ), much
as when we seek a conjugate prior, to identify a posterior distribution P (θ | y)
whose mean parameter is θ̂ (y). The corresponding SOUP is then given by π(θ)∝
P (θ | y)/L(θ | y). This is the approach we use for our motivating example (see
Section 4.1).

This seemingly “tautological” method also suggested to us a more “mechanical”
approach. The essence of this second approach is first to identify a density, not
necessarily the correct posterior (as in the applications of Section 6), such that we
can express all quantities in (2.2) as expectations with respect to this density. For
all the cases listed in Table 1 and Table 2, we can transform (2.2) into the identity

Covy[α(ξ, y),βπ(ξ, y)] = 0 ∀y ∈�,(2.3)

where α is a known function, βπ is a function involving the unknown π and
Covy is with respect to a known density py(ξ), which is free of π . An obvious
solution for π in (2.3) is to let βπ(ξ, y) be free of ξ and then to solve it for
nonnegative π . When py(ξ) identified is already the posterior under a SOUP, this
method is just the first method.
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TABLE 1
The SOUP for some common families

Unbiased
Model Parameter Variance Function SOUP estimator

1a Y ∼ B(θ,p) θ ∈ {0,1,2, . . .} θp(1−p) θ−1 Y/p

1b θ ∼NB(Y,p) Y ∈ {0,1,2, . . .} Y(1− p)p−2 Y−1 θp

2a Y ∼ B(n, θ) θ ∈ [0,1] nθ(1− θ) θ−1(1− θ)−1 Y/n

2b θ ∼Beta(Y,n− Y) Y ∈ {0,1, . . . , n} Y(n− Y)[n2(n+ 1)]−1 Y−1(n− Y)−1 nθ

3a Y ∼ Poisson(θ) θ ∈ (0,+∞) θ θ−1 Y

3b θ ∼Gamma(Y,1) Y ∈ {0,1, . . .} Y Y−1 θ

4a Y ∼NB(n, (1+ θ)−1) θ ∈ (0,+∞) nθ(1+ θ) θ−1(1+ θ)−1 (Y − n)/n

4b θ ∼ χ2
2(Y−n)/χ2

2(n+1) Y ∈ {n,n+ 1, . . .} Y(Y − n)[n2(n− 1)]−1 Y−1(Y − n)−1 n(θ + 1)

5 Y ∼ f (Y − θ) θ ∈ (−∞,+∞) V (Y | θ = 0) Constant Y −E(Y | θ = 0)

6 Y ∼ f (Y/θ)/θ , Y ≥ 0 θ ∈ (0,+∞) θ2V (Y | θ = 1) θ−2 Y/E(Y | θ = 1)

A third method for finding SOUPs is via a duality. When we find a SOUP π(θ)

corresponding to θ̂ (y) under f (y | θ) by solving (2.2), we have also found
a SOUP, π∗(y)∝ ∫ f (y | θ)π(θ) dθ , for the parameter θ̂ (y) under the dual family
f ∗(θ | y)= P (θ | y). In other words, if we switch the roles of y and θ and regard
the posterior P (θ | y) under SOUP π(θ) as a sampling family f ∗(θ | y), then
the marginal density of y, π∗(y), is a SOUP corresponding to θ , the unbiased
estimator of θ̂ (y) because Ef ∗(θ | y) = θ̂ (y) and (2.1) can be reexpressed as the
counterpart of (2.2) for the dual family∫

� θ̂(y)f
∗(θ | y)π∗(y)µ(dy)∫

� f
∗(θ | y)π∗(y)µ(dy) = θ ∀ θ ∈�.(2.4)

Because of this duality, our presentation is made in terms of “dual” pairs. The
first eight examples in Table 1 constitute four dual pairs, while the last two are
self-dual, and Table 2 consists of seven pairs. This duality method is very effective
for finding SOUPs for models with continuous variables but discrete parameters,
because such a model is a dual model of a discrete model with continuous
parameters, for which a SOUP may readily be available, possibly by Hartigan’s
method (see Section 5).

2.3. Affine duality. In all examples in Table 1, our unbiased estimator θ̂ (Y )
is linear in Y . Consequently, the duality described in Section 2.2 implies the
following affine duality:

Ef [Y | θ] = c1θ + c2 ∀ θ ∈�
and

Eπ [θ | Y ] = (Y − c2)/c1 ∀Y ∈�,
(2.5)

where c1 and c2 are constants. This affine duality is stronger than the SOUP
property, and can be made false for any SOUP by applying an arbitrary nonlinear
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transformation to Y , although a one-to-one transformation of Y does not affect
the SOUP property itself. Conversely, if π is a SOUP and the transformation
Y → θπ(Y ) ≡ Eπ [θ | Y ] is one-to-one, then an affine dual pair is obtained
by replacing Y with θπ(Y ); this transformation defines a natural scale for the
observation. (In most of our examples, however, we leave Y on the scale of
the familiar distributional form, which is a linear transformation of the unbiased
estimator.) This argument suggests that affine duality applies in most cases.

If Y → θπ (Y ) is not required to be one-to-one, it is possible to construct
examples of SOUP families in which θπ (y1)= θπ (y2) but P (θ | y1) �= P (θ | y2),
so imputations of θ based on two distinct observed values of Y agree in expectation
but not in distribution. For example, define a family of distributions on the integers
by f (y | θ)= 1/2 for θ odd and y = θ or y = θ − 2, f (y | θ)= 1 for θ even and
y = θ , and f (y | θ) = 0 otherwise. The constant prior on the integers is a SOUP.
Then for y any even number, θπ (y)= θπ (y−1)= y, but the posterior distributions
given y or y−1 are supported, respectively, on {y} or {y−1, y+1}. In such cases
it would be inferentially invalid to reduce Y to θπ (Y ).

Affine duality obviously implies Eπ {Ef [Y | θ] | Y } = Y , ∀Y ∈ �, which is
a special case of linearity of the posterior expectation of the mean parameter
investigated by Diaconis and Ylvisaker (1979):

Eπ

{
Ef [Y | θ]

∣∣Y }= aY + b ∀Y ∈�.(2.6)

Diaconis and Ylvisaker (1979) establish that if Y is from a continuous regular
exponential family, then only conjugate prior densities on the natural parameter
satisfy (2.6). They also establish similar results for discrete Y , still from a regular
exponential family, when the (natural) parameter space is an open interval
(−∞, θ0), where θ0 < +∞. Their results, however, are not directly applicable
to our setting because they were characterizing proper priors (and thus a �= 1 as
implied by their results). Our SOUPs for exponential families may be obtained,
however, as limits of these (conjugate) proper priors as the number of prior
observations approaches zero; that is, as n0 → 0 in the notation of Diaconis and
Ylvisaker (1979).

3. The uniqueness of SOUP and O-completeness.

3.1. A necessary and sufficient condition: O-completeness. Once a SOUP
corresponding to an unbiased estimator is found, its uniqueness is of both
theoretical and practical interest; no other considerations are needed to select
a prior if it is unique. Showing the uniqueness of the SOUP characterizes priors by
posterior means, in the spirit of Diaconis and Ylvisaker (1979). Hartigan (1965)
gives asymptotic uniqueness results, which can be used to deduce uniqueness
in some finite-sample cases under additional assumptions (see Section 5.2). It
is not surprising that whether a prior can be uniquely determined by posterior
means depends on the richness of the posterior family, namely, a certain kind of
“completeness.” To be precise, we introduce the following notion.
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DEFINITION 1. A density/probability family P) = {P (Z | λ), λ ∈)}, where
Z can be of any dimension and Eλ(Z) exists for all λ ∈), is called O-complete if
for any nonnegative real-valued function g(Z) satisfying Eλ(g(Z)) > 0, ∀λ ∈),
Covλ(g(Z),Z)= 0 for all λ implies g(Z)≡ constant (a.e. P)); that is, there exists
a constant C and a set A such that Pλ(A) = 1 for all λ ∈) and g(z)= C for all
z ∈A.

In other words, O-completeness means that, except for the trivial cases of
constant functions, there cannot be any fixed-sign function of Z that is uncorrelated
(i.e., orthogonal, hence the term “O-completeness”) with Z and has nonzero mean
for all λ. The following general result, which goes beyond the uniqueness of
SOUP, shows that the O-completeness is a necessary and sufficient condition
for the posterior mean function to uniquely determine the prior density, proper
or improper.

THEOREM 1. Suppose for a sampling family P� = {f (y | θ), y ∈ �,
θ ∈�} with respect to µ, we have a posterior family P π

� = {Pπ(θ | y) ∝
f (y | θ)π(θ), y ∈ �} with respect to ν whose posterior mean Eπ(θ | y) exists
for all y ∈ �, where π(θ) is a proper or improper prior density with support
�π ⊂ �. Then π(θ) is uniquely determined by {Eπ(θ | y), y ∈ �} among all
π̃ ∈ {π̃(θ) :�π̃ ⊆ �π }, up to a proportionality constant (a.e. P π

� ), if and only
if P π

� is O-complete.

PROOF. Suppose for a π̃ ∈ {π̃(θ) :�π̃ ⊆ �π }, Eπ̃ (θ | y) = Eπ(θ | y) for all
y ∈�. Then, by reexpressing Eπ̃ (θ | y) in terms of Eπ via importance sampling,
we obtain

Eπ

(
π̃(θ)

π(θ)
θ
∣∣∣y)= Eπ

(
π̃(θ)

π(θ)

∣∣∣y)Eπ(θ | y) ∀y ∈�.(3.1)

Since Eπ (π̃(θ)/π(θ) | y) > 0 for all y ∈ �, if P π
� is O-complete, then

π̃(θ)∝ π(θ) (a.e. P π
� ).

On the other hand, if P π
� is not O-complete, then there exists a nonnegative

real-valued function η(θ) such that Eπ (η(θ) | y) > 0 and

Eπ(η(θ)θ | y)
Eπ (η(θ) | y) = Eπ (θ | y) ∀y ∈�,(3.2)

but for any constant C, Pπ(η(θ) = C | yC) < 1 for some yC ∈�. It follows then
that the use of either π(θ) or of π̃(θ) ≡ π(θ)η(θ) leads to the same posterior
mean Eπ (θ | y) for all y ∈ �, although π(θ)/π̃(θ) is not almost surely constant
with respect to Pπ(θ | yC) and thus to P π

� . Necessity thus follows. �

The restriction �π̃ ⊆ �π in Theorem 1 is a theoretical necessity, but is
automatic for all the SOUPs found in this paper, where �π =�. The need for this
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condition is illustrated by considering P� = {B(1,pθ), θ = 0,1,2}, where p0, p1,
p2 ∈ (0,1) are three distinct numbers with p1 = 1/2. Suppose π1(θ) concentrates
on {0,1} with prior odds O1 = π1(0)/π1(1). The corresponding posterior for θ
is B(1, α(y)), where α(y) = (1+ 2O1p

y
0 (1− p0)

1−y)−1. Since for any Z | p ∼
B(1,p), Covp(g(Z),Z)= p(1− p)[g(1)− g(0)], B(1, α(y)) is O-complete for
both y = 0 and y = 1 (more than we need). Consequently, by Theorem 1, π1(θ) is
the only prior with {Eπ(θ | y) ≡ α(y), y = 0,1} among all π ’s on � such that
π(2)= 0. However, if we let π2(θ) be a prior that concentrates on {0,2} with prior
odds O2 = π2(0)/π2(2), then one can verify that Eπ2(θ | y)= Eπ1(θ | y) for both
y = 0 and y = 1 as long as

O1 = p0 − p2

4p0(1− p0)(2p2− 1)
and O2 = p2(1− p2)(2p0− 1)

p0(1− p0)(2p2− 1)
,

where we choose p0 >p2 > 1/2 or p0 < p2 < 1/2.

3.2. Connecting O-completeness with completeness. Since both notions are
about richness of a probability family, not surprisingly, there is a close relationship
between O-completeness and the standard notion of completeness of the same
family [e.g., Lehmann (1983)]. Clearly, if P (Z | λ) is such that for any absolutely
continuous function g(Z) [Hudson (1978)],

Eλ

[
g(Z)

(
Z−Eλ(Z)

)]= Eλ[α(Z)g′(Z)](3.3)

holds, where α(z) is a positive (a.e.) real-valued function, then O-completeness
is implied by completeness if we restrict g in Definition 1 to be absolutely
continuous. In fact, when Z is a natural observation from an exponential family,
we have the following general result.

THEOREM 2. Let P) = {f (z | λ) = a(z) exp(c�(λ)z − b(λ)); z ∈ � ⊂ Rk,
λ ∈ ) ⊂ Rd} be a family of densities with respect to µ, where ) is such that
for any differentiable function h(λ) on ), ∂h(λ)

∂λ
= 0, ∀λ ∈ ), implies h(λ) =

constant ∀λ ∈ ). Suppose the score function S(λ | z) = ∂c�(λ)
∂λ

z − ∂b(λ)
∂λ

is
well defined for all λ ∈ ). Then the O-completeness of P) is implied by its
completeness.

PROOF. Under the assumptions of the theorem, for any real-valued func-
tion g(y) such that Covλ(g(Z),Z) exists for all λ ∈),

∂Eλ[g(Z)]
∂λ

= Eλ[g(Z)S(λ |Z)] = ∂c�(λ)
∂λ

Eλ[g(Z)Z] − ∂b(λ)

∂λ
Eλ[g(Z)].(3.4)

Taking g(z) ≡ 1 in (3.4) yields ∂b(λ)
∂λ
= ∂c�(λ)

∂λ
Eλ(Z); combining this with (3.4),

we obtain

∂Eλ[g(Z)]
∂λ

= ∂c�(λ)
∂λ

Covλ
(
g(Z),Z

)
.(3.5)
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Consequently, if Covλ(g(Z),Z) = 0, ∀λ ∈), then Eλ[g(Z) − C] = 0, ∀λ ∈),
which implies g(z)= C (a.s. P)) if P) is complete. �

This result is more generally applicable than using (3.3). By taking the
derivative of Eλ[g(Z)] with respect to λ, we avoid requiring g(z) to be absolutely
continuous; indeed, Z can even be a discrete variable. Combined with Theorem 1,
it also provides a simpler proof of Diaconis and Ylvisaker’s (1979) well-known
characterization of conjugate priors for the natural parameter θ of a continuous
exponential family (their Theorem 3). Since (2.6) holds trivially when π is
conjugate and the natural parameter is the natural observation of the posterior
family of θ , Theorems 1 and 2 imply that conjugate priors are the only possible
priors for (2.6) to hold when the posterior family is complete. In fact, a key
part of Diaconis and Ylvisaker’s (1979) proof largely parallels the proof of the
completeness of a natural exponential family when the parameter space contains
an open interval in Rd (i.e., their condition that µ contains an open interval in Rd ,
as the sample space corresponds to the parameter space for the posterior family).

However, Theorem 2 does not cover the nonexponential families, nor is it
useful for establishing the O-completeness of P) when it is not complete
(see Sections 5.2–5.4). For nonexponential families, sometimes it is possible to
establish useful identities resembling (3.5), for example, Lemmas 1 and 2 of
Section 4.1. When a family is not complete, an effective method for determining
O-completeness is to turn Covλ(g(Z),Z)= 0 into a set of moment conditions for
an unknown density depending on g, and then to invoke well-known results on
determining a density via its moments; see Sections 5.2–5.4.

Although we are unable to prove or disprove the conjecture that complete-
ness implies O-completeness in general, it is easy to construct a family that
is O-complete but not complete. Besides the discrete parameter cases in Sec-
tions 5.2–5.4, the following simple example is particularly intriguing. Consider
P = {PN :N ≥ 1}, where PN is the uniform distribution on {1, . . . ,N}. While P
is complete, Stigler (1972) showed that P \ {Pn} ≡ {PN :N ≥ 1, N �= n} is not
complete for any n ≥ 1. However, if CovN(g(Z),Z) = 0, ∀N ≥ 2, then since
NCovN(g(Z),Z)− (N + 1)CovN+1(g(Z),Z)= 0, we obtain

g(N + 1)= 1

N

N∑
k=1

g(k), N ≥ 2.(3.6)

Since CovN(g(Z),Z) = 0 for N = 2, which implies g(2) = g(1), we have
from (3.6) that g(Z) = g(1) for any positive integer Z. Consequently, P \ {P1}
is O-complete, although it is not complete. It is interesting to note, however,
that P \ {P1,P2} is not O-complete because without the restriction induced by
N = 2, any g(Z) satisfying g(k)= (2g(1)+ g(2))/3, ∀ k > 4 and g(3)= g(1) is
uncorrelated with Z for any N ≥ 3. Thus, like completeness, O-completeness is
a property of a family, not a property of a statistic or of the parametric form, which
was Stigler’s (1972) key point and motivation in presenting his example.
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4. Convolution families. This section provides a theoretical study of SOUPs
for our motivating example. It also reveals some general desirable properties
of SOUP for convolution parameters. The Poisson–Gamma pair is a regular
exponential family as well as a convolution family, and thus its exposition is
deferred to Section 5.3.

4.1. The B(θ,p) and NB(Y,p) pair. Suppose Y | θ ∼ B(θ,p) with known
p ∈ (0,1), where θ = N in Section 1. The form of the likelihood function
L(θ | Y ) = (θ

Y

)
pY (1 − p)θ−Y suggested trying the negative binomial NB(Y,p)

as a candidate posterior density, P (θ | Y ) = (θ−1
Y−1

)
pY (1 − p)θ−Y , θ ≥ Y . Since

the mean of NB(Y,p), Y/p, is indeed an unbiased estimator of θ , we obtain
π(θ)= P (θ | Y )/L(θ | Y )∝ θ−1, θ ∈N + ≡ {0,1,2, . . .} as our SOUP. Note that
the “infinite” mass in the prior at θ = 0 enters the calculation only when Y = 0, in
which case it implies that P (θ = 0 | Y = 0)= 1, meaning that NB(0,p) is defined
to be a point mass at θ = 0. In our census example, this implies that no households
are imputed into areas which showed no population, a desirable property as any
number of such areas could be arbitrarily defined anywhere. This is a direct
consequence of the amalgamation invariance of Section 1.2. More fundamentally,
it reflects our desire to be noninformative: if we have no prior information about
the areas then it is not possible to impute anything other than zero for an area with
no enumerated households.

By affine duality, π∗(Y ) ∝ ∑∞
θ=Y f (Y | θ)π(θ) ∝ Y−1 is a SOUP for the

Y parameter of NB(Y,p). To verify, respectively, the uniqueness of π(θ)

for B(θ,p) and of π∗(Y ) for NB(Y,p), we first note that both PB(p) =
{B(θ,p) : θ ∈ N +} and PNB(p) = {NB(Y,p) :Y ∈ N +} are complete for fixed
p ∈ (0,1). Second, both families are O-complete. (Note that Theorem 2 is
not applicable here because neither of them is an exponential family when
the parameter of interest is the convolution parameter, not p.) For PB(p),
O-completeness follows immediately from its completeness and the following
result.

LEMMA 1. Let En,p denote expectation with respect to B(n,p), where n≥ 1
and 0≤ p ≤ 1. Let Covn,p and Vn,p accordingly denote covariance and variance.
Then for any real-valued function g,

Covn,p
(
g(X),X

)=Vn,p(X)×En−1,p[g(X + 1)− g(X)].(4.1)

Similarly, for PNB(p), the O-completeness is implied by its completeness and
the following identity.

LEMMA 2. Let Er,p denote expectation with respect to NB(r,p), where r ≥ 1
and 0< p ≤ 1. Let Covr,p and Vr,p accordingly denote covariance and variance.
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Then for any real-valued function g,

Covr,p
(
g(X),X

)=Vr,p(X)×Er+1,p[g(X)− g(X− 1)],(4.2)

as long as Er,p[g(X)X] exists.

These identities involve a shift in the convolution parameter, and thus are
different from those previously found [e.g., Hudson (1978), Hwang (1982)]; see
the Remark in Appendix A, where we prove these lemmas. Note for PNB(p),
g(0) is not regulated by O-completeness because X = 0 enters (4.2) only when
r = 0, in which case Vr,p(X) = r(1 − p)/p2 = 0. But this does not affect the
uniqueness of our SOUP because π(0) must be infinite in order for Eπ (θ | Y =
0)= 0, a desirable property as discussed earlier.

4.2. Mutually calibrating Bayesian and frequentist inferences. Consider an in-
ference for θ ∈ �, the convolution parameter of f (Y | θ); in our census exam-
ple, θ = N . Given a prior π , multiple imputation with infinitely many imputa-
tions gives a posterior interval for θ of the form Eπ (θ | Y ) ± zα/2

√
Vπ (θ | Y )

[Rubin (1987)]. In order for this interval to have approximately the nominal
frequency coverage 1 − α, we need Vπ(θ | Y ) to be a reasonable estimator of
Vf [Eπ (θ | Y ) | θ]. Standard large-sample theory guarantees this when θ →∞
for most choices of π . However, this does not guarantee approximate equality for
small θ , and more problematically, not even for sums of many small θb’s each
of which is based on a small sample, an important consideration for our census
application.

However, when π is a SOUP corresponding to θ̂ (Y ) = aY , where a is
a constant, and when the corresponding posterior family P (θ | Y ) is also
a convolution family, as in Section 4.1, Vπ (θ | Y ) is an unbiased estimator of
Vf [Eπ (θ | Y ) | θ]. This is because for any convolution family both the mean
and variance parameters are proportional to the convolution parameter, and thus
Vπ (θ | Y ) ∝ Eπ (θ | Y ) as a function of Y . Consequently, Ef [Vπ (θ | Y ) | θ] ∝ θ

when π is a SOUP. On the other hand, because of the same convolution property
of f (Y | θ), Vf [Eπ (θ | Y ) | θ] =Vf (aY | θ)∝ θ . This implies that

Ef [Vπ (θ | Y ) | θ] =Vf [Eπ (θ | Y ) | θ] ∀ θ ∈�,(4.3)

because the ratio of the two sides approaches unity when θ →∞, under the
assumption that π leads to consistent inference. Similarly, we obtain the “dual”
form of (4.3),

Eπ [Vf (Y | θ) | Y ] =Vπ [Ef (Y | θ) | Y ] ∀Y ∈�.(4.4)

For the pair in Section 4.1, both sides of (4.3) are θ(1 − p)/p, and both sides
of (4.4) are (1− p)Y .

Identity (4.3) implies that multiple imputation inferences for aggregates over
many imputed values will be calibrated, even if each imputed value is small.
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On the other hand, if a non-SOUP prior is used for the imputation and yields
systematically smaller posterior variances, its coverage must be dependent on
the correctness of the prior information, including (when small areas are being
aggregated) the correctness of any assumptions of conditional independence; these
may be hard to verify.

While (4.3) addresses the frequentist analyst’s concerns about the calibration
of Bayesian inferences, (4.4) can be related to the Bayesian’s evaluation of
the frequentist’s typical procedures. The left-hand side of this equation is the
Bayesian’s posterior expectation of the sampling variance of Y , which the
frequentist typically estimates by substituting his unbiased estimate of θ into the
relationship of variance to mean. The right-hand side of (4.4) is the posterior
variance of θ since the inner expectation is the expectation of the unbiased
estimator (assuming without loss of generality that a = 1). The equation therefore
says that the Bayesian who uses the SOUP can regard the frequentist’s inference
for the variance as an acceptable plug-in estimate of his posterior variance. In other
words, under SOUP, the Bayesian and frequentist inferences for the convolution
parameter are mutually calibrated when aggregating over small areas or samples.

While (4.3) also holds for any location family with flat SOUP (see Section 6.2),
it does not necessarily hold for other nonconvolution families even when a SOUP
is used. In fact, for scale families (Section 6.1) the posterior variance, Vπ(θ | Y ),
need not even be finite.

5. Exponential families. Several methods are available for exponential fam-
ilies, including the inverse variance rule described in Section 5.1, the duality
method, and the method based on (2.3). We save the last method for Section 6,
where the first two methods are not directly applicable. [Note also that Hartigan’s
(1998) maximum likelihood prior is a SOUP when the MLE is an unbiased esti-
mator.] The normal distribution is omitted here as it is covered by the results in
Section 6.

5.1. The inverse variance rule for continuous exponential families. For the
mean parameter of the natural observation of a one-dimensional exponential
family {f (y | φ) = a(y) exp(φy − b(φ)) :φ ∈ 6}, where 6 is an interval (open,
closed, or half-open) on the real line, the construction of SOUP is particularly
simple if φ is continuous and f (y | φ)→ 0 for any fixed y when φ approaches
a boundary point of 6. The mean parameter is θ = Ef (Y | φ) = b′(φ), and it is
well known [e.g., Berger (1985)] that∫

6 b
′(φ)f (y | φ)dφ∫
6 f (y | φ)dφ

=−
∫
6 e

φy de−b(φ)∫
6 e

φy−b(φ) dφ
= y.(5.1)

Consequently, π(φ) ∝ 1 is a SOUP for φ. The corresponding prior for θ is then
given by

π(θ)∝ 1

b′′(φ(θ)) = If (θ)= 1

Vf (Y | φ(θ)) ,(5.2)
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where φ = φ(θ) is the inverse mapping of θ = b′(φ), which is one-to-one because
b′′(φ)= Vf (Y | φ) > 0, and If (θ) is the Fisher information for θ = b′(φ) under f .

This elegant result was first obtained by Hartigan (1965). It is also implied by
Theorem 2 of Diaconis and Ylvisaker (1979), although their theorem is applicable
only in the limit to any case in Table 1. It obviously applies if θ is a linear
transformation of the mean parameter of Y , and it generalizes to multidimensional
exponential families [Hartigan (1965), Section 8]. In some cases, to apply this rule
we must appropriately define the corresponding posterior at the boundary points;
typically these involve degenerate distributions (see Section 5.2). Furthermore, the
condition that f (y | φ)→ 0 for any fixed y when φ approaches any boundary
point of 6 is crucial for deriving (5.1); see Section 8.1 for a counterexample.

Each of two exponential family pairs in Table 1, the Binomial–Beta pair and
the Negative-Binomial–F pair, describes not a single family of distributions but
a class of families indexed by a convolution parameter n. Because the variance
of the convolution is n times the variance of the generating variable, by (5.2) the
same prior must be a SOUP for every member of the convolution class. Creation of
a class of families by convolution should not be confused, however, with inference
in a single family where θ itself is a convolution parameter, as in Section 4.

5.2. The B(n, θ) and Beta(Y,n − Y ) pair. Consider the family B(n, θ),
where n is known. By (5.2) the SOUP is given by π(θ) ∝ θ−1(1 − θ)−1.
The posterior of θ is then Beta(Y,n − Y ), which is improper when Y = 0 or
Y = n. In these two cases, the infinite mass at θ = 0 (when Y = 0) or at θ = 1
(when Y = n) can be taken to define proper (degenerate) posterior distributions:
P (θ = 0 | Y = 0) = P (θ = 1 | Y = n) = 1. This SOUP can also be viewed
as the limiting case of Theorem 5 of Diaconis and Ylvisaker (1979) with their
b→ 0, although their proof does not apply when b = 0. The dual SOUP under
PBeta(n) = {Beta(Y,n − Y ) :Y = 0,1, . . . , n} is π∗(Y ) ∝ Y−1(n − Y )−1. The
calculation of P (Y | θ), the dual (posterior) binomial distribution, goes through
if the identity

n

Y (n− Y )

9(n)

9(Y )9(n− Y )
=
(
n

Y

)

is extended formally to Y = 0, n, so P (Y = 0 | θ = 0)= P (Y = n | θ = 1)= 1.
For any fixed n ≥ 1, PB(n) = {B(n, θ) : θ ∈ [0,1]} is complete, and thus the

unbiased estimator θ̂ (Y ) = Y/n is unique. Furthermore, PB(n) is O-complete
because of its completeness and Lemma 1 (or by using Theorem 2 with the
modification at θ = 0 and θ = 1). Thus, by Theorem 1, π∗(Y )∝ Y−1(n− Y )−1 is
the only SOUP corresponding to Ŷ (θ)= nθ (a.e. PBeta(n)).

However, for fixed n≥ 1, PBeta(n) is neither complete nor O-complete because
its parameter space Y ∈ {0,1, . . . , n} is not rich enough, the same problem
encountered in Diaconis and Ylvisaker [(1979), Section 4]. Thus, Ŷ (θ) = nθ is
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not the only unbiased estimator of Y under PBeta(n), nor is π(θ)∝ θ−1(1− θ)−1

the only SOUP for θ under PB(n). However, if we require the SOUP for θ to be
free of n, then π(θ)∝ θ−1(1− θ)−1 is the only SOUP almost surely with respect
to P ∗

Beta = {Beta(Y,n − Y ) :Y = 0,1, . . . , n; n = 1,2, . . .} = {Beta(α,β) :α ∈
N +, β ∈ N +, α + β ≥ 1}, because P ∗

Beta is O-complete. Note here we define
Beta(0, β)= 1{θ=0} and Beta(α,0)= 1{θ=1}, where α,β ≥ 1.

To verify the O-completeness of P ∗
Beta, suppose Covα,β(g(Z), z) = 0 for

a g(Z) ≥ 0 satisfying Eα,β[g(Z)] > 0, for all α and β allowed by P ∗
Beta. Taking

α = k ≥ 1 and β = 1 then yields

0<
∫ 1

0
Zkg(Z)dZ = k

k + 1

∫ 1

0
Zk−1g(Z)dZ <∞, k = 1,2, . . . .(5.3)

Consequently, 0<
∫ 1

0 g(Z)dZ <∞ and thus without loss of generality we assume∫ 1
0 g(Z)dZ = 1. The recursion (5.3) then implies Eg(Z

k) = (k + 1)−1, ∀ k ≥ 1.
Therefore, g(Z) ≡ 1 because {µk = (k + 1)−1, k = 1,2, . . .} is also the set of
moments for U(0,1) and the set uniquely (a.e. Lebesgue) determines the density

since
∑∞

k=0
µkt

k

k! = et−1
t

<∞ for some (actually all) t > 0 [e.g., Stuart and Ord
(1987), Section 4.21]. We remark that the O-completeness of P ∗

Beta can also can be
deduced from Hartigan’s (1965) asymptotic uniqueness result, because his result
asserts that as n→∞, SOUP is unique, and thus under the additional requirement
that SOUP is free of n, π(θ)∝ θ−1(1− θ)−1 is the only possibility (a.e. P ∗

Beta).
The Binomial–Beta pair generalizes readily to a Multinomial–Dirichlet pair:

Y | θ ∼ Multinomial(n, θ) has SOUP π(θ) ∝ ∏
θ−1
i , and the dual distribution

θ |Y∼Dirichlet(Y) has SOUP π∗(Y)∝∏Y−1
i .

5.3. The Poisson(θ) and Gamma(Y,1) pair. Having considered the binomial
family, it is natural to consider its limit as n→ ∞, the Poisson distribution,
Y | θ ∼ Poisson(θ). By (5.2), the SOUP is given by π(θ) ∝ θ−1, a continuous
counterpart of the discrete SOUP for B(θ,p) of Section 4.1. The corresponding
posterior distribution P (θ | Y ) is Gamma(Y,1). The posterior of θ is degenerate
when Y = 0, with an “infinite” mass at θ = 0; we define P (θ = 0 | Y = 0)= 1, on
the same argument as in the case of B(θ,p).

The dual SOUP under the Gamma family PGamma = {Gamma(Y,1) :Y ∈N +}
is π∗(Y ) ∝ Y−1. As noted in Section 4, the Poisson–Gamma pair may also be
regarded as a convolution pair. Consequently, the intriguing variance relationships
observed in Section 4.2 hold for this pair: both sides of (4.3) are θ and both
sides of (4.4) are Y . These are also trivially true because for both Poisson(θ)
and Gamma(Y,1), the mean parameter is the same as the variance parameter. The
Gamma family with unknown scale parameter, Gamma(c, θ), where c is known,
is covered by the results in Section 6.1.

Since PPoisson = {Poisson(θ), θ ∈ [0,∞)} is complete and O-complete, there
is only one unbiased estimator θ̂ (Y ) = Y for θ under PPoisson and one SOUP
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corresponding to Ŷ (θ) = θ under PGamma. The O-completeness of PPoisson
follows its completeness and either Theorem 2 (with modification at θ = 0) or
more directly the identity Eλ[g(Z)(Z − λ)] = λEλ[g(Z + 1)− g(Z)], a relative
of (5.1) of Hudson (1978).

However, PGamma is not complete due to the discrete nature of Y , so there
are unbiased estimators of Y other then Ŷ (θ) = θ . Nevertheless, PGamma is
O-complete, and thus SOUP π(θ) ∝ θ−1 is unique for θ (a.e. PGamma). The
O-completeness is verified by taking Z ∼ Gamma(k,1) in Covk(g(Z),Z) = 0
for k = 1,2, . . . , which leads to Eh(Z

k)= k!, where h(Z) ∝ g(Z)e−Z1(0,∞)(Z).
Consequently g(Z) must be constant because the exponential distribution p(Z)=
e−Z1(0,∞)(Z) is the only (a.e. Lebesgue) possible distribution having moments
µk = k!, k = 1,2, . . . . This uniqueness can also be viewed as a natural extension,
to the improper prior cases, of Johnson’s (1957) characterization of Gamma
distributions as the only priors to yield linear posterior expectations for the Poisson
distribution.

5.4. The NB(n, (θ+1)−1) and F pair. Consider NB(n,p) with p = (θ+1)−1

so E(Y | θ)= n(1+θ) is linear in θ . Since V(Y | θ)= nθ(1+θ), by (5.2), a SOUP
corresponding to θ̂ (Y )= (Y − n)/n is π(θ)∝ θ−1(θ + 1)−1, with infinite mass at
θ = 0. The dual family is the (scaled) F family,

PF (n)=
{
Y − n

n+ 1
F2(Y−n),2(n+1)≡

χ2
2(Y−n)
χ2

2(n+1)

:Y = n,n+ 1, . . .

}
,

where χ2
0 ≡ 0. The dual SOUP is π∗(Y )∝ Y−1(Y − n)−1, which is improper.

Since PNB(n)= {NB(n, (θ + 1)−1) : θ ∈ [0,∞)} is complete and O-complete,
the unbiased estimator for θ is unique under PNB(n) and the dual SOUP π∗(Y )∝
Y−1(Y − n)−1 is unique under PF (n). The O-completeness of PNB(n) follows
from its completeness and Lemma 2 (or Theorem 2 with modification at θ = 0).
However, PF (n) is not complete because of the discrete nature of Y , and thus
there are unbiased estimators of Y other than Ŷ (θ) = n(1 + θ). But PF (n) is
O-complete, because CovY (g(θ), θ) = 0 implies, after letting ζ = θ/(1+ θ) and
m = Y − n, Eh[ζm] = m

n
Eh[ζm−1 − ζm], m = 1,2, . . . , where the expectation is

taken over h(ζ )∝ (1− ζ )n−1g(ζ/(1− ζ )). It follows that

µm ≡ Eh[ζm] = m

m+ n
Eh[ζm−1] = · · · = m!n!

(m+ n)! , m≥ 1.

Since Beta(1, n) = n(1 − ζ )n−1 has the same set of moments, and this set
uniquely determines the density, we conclude g(θ) = constant. Consequently,
π(θ)∝ θ−1(θ + 1)−1 is the only SOUP for θ under PNB(n).

It is informative to note that if we consider Y | p ∼ NB(n,p), then the SOUP
corresponding to the unbiased estimator p̂(Y ) = (n − 1)/(Y − 1) is π(p) ∝
p−2(1 − p)−1 with the dual family {Beta(n − 1, Y − n), Y ≥ n}. This example
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demonstrates that when E(Y | p) is not linear in p, (5.2) may not yield a SOUP: in
this case E(Y | p)= n/p and V(Y | p)= n(1− p)/p2. We also note that θ | Y ∼
χ2

2(Y−n)/χ2
2(n+1) is the same as p = (1+ θ)−1 | Y ∼ Beta(n + 1, Y − n), which

is different from the dual/posterior distribution Beta(n− 1, Y − n) corresponding
to the SOUP for p. This is not surprising since unbiasedness and thus the SOUP
property are not invariant to reparametrization; more on this in Section 7.

6. Location and scale families.

6.1. Scale families. Suppose that f is a continuous scale family generated
by f0(·), f (y | θ) = f0(y/θ)/θ , where θ, y ∈ (0,∞). Then θ̂ (y) = y/µ0 is
an unbiased estimator of θ , where µ0 = ∫

yf0(y) dy is assumed to exist.
Applying (2.2), finding a SOUP in this case amounts to solving∫∞

0 f0(y/ζ )π(ζ ) dζ∫∞
0 f0(y/ζ )π(ζ )/ζ dζ

= y∫∞
0 ζf0(ζ ) dζ

∀y ∈ (0,∞)(6.1)

for π . With a change of variable ξ = y/ζ (y fixed), we can reexpress (6.1) in the
form of (2.3),

E
[
ξ−1π(yξ−1)

]= E[ξ ]E[ξ−2π(yξ−1)
] ∀y ∈ (0,∞),(6.2)

where ξ ∼ f0. Thus a solution is obtained by letting βπ(ξ, y) ≡ ξ−2π(yξ−1)

be free of ξ . This yields a SOUP, π(θ) ∝ θ−2. Affine duality here implies no
new results, because f ∗(θ | y)= f ∗0 (θ/y)/y, where f ∗0 (x)= f0(x

−1)x−2, is just
another scale family.

It is noteworthy that π is not the usual scale-invariant prior π(θ) ∝ θ−1

[e.g., Berger (1985), Section 3.3.2], but it is a relatively scale invariant prior (see
below). Also, the condition that θ varies over (0,∞) is important; if we restrict,
say, θ ≥ θ0 > 0, then there is no SOUP, a case of (II) in Section 2.1.

Discrete scale families may be defined for which the sample and parameter
spaces are “exponential lattices,” � = � = {cj : j = 0,±1,±2, . . .}. The SOUP
for this case is π(θ)∝ θ−1; the difference from the continuous case arises because
the Jacobian is 1 for the change of variables from (6.1) to (6.2).

The uniqueness of this SOUP can be determined using O-completeness
for specific forms of f0(·) [e.g., for the family of exponential distributions,
f0(z)= e−z, z ≥ 0]. To assert uniqueness without knowing the form of f0(t), we
must restrict the family of priors. As discussed in Berger [(1985), Section 3.3],
when a noninformative prior is sought for a scale parameter, the first choice would
be a relatively scale invariant prior [Hartigan (1964)], essentially one which looks
the same after rescaling of the variable, satisfying

π

(
θ1

θ2

)
= π(1)

π(θ1)

π(θ2)
for any positive θ1 and θ2.(6.3)
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Assuming π(θ) is continuous at one point at least, (6.3) implies that π must
be a power function, that is, π(θ) ∝ θc for some c ∈ R. Within such a family,
(6.2) becomes

E[ξ−(c+1)] = E[ξ ]E[ξ−(c+2)] where ξ ∼ f0.(6.4)

Since g1(ξ) = ξ and g2(ξ) = ξ−(c+2) are either concordant (i.e., both are
increasing functions when c < −2) or discordant [i.e., g2(ξ) is decreasing when
c >−2], by the second Chebyshev inequality, (6.4) can be true only when g2(ξ)

is a constant function (a.e. f0); that is, c =−2. Hence, π(θ) ∝ θ−2 is the unique
SOUP among all continuous relatively scale invariant priors.

6.2. Location families. Suppose that f is a location family, f (y | θ) =
f0(y − θ), where both y and θ vary on the whole real line. An unbiased estimator
for θ is θ̂ (y)= y−µ0, where µ0 = ∫∞−∞ yf0(y) dy is assumed to exist. In analogy
to (6.2), finding a corresponding SOUP amounts to solving

E[ξπ(y − ξ)] = E[ξ ]E[π(y − ξ)] ∀y ∈ (−∞,∞),(6.5)

where ξ ∼ f0. The standard location invariant prior, π(θ)∝ constant, is an obvious
solution to (6.5), by taking βπ in (2.3) to be a constant. This result also applies for
vector-valued and lattice-valued location families. Again, θ must be unbounded,
and affine duality does not generate a new family.

Analogously to Section 6.1, we consider relatively location invariant priors,
which satisfy

π(θ1− θ2)= π(0)
π(θ1)

π(θ2)
for any θ1 and θ2.(6.6)

Under the same assumption of continuity at one point at least, (6.6) implies
π(θ) ∝ ecθ for some c ∈ R. Within this family, by applying the same second
Chebyshev inequality as in Section 6.1, we can conclude c = 0 is the only solution.
Again, if f0(·) is of some specific form [e.g., N(θ,1)], then it may be possible to
establish uniqueness without the restriction to relatively location invariant priors.

7. Nonlinear transformations of mean parameters.

7.1. Transformed mean parameters and their unbiased estimators. Since
SOUP is not invariant to a nonlinear reparametrization, finding a SOUP for
a nonlinear transformation is more complicated than the usual multiplication by
the corresponding Jacobian factor. As theoretical illustrations, here we consider
various nonlinear transformations θ = ϑ(γ ) of the original mean parameter (or
its conventional linear transformation) γ = n,p,λ, or (1− p)/p as introduced in
Sections 4 and 5. These transformed parameters are themselves mean parameters
of nonlinear transformations Y = y(Z) of the original observation Z, and by
duality Y = y(Z) is the mean parameter of the corresponding dual family. Note
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that determining the SOUP for a transformed parameter can also be regarded as
determining an unbiased prior for the original parameter with the loss function
defined by square error of the transformed parameter.

A number of examples are summarized in Table 2. The numbering of the
distributions corresponds to that in Table 1, but for distributions for which more
than one transformation is given, the alternatives are indicated by Roman numerals.
The definitions of θ for the Negative Binomial cases are given, for clarity, in terms
of p as well as γ . We omit the binomial case with θ = (1 − p)K because it is
an obvious extension of the case with θ = pK . We also omit the lognormal case,
Z | θ ∼N(γ,1) with θ = eγ , Y = eZ−1/2 and π(θ)∝ 1/θ2, which is a scale family
as in Section 6.1. We note that for cases 1, 2, 3(i), 4(i) and 4(iii), the posterior
distribution θ |Z degenerates to a point mass at 0 for all Z <K so there is no loss
of information by the many-to-one transformation Z→ y(Z)= 0 for Z <K .

While there is a large literature on finding unbiased estimators for functions
of parameters [see Voinov and Nikulin (1993)], we find the following result
particularly convenient in constructing Table 2. The unbiased estimators we
consider involve shifts in the convolution parameter and/or the observation.

LEMMA 3. Suppose that fn(z | φ) = an(z) exp(zφ − nb(φ)) is a density
with respect to µ, either Lebesgue or counting measure, where n ∈ N (φ) =
{n :fn(z | φ) is a proper density}. Let K1 and K2 be two constants such that
K2 + n ∈N (φ) and Zn+K2 +K1 ⊆ Zn, where Zm denotes the support of am(z).
Then

Efn

[
an+K2(Z −K1)

an(Z)

∣∣∣φ]= eK1φ+K2b(φ).(7.1)

PROOF.

Efn

[
an+K2(Z −K1)

an(Z)

∣∣∣φ]

=
∫
Zn

an+K2(z−K1)

an(z)
an(z)e

zφ−nb(φ)µ(dz)

= eK1φ+K2b(φ)
∫
Zn

an+K2(z−K1)e
(z−K1)φ−(n+K2)b(φ)µ(dz)

= eK1φ+K2b(φ)
∫
Zn−K1

fn+K2(z;φ)µ(dz)= eK1φ+K2b(φ). �

Consequently, when N (φ) is free of φ, which is true for all the exponential
cases in Table 2, y(Z)= an+K2(z−K1)/an(z) is an unbiased estimator of ϑ(φ)=
exp(K1φ + K2b(φ)) for K1 and K2 satisfying the conditions of Lemma 3. The
values of K1,K2 corresponding to each case are shown in Table 2. Note that
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to apply this result to the Poisson case we need first to introduce a convolution
family of the sum of n Poisson(λ) variables, for which the density is exp(z logλ−
nλ)nz/z!; hence an(z)= nz/z!.

7.2. The use of Hartigan’s asymptotic construction. All the SOUPs in Table 2
for transformed exponential families can be obtained by applying Hartigan’s
(1965) asymptotic construction. Under a host of regularity conditions, Harti-
gan (1965) has shown that with i.i.d. samples X = {X1, . . . ,Xn} from f (x | θ)
and using loss function L(δ, θ), the Bayes decision δπ (X) under prior π is
asymptotically unbiased, namely,

E
[
L
(
δπ (X), θ̃

) ∣∣ θ]≥ E
[
L
(
δπ (X), θ

) ∣∣ θ] ∀ θ̃ , θ ∈�,
if and only if

π(θ)∝ If (θ)

[
∂2L(δ, θ)

∂δ2

]−1/2

δ=θ
,(7.2)

where If (θ) is the Fisher information of f (x | θ). For squared error loss L(δ, θ)=
(δ − θ)2, Hartigan’s result (7.2) implies that the asymptotically unbiased prior is

π(θ)∝ If (θ).(7.3)

For the exponential families discussed in Section 5, this gives the exact
SOUP (5.2), as shown there.

In general, when If (θ) exists, (7.3) is a good candidate for SOUP even
when the exact argument of Section 5 is not applicable. In particular, since for
a one-to-one differentiable transformation θ = ϑ(γ ), If (γ )= If (ϑ(γ ))(ϑ

′(γ ))2,
(7.3) suggests that when we already have a SOUP for γ , denoted by πS

γ (γ ), and
want to seek a SOUP for θ = ϑ(γ ), a likely candidate is

πθ(θ)∝ πS
γ

(
ϑ−1(θ)

)
J 2(θ),(7.4)

where J (θ)= dγ
dθ

is the Jacobian from θ→ γ = ϑ−1(θ). In other words, the usual
multiplicative factor |J | is replaced by J 2. Equivalently, in terms of γ , a good
candidate of SOUP for the new parameter θ = ϑ(γ ) is

πθ(γ )∝ πS
γ (γ )|J (ϑ(γ ))|.(7.5)

To avoid confusion, in (7.4) and (7.5) we used the superscript S to denote a SOUP,
the subscript of π to index the SOUP parameter, that is, the parameter whose
posterior mean is an unbiased estimator of itself, and the function argument
to index the density parameter, that is, the parameter for which we choose to
compute the density. For the exponential family given in Lemma 3, it is sometimes
convenient to use the canonical parameter φ. Because γ = nb′(φ), πS

γ (γ ) ∝
1/b′′(φ(γ )), the prior for φ corresponding to (7.5) is

πθ(φ)∝ πθ
(
nb′(φ)

)|b′′(φ)| ∝ ∣∣J (ϑ(nb′(φ)))∣∣∝ b′′(φ)
∣∣∣∣dθdφ

∣∣∣∣
−1

.(7.6)
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For θ = ϑ(φ)= exp(K1φ +K2b(φ)), (7.6) becomes

πθ(φ)∝ b′′(φ)
K1+K2b

′(φ)
e−K1φ−K2b(φ).(7.7)

For all the transformed exponential families in Table 2, we verified that under
this πθ(φ),

Eπ

[
eK1φ+K2b(φ)

∣∣Z]= an+K2(Z −K1)

an(Z)
,(7.8)

and thus πθ(φ) = πS
θ (φ). This is somewhat remarkable, for θ is not the mean

parameter for the natural observation and thus Hartigan’s exact argument, given in
Section 5.1, does not apply to these cases.

On the other hand, this asymptotic approach does not always produce a SOUP.
In the examples we have checked, (7.7) yields a SOUP whenever

b′′(φ)
K1+K2b′(φ)

= exp
(
C1φ +C2b(φ)

)
,(7.9)

where C1 and C2 are constants, and not otherwise. For example, we have verified
by numerical integration that (7.7) is not a SOUP for Z | λ ∼ Poisson(λ) with
θ = λK1eK2λ where K1 > 0, K2 >−1, K2 �= 0, which violates (7.9) with b(φ)=
eφ = λ. The unbiased estimator from Lemma 3 for θ = λK1eK2λ is Y = y(Z) =
(a+ 1)Z−K [z!/(z−K)!]1{z≥K}, but we are unable to find a SOUP corresponding
to y(Z). We suspect that there may be a limited set of families and values ofK1,K2
for which (7.7) delivers πS

θ (φ), that is, those corresponding to solutions of the
differential equation (7.9).

8. Counterexamples and open problems. We conclude by presenting sev-
eral less obvious examples where there is no SOUP, and discuss related open prob-
lems. We also report our unsuccessful attempts to find a unified principle underly-
ing the inverse variance rule given in Section 5.1, hoping to stimulate an ultimately
successful resolution, which would be valuable since the inverse variance rule is
almost trivial to apply in practice.

8.1. The inverse Gaussian family, inadmissibility and Berger’s lemma. The
density of the inverse Gaussian distribution IG(µ,λ), where µ> 0 and λ > 0, is

f (y | µ,λ)=
(

λ

2πy3

)1/2

exp
{
−λ(y −µ)2

2µ2y

}
, y > 0.(8.1)

This is a continuous exponential family with natural parameter φ = −λ/(2µ2),
mean parameter µ and variance parameter µ3/λ. Here we are interested in the
mean parameter θ = µ, for which Y is the unique (a.e. Lebesgue) unbiased
estimator. The λ parameter is assumed known, but it is not set to unity to allow
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reduction via sufficiency; namely, if {Y1, . . . , Yn} are i.i.d. samples from (8.1), then
Ȳ n | µ,λ∼ IG(µ,nλ).

An interesting feature of this family is that while limθ→0 f (y | θ) = 0 for any
y > 0, when θ→∞, f (y | θ) approaches the density of λχ−2

1 , which is positive
for any positive y and whose mean is infinite. Consequently, the inverse variance
rule (5.2), which gives π(θ) ∝ θ−3, does not lead to a SOUP for θ . Instead, it is
easy to verify that under this prior, the posterior mean is always less than Ȳn:

Eπ (θ | Ȳn, λ)= 6(nλ/Ȳn)

6(nλ/Ȳn)+ (Ȳn/nλ
√

2π)e−nλ/(2Ȳn)
Ȳn,(8.2)

where 6(x) is the c.d.f. of N(0,1).
In fact, there is no SOUP, no matter how pathological, for θ for this family.

A proof is given in Appendix B. This suggests a possible extension of Berger’s
(1990) lemma on the behavior of unbiased estimators when the underlying
distribution family {f (y | θ), θ ∈ �} is not degenerate at the boundary of �.
Berger’s lemma states that in such cases any unbiased estimator of θ must assume
values outside �. However, Berger’s lemma does not apply to cases where the
nondegenerate boundary value of θ is ±∞, as in the current case where the
unbiased estimator Ȳn, which is also the maximum likelihood estimator and
uniformly minimum variance unbiased estimator, is obviously always within the
parameter space.

We conjecture a natural extension of Berger’s lemma, that when {f (y | θ),
θ ∈ �} is not degenerate at the boundary of �, whether that boundary is
finite or not, there is no SOUP for θ . Of course, this weaker version still
implies the inadmissibility of any unbiased estimator [under the regularity
conditions of Brown (1980)], which was Berger’s main emphasis. For IG(µ,λ),
Ȳn is inadmissible because it is uniformly dominated by Y

(b)
n = Ȳn1{Ȳn≤b} +

wn(b)Ȳn1{Yn>b} for any b > 0 with an appropriate choice of wn(b) ∈ (0.5,1).
Other constructions are given in Hsieh, Korwar and Rukhin (1990).

8.2. Nonexistence of SOUP for odd functions of location parameters. We now
show that there are infinitely many examples where SOUP does not exist even
if f (y | θ) degenerates on any boundary point of the function of θ being estimated
and none of (I)–(III) of Section 2.1 occurs. This further substantiates Berger’s
(1990) conclusion: “. . . inadmissibility of unbiased estimators is likely to be the
rule, rather than exception.” While more general results can be obtained with more
complicated mathematical details, we present the following simple yet informative
result concerning odd functions of a location parameter.

THEOREM 3. Let {f (z − γ ), z ∈ R, γ ∈ R} be a unimodal symmetric
location family on the real line, where f (z) is strictly decreasing for z > 0. Let
θ = θ(γ ) be an odd function of γ with θ(γ ) > 0 when γ > 0, and Y (Z) be
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an unbiased estimator of θ(γ ). If Y (z) is an odd function of z and has (at least)
a positive root z0 > 0, then there is no SOUP corresponding to Y (Z).

PROOF. We assume that π is a SOUP and demonstrate a contradiction. By
the definition of SOUP,

∫∞
−∞ π(γ )θ(γ )f (z− γ ) dγ = 0 for z=−z0, z0, because

Y (−z0)=−Y (z0)= 0. It follows that∫ ∞
0

π(γ )θ(γ )f (γ ± z0) dγ =
∫ ∞

0
π(−γ )θ(γ )f (γ ∓ z0) dγ.(8.3)

Combining the two versions of (8.3) yields
∫∞

0 θ(γ )[π(γ )+π(−γ )][f (γ − z0)−
f (γ + z0)]dγ = 0. This implies π(γ )= 0 (a.e. Lebesgue) because θ(γ ) > 0 and
f (γ − z0)− f (γ + z0) > 0 for all γ > 0 under our assumptions. But π(γ ) = 0
(a.e. Lebesgue) is not a SOUP. �

If there is any unbiased estimator there must be an odd one, Y ∗(Z)= [Y (Z)−
Y (−Z)]/2, since E[Y ∗(Z) | γ ] = [θ(γ ) − θ(−γ )]/2 = θ(γ ). An odd estimator
is natural given the symmetry of this problem. In particular a unique unbiased
estimator must be odd. The assumption that Y (z) has at least one positive root
is also satisfied in many examples, as demonstrated by the following lemma, the
proof of which is given in Appendix C.

LEMMA 4. Let {f (z− γ ), z ∈R, γ ∈ R} be any location family, and assume
E(|Z|K | γ = 0) is finite, where K is a positive integer. Then there is a unique
unbiased polynomial estimator of degree K for γ K , given by Y (Z)=∑K

i=0 aiZ
i ,

where

aK = 1, aj =−
K∑

i=j+1

(
i

j

)
aibi−j , j =K − 1, . . . ,1,0,(8.4)

with bk = E(Zk | γ = 0), k = 0,1, . . . ,K . Furthermore, if K ≥ 3 is an odd integer
and f (z) is a nondegenerate symmetric and unimodal density, then Y (z)must have
at least one positive root.

An immediate corollary of Theorem 3 and Lemma 4 is that for the normal
family N(γ,1) family and many other complete symmetric unimodal location
families (e.g., Laplace), there is no SOUP for odd powers of γ . This implies
that of all positive integer powers of the location parameter, only the location
parameter itself has a SOUP, since there is obviously no SOUP for even powers
because γ = 0 is the boundary of the transformed parameter (i.e., γ 2k) space and
f (z | γ = 0) is not degenerate.

It is interesting to observe that for the normal family N(γ,1), Hartigan’s (1965)
asymptotic construction for θ = γ K , K ≥ 3 an odd integer, not only does not
yield a SOUP but in fact gives an improper posterior for all n. This is because the
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Fisher information for N(θ1/K,n−1) is In(θ)∝ θ−2(K−1)/K , so the corresponding

posterior measure is P (θ | X) ∝ θ−2(K−1)/K exp(−n(X̄n−θ1/K)2

2 ), which is not
a proper density on R for K an odd integer, K ≥ 3. This further complicates
the determination of when Hartigan’s (1965) asymptotic method gives SOUP for
parameters of continuous exponential families.

8.3. SOUP and the inverse variance rule. Outside continuous exponential
families, Hartigan’s (1965) asymptotic Fisher information prior (7.3) is obviously
unlikely to yield a SOUP: Fisher information may not even be defined. However,
in each of the examples of Table 1, we have

SOUP∝ 1

variance function
,(8.5)

an obvious extension of Hartigan’s information rule (5.2). In particularly,
(8.5) holds for our examples from discrete exponential families and nonexponen-
tial families, for which neither Hartigan’s (1965) exact result nor Diaconis and
Ylvisaker’s (1979) Theorem 2 is applicable.

Attempting to find a unifying principle that would explain (8.5), we have
identified other common features. For example, in the first and third pairs, the
parameter of interest is a convolution parameter. However, (8.5) does not yield
a SOUP for the convolution family generated by a variable taking three values; in
fact, there is no such SOUP. In all ten cases of Table 1, the variances are quadratic
functions of the means (and of the parameters of interest), leading us to think
along the lines of Morris (1982, 1983); on the other hand, the variance is cubic in
the mean for the inverse Gaussian family, which has no SOUP (Section 8.1). But
a counterexample to (8.5) also has this “quadratic” property: for a discrete scale
family on an “exponential lattice,” the SOUP for the scale parameter is the inverse
of the standard deviation, not of the variance (Section 6.2). These unsuccessful
attempts cause us to believe that there are some subtle reasons for (8.5), and that
one key to understanding (8.5) is to define “natural observation” and “natural
parameter” for nonexponential families. The works of Diaconis and Ylvisaker
(1985), Consonni and Veronese (1992) and Gutiérrez-Peña and Smith (1995,
1997), among others, may be useful for generalizing Hartigan’s results, but we
have not been successful in developing the required extensions.

Finally we remark on another intriguing phenomenon. Firth (1993) demon-
strated that the use of Jeffreys’ prior, namely, π(θ) ∝ I

1/2
f (θ), removes the first-

order bias (i.e., the n−1 term) in the posterior mode of the canonical parameter of
an exponential family. However, as shown in Section 5.1, the use of the square of
Jeffreys’ prior, namely the Fisher information, removes all the bias in the poste-
rior mean for the same parameter. It appears that the invariance of an estimator
to one-to-one transformation, which holds for posterior mode but not for posterior
expectation, is the mathematical reason for the discrepancy, which is exactly the
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Jacobian factor, as made clear in Section 7.2. This observation is further substan-
tiated by the fact that for posterior intervals, which are also invariant to one-to-
one transformation, the use of Jeffreys’ prior removes the first-order bias (i.e., the
n−1/2 term) in the frequentist coverage for univariate problems [e.g., Welch and
Peers (1963), Stein (1986), Nicolaou (1993)]. More statistical insight into this dis-
crepancy would be helpful in understanding the use of Fisher information as a de-
fault prior.

APPENDIX A

PROOF OF LEMMAS 1 AND 2. In both lemmas, E[|g(X)X|] <∞ implies
E[|g(X)|]<∞ because |g(x)| ≤ |g(x)x| for x = 1,2, . . . . The proof of Lemma 1
then follows from En,p[g(X)X] = npEn−1,p[g(X + 1)], which is easy to verify,
and En,p[g(X)] = pEn−1,p[g(X + 1)] + (1− p)En−1,p[g(X)], a consequence of
the divisibility of B(n,p).

The proof of Lemma 2 is more involved. First, it is easy to verify directly
that Er+1,p[g(X)] = p

r(1−p)Er,p[g(X)(X − r)]. Then, since Er,p(X) = r/p, the
left-hand side of (4.2) is

Er,p[g(X)(X − r)] − r(1− p)

p
Er,p[g(X)]

= r(1− p)

p

{
Er+1,p[g(X)] −Er,p[g(X)]}

= r(1− p)

p2

[
Er+1,p[g(X)](1− (1− p)

)

−
∞∑
k=r

g(k)

(
k − 1
r − 1

)
pr+1(1− p)k−r

]

= r(1− p)

p2

[
Er+1,p[g(X)]

−
∞∑
k=r

g(k)

[(
k − 1
r

)
+
(
k − 1
r − 1

)]
pr+1(1− p)k−r

]

= r(1− p)

p2

[
Er+1,p[g(X)] −

∞∑
k=r+1

g(k − 1)
(
k − 1
r

)
pr+1(1− p)k−(r+1)

]
,

which is the same as the right-hand side of (4.2). Note in the third equation
(r−1
r

)
is defined to be zero. �
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REMARK. This result is different from (5.2) of Hudson (1978),

(1− p)Er,p[g(X)] = Er,p

[
X− r

X− 1
g(X− 1)

]
,

which we have not been able to use for verifying O-completeness.

APPENDIX B

PROOF OF THE NONEXISTENCE OF SOUP FOR IG(θ,1). We prove by
contradiction. Suppose there is a nonnegative real measurable function π(θ),
the value +∞ allowed, on (0,∞) such that (2.2) is satisfied with θ̂ (y) = y for
all y > 0, where f (y | θ) is the density of IG(θ,1). This implies, by letting
t = (2θ2)−1,

0 <
∫ ∞

0
g(t)e−yt dt = y

∫ ∞
0

√
2tg(t)e−yt dt <∞ ∀y > 0,(B.1)

where g(t)= (2t)−2π(1/
√

2t)e
√

2t . Because e−yt = y
∫∞
t e−sy ds for any t, y > 0,

and because all integrands are nonnegative, by Fubini’s theorem, (B.1) implies

0 <
∫ ∞

0
G(t)e−yt dt =

∫ ∞
0

√
2tg(t)e−yt dt <∞ ∀y > 0,(B.2)

where 0 ≤ G(t) = ∫ t
0 g(s) ds, which is finite for any t ∈ (0,∞) because of its

monotonicity and integrability with respect to e−t dt . By the uniqueness of the
inverse Laplace transform, (B.2) implies g(t)=G(t)/

√
2t (a.e. Lebesgue). Define

g̃(t)=G(t)/
√

2t for all t ∈ (0,∞), and since the value of g on a set of measure 0
does not alter G, G(t) = ∫ t

0 g̃(s) ds for all t ∈ (0,∞). Since G(t) is absolutely
continuous, g̃(t) is also absolutely continuous, which in turn implies G(t) is
differentiable and G′(t) = g̃(t) for all t ∈ (ε,∞), for any ε > 0. It follows that
G(t) = √2tG′(t) for all t ∈ (0,∞), implying G(t) = ce

√
2t for all t > 0, where

c is some nonnegative constant. However, since G(t)= ∫ t
0 g̃(s) ds ↓ 0 when t ↓ 0,

C = 0. This implies g̃(t) ≡ 0, or equivalently g(t) = 0 (a.e. Lebesgue), which is
not possible if (B.1) holds. �

REMARK. The solution G(t)= ce
√

2t is the same as π(θ)= cθ−3, the inverse
variance rule. However, the nondegeneracy of f (y | θ = 1/

√
2t) at t = 0 forces

limt↓0G(t)= 0, leading to the contradiction.

APPENDIX C

PROOF OF LEMMA 4. First we give a unique construction for an unbiased
polynomial estimator of γ K of degree K . If such an estimator Y (Z)=∑K

i=0 aiZ
i

exists, then

γ K = E[Y (Z) | γ ] =
K∑
j=0

(
K∑
i=j

ai

(
i

j

)
bi−j

)
γ j ∀γ ∈R.(C.1)
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This implies aK = 1 and all the coefficients of γ j are zero for all j = 0, . . . ,K−1,
which leads to (8.4).

When K = 2M + 1 ≥ 3 and f is symmetric and nondegenerate, b2m > 0 and
b2m+1 = 0 for m = 0,1, . . . ,M . It follows then, by induction, a2m = 0 for all
m = 0,1, . . . ,M (or use the fact that Y (z) has to be an odd function because
of its uniqueness). Let 0 ≤ r < M be the smallest integer such that a2r+1 �= 0.
Then Y (z) = z2r+1g(z2), where g(w) =∑M

t=r a2t+1w
t−r and g(0) = a2r+1 �= 0.

It suffices to prove that g(w) must have at least one positive root. If it does not,
then since the leading coefficient in g(w) is 1, g(w) must be bounded below by
some gmin > 0. Analogously to the proof of Theorem 3, using the symmetry and
unimodality of f , the unbiasedness condition can be reexpressed as

γ 2M+1 =
∫ ∞

0
z2r+1g(z2)

(
f (z− γ )− f (z+ γ )

)
dz

≥ gmin

∫ ∞
0

z2r+1(f (z− γ )− f (z+ γ )
)
dz

= gmin

∫ ∞
−∞

z2r+1f (z− γ ) dz,

or equivalently,

γ 2M+1 ≥ gmin

r∑
j=0

(
2r + 1
2j + 1

)
b2(r−j)γ 2j+1 > 0 ∀γ > 0.(C.2)

However, (C.2) is not possible when γ ↓ 0, because the middle expression is
a polynomial in γ of order less than 2M + 1 and thus goes to zero slower
than γ 2M+1. �
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