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ASYMPTOTIC PROPERTIES OF ESTIMATORS FOR
AUTOREGRESSIVE MODELS WITH ERRORS IN
VARIABLES

By KamaL C. CHANDA

Texas Tech University

Let {X,, ¢t € Z} be an observable strictly stationary sequence of ran-
dom variables and let X, = U, + ¢, where {U,} is an AR (p) and {¢,} is a
strictly stationary sequence representing errors of measurement in {X,},
with E{g;} = 0. Under some broad assumptions on {¢,} we establish the
consistency properties as well as the rates of convergence for the standard
estimators for the autoregressive parameters computed from a set of
modified Yule-Walker equations.

1. Introduction. Data analysis of models with errors in variables started
historically with the investigation of relations between statistical variables
when all or some of these variables are subject to errors of measurement. A
somewhat exhaustive bibliography on this subject appears in Anderson (1984).
The treatment of time series models with errors in variables, however, is of
recent origin. Regressions for time series models with errors in measurement
have been discussed by Hannan (1963), Moran (1971) and Robinson (1986).
Identifiability problems for such models appear in Anderson and Deistler
(1984), Maravall (1979), Nowak (1985) and Solo (1986). Estimation of an
error in variable autoregressive model is due to Trognon (1989). However, so
far, to the best of this author’s knowledge, no systematic attempt has been
made to analyze data which are derived from general finite parameter linear
or nonlinear models and are, themselves, subject to errors in measurement.

The present paper deals with autoregressive (AR) models which have
errors in variables and is an extension of the results in Chanda (1994) in the
sense that the probability models for the errors of measurement are treated
here in a nonparametric manner.

2. Estimation of parameters in errors-in-variable AR models. Let
{X,, t € Z} be an observable strictly stationary sequence of random variables
(rv) and let

(2.1) X, =U+s&, HB)U —p)=n,

where {U,; t € Z} is an AR sequence of unobservables, wu is a finite constant,
{&,} is a strictly stationary sequence representing errors in measurement in
{X,}, {n,} is a sequence of independent and identically distributed (iid) rv’s
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with E(n;) =0 and E(n}) = ;> and {¢]}, {n} are mutually independent
sequences. We assume that the roots of ¢(¢) =1 — Zj’zlcbjfj all lie outside
the unit circle. We assume that E(g;) = 0 and from now on we use X, in
place of X, — u throughout this paper. Our main objective is to estimate the
parameter ¢,,...,¢, from a given set of data {X,, 1 <¢< n}. If u is
unknown, we estimate it by the sample mean X. Write v, = E(X, X, ),
v (U) = E{UU,, ) and vy,(e) = E(g,¢,,,), v= 0.

2.1. The AR(1) model. Consider at first the case p = 1. We write ¢; = ¢
(0 <|¢l < 1). Assume that {s} is a linear process such that |y,(s) < M;5”
(v = 0), for some finite constants M > 0 and 0 < 8 < |¢| < 1. (In particular,
this condition holds if {&,} is, itself, a certain type of ARMA process.) Now
choose & = [g log n/log|¢ll, where g € (—1/2,0) and |g| > log|®|/2 log &.
Set ¥, = L{_1X, X, ., /nand C, = Li7{(X, 4, — a;)/n, where {, = n, + ¢,
— ¢e,_; and a;, = E(X,{,. ;) = v,(e) — ¢y,_4(&), and define

(2.2) bi = Vas1/ T

Now note that n'/2|y,| - «, k — «, but k/n — 0 as n — ». Therefore, we
can write

(2.3) n1/27k((£ - d’) = (nl/zck+1 + n1/2ak+1)/(Tk +1),

where T, = (9, — v,)/7y,. Corollarly 2.1 that follows will imply that
A(n'?Cy, ) » MO, 0%), where ¢® = y,0,” + Xi_ .77, and

Y =E(e, — be,_1)(&1hs — dE115-1)
= (&)1 + ¢*) = ¢(ver1(2) + ¥%_1(2)).

By Theorem 2.1 (below) we have that A(n'/2(¥, — v,)) ->410,X%_ _.v2).
Also, it is easy to see that n'/?a,,; — 0 as n — «. Therefore, as n — <,

(2.4) g(n1/2|'}’k|(($k - 4’)) -0, 0?%)
and hence
(2.4') 2(n 211" (1 = ¢2) ' (d) — ¢)) >0, 52).

Note that n'/?|y,| ~ n**287/2 Naturally we should choose |g| to be as small
as possible. For example, if ¢ = 0.5 and 6 = 0.25, then —0.5 < g < —0.25. If
we choose g = —0.251, then n'/?|y,| ~ n02%9,

One other possibility exists. Suppose % is chosen such that £ — «, k/n — 0,
n'2la,, | > «,but y,, (&)/7,(U) - 0 and y,(e)/y,(U) - 0as n > ». Then
one can show quite easily from (2.3) that

(25) |'yk/ak+1”(f;k - ¢| -1

in probability as n — ». For example, if {g,} is, itself, an AR(1) process,
&, — Yg,_, = v,, where {v,} is a sequence of iid rv’s with E(v,) = 0,0 < E(»?)
< oo, and 0 < || < |¢p| < 1, then (2.5) holds if we choose £ = [g log n/log|i|]
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with g € (—1/2,0). In fact, one can then show that Drk|$k —¢|— 1 in
probability, for some finite positive constant D and 7 = |¢/| > 1.

2.2. The AR(p) model p > 2. For the general case p > 2, the estimators
d)k,l’ e, q,’)k  of the AR parameters ¢,,..., ¢, are defined by the equations

P
(2.6) Z‘r’k,jilyfj:‘y]n k+1<v<k+p,
j=1

where we choose £ such that k& — «, but k/n — 0 as n — «. If, now, we set
A = nl/z(q'),” — ¢, 1 <j <p, then (2 6) reduces, in matrix form, to

(2.6") r,,A=C,,

where

n—v

v Z (Xt§t+V_aV)/n’

t=1
aV=E(Xt§t+V)7 k+1£V£k+p7

®)
Il

P
L=mn+e — Z d’jgt—j
Jj=1

and

R, ,=0,(n""?).

(v,n

We now assume that the following conditions hold.

1. The roots &,..., £, of £P¢(&71) are all distinct and if we denote the root
with the smallest modulus by ¢,, then ¢, is real and 0 <[¢,| <[&],
l<j<p-1

2. {g,} is a linear process, &, = Yi__.;6,_;, where {8,} is a sequence of iid

rv’s with E(§;) = 0 and 0 < E(§?) < .

3. {l[lj} is such that |y, , j(e) / §p”| — 0, for every finite j, whenever v — o,

REMARK 1. The asymptotic normality result of Theorem 2.2 below will
hold (although in substantially different forms) even when the roots of
EPH(E71) are not all distinct. However, the mathematical details are some-
what complicated and hence are withheld from this report.
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Note that by conditions 1-3 we can choose & such that & — «, n!/2|y, (U)|
— o and n'?|y(e)l > 0as n — 0,for £ + 1 < v < k + p (the arguments are
similar to those for the case p = 1). Since a,= y,(s) — LI ¢y, (&), it
follows that n'/2a, > 0asn > x, k+1<v<k+p.

We now prove the following theorem.

THEOREM 2.1. Let U, =Y _.Bm,_; and & =X _.bv,_;, where {n}
and {v,} are independent sequences of iid rv’s with E(n,) =0, E(n?) = 0;,2,
E(v)=0,E(»?) =g2%0< a,, 0, < %, E(n}) <=, E(v}) < =, Yoo _LliBl <
and ¥_ _mlj(//jl < o, Assume that k — ©, but k/n —» 0 as n - ». Then for
any finite integer 1 > 1, n'/*(3,.; — v,,), 1 <j <l have, asymptotically, as
n - «, a (I + 1-variate normal distribution with mean vector zero and

covariance matrix A = [ A, j], where

(27) /\ij= Z ’YS’YSJrifj’ ISJSZ'

§= —®©

ProoF. Theorem 2.1. in Chanda (1993) proves the result for the case
when ¢, = 0. Routine extension of arguments similar to those in the theorem
in Chanda (1993) will establish the result of Theorem 2.1 in this paper. O

COROLLARY 2.1. Let the conditions of Theorem 2.1 hold and let C, be as
defined in (2.6"), with C{ = [C,,4,...,Cy, 1. Then

(2.8) Z(n'?Cy) > (0, A%),

;vhere A% =IA7] )‘ij=‘TnZVi—j+Zj=—oc75’s+j—i and v, =X2, o bSv,. .- s(e),
=0,+1,....

ProoF. Note that as n — o,

n1/2CV= Z (thtJrv_aV)/nl/z: Z (Xt¢(B)Xt+V_aV)/n1/2
t=1 t=1

I

P

n1/2 Z d’j(/}\/y—ﬂr_ ’yV—T)a d);'k = _d)j’l Sj <p, d)O = 1y
7=0

and

p p
nCov(Cyy, Cpiy) =n Y b COV(i’kaT,i’kufs) - X ¢ i g
7,5=0 7,85=0

o]
= Zd)‘;kqbs* Z mem+i—7—j+s asn — x,

m=—®

which together with Theorem 2.1 proves Corollary 2.1. O
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We conclude from Corollary 2.1 and the relation (2.6') that

(2.9) 3(6k) -0, A%)

as n — o,

Now choose & such that £ — « and n'/?|¢, |FmPtl 5 o as n — . (Since
0 <[¢,] <1, such a choice is always possible.) "Define T, » Fk’p I, , and
r,,= [yk +L J] 1 <1, j <p, and note that since condition 1 holds, we can
write vy, = 14;§/, where Ay,..., A, are nonzero constants and A, is real.
Also by condltlons 2 and 3, Theorem 2.1 and the choice of & above, it follows
that I, ,/£f7P*1 -, 0 as n — . Therefore,

(2.10) plm A &P L = lim A, gF oI L,

provided that the limit on the right side of (2.10) exists. We can now prove the
following theorem.

THEOREM 2.2. Assume that conditions 1-3 above hold. Choose k such that
k — « and n1/2|§pk*1’“| — o gs n — ., Then

(2.11) Z(n1A, 87N (d — ) >1(0,Q, A3Q))

as n — «, where

Qp=d;2Hp’
Hj=rrj7roJp, 1<j<p,
p p
ﬂjT= [CO,j’cl,jV"’Cpfl,j], Z fpimcmflyjz Ul(g_ gu)’
m=1 e
p
d;=11(§-4&),
u;j
0 O 0 1
0 O 1 0
J, =
1 0 - 0 O

and A% is as defined in (2.8).

ProoF. Note that I', , =T, (U) + I, (&), where T, (U) =[y,,, (U)]
and T, (&) =[y,,; (&) Set G; =[&™*P~1], B, =(A;/A)(&/&E) P+t
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and 07 =[1,¢;,..., £/ '], 1 <j < p. Then it is easy to see that G; = 0,67dJ,
and I', (U) =A £ P*'LP_ | B;G; and since condition 3 holds,

-1

i~

N RN RO
=1
(2.12) ’

-1

p
= ( Z BjGj
j=1

as n — =, provided, of course, X¥_, B;G; is nonsingular. Again, since

p p
eiTJij =X &M, ;= l—ll(s‘i -&)=0
m=1 u=

u#j

whenever i # jand = d;, if i = j, it follows easily that G;H; = 0,if 1 <i #
<p,and GH; = d,C;, where C, = 0,w/J,, 1 < i < p. Hence

J

p p
(2.13) BG; Y Bi'H,=M,,

=1 j=1
where M, = XF_,d,;C;. Now note that M, = 0 implies that C;X}_,d,C,a =
0,1<j<p.AlsoC,C;=0wheneverl <i#j<pandC;=d,C;,1<i<p.
Since d; #0, 1 <i <p, it follows immediately that C,a =0, 1 <i <p.
Therefore, @ = 0 and M, and hence ¥./_, B;G; are nonsingular.

Now set Q, = lim,, _.(X}_, BiGi)_l. Then since ;! > 0asn > », 1<i
<p — 1, and B, = 1, we conclude that

(2.14) Q,-H,M;".

Write L, = [91,...,0p] and L} = [Jpwl,...,Jpwp]. Note the H,0, =
w,m,dJ,0, = 0 whenever 1 < i # j < p. Therefore, M0, = G;H,8, = d}0, and
(2.15) M,L, - L,D,,
where D, = diag [d?,..., df,]. Similar arguments lead to

Ty % _
(2.16) M?L: = LD,

Relations (2.15) and (2.16) imply that
p

(2.17) M, = ¥ g,0md,,
-

where g; =d}/d; =d; [see Chapter lc, 3.14 in Rao (1973) and note that
0/d,m =0,if i # j,and =d,,if i = j,1 <i,j < p]. From (2.17) we have that
HM =axnld Z};ld-()-fn'TJp = dZHp and hence

p=p ppTpP JoJ

(2.18) Q,=HM,'=d,°H,.
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Now set A* = A, §pk_p+13. Then we conclude from (2.6') and the comments
that follow (2.6') that A* = A &F P+ 1C, as n — . If, now, we use
(2.9), (2.10), (2.12), (2.18) and Corollary 2.1, we immediately obtain the result
(2.11) of Theorem 2.2. It is also interesting to note that rank(Q, A’;QIT,) =
rank(Q,) = 1. O

REMARK 2. If the roots of £7¢(¢ 1) do not satisfy condition 1 the result of
Theorem 2.2 will not hold. In order to understand the kind of result that may
be obtained, in general, we consider the case p = 2 and discuss two situa-
tions: (a) the roots &, &, are both complex and (b) the two roots are real and
equal to &,. For (a) we can show by direct calculation that

|A; 1A, = (cos(a + k6)/2sin? 0)C,
—(cos(a + (k —1)0) /2 7sin® 0)C,, ,
and
|A; ¢fIA, = (cos(a + k6) /2sin? 6)C,, ,
_(T cos(a + (k + 1)0)/2Sin2 0)(_7k+1,7=|§1 |

which clearly indicates that no asymptotic distribution is possible for q’A)kJ and
¢1.2- On the other hand, for (b) routine and direct methods show that if
condition 2 holds, if we replace condition 3 by 3': vy, /& | - 0, for every
finite j as v — « and choose %k such that £ — « and n'/?| ¢, ["/k - « as
n — o, then

(2.19) Z(n 2 A € /RN (b — d1)) 210, %)

as n — », where 3 = Q;A%Q37, A% is as defined in (2.8) for p =2,

Q; = [—; 511] A = 02/(1+ ¢,)? and $, = — p2/4.
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