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ASYMPTOTICS OF SOME ESTIMATORS AND
SEQUENTIAL RESIDUAL EMPIRICALS
IN NONLINEAR TIME SERIES!

By HirA L. KouL
Michigan State University

This paper establishes the asymptotic uniform linearity of M- and
R-scores in a family of nonlinear time series and regression models. It also
gives an asymptotic expansion of the standardized sequential residual
empirical process in these models. These results are, in turn, used to
obtain the asymptotic normality of certain classes of M-, R- and minimum
distance estimators of the underlying parameters. The classes of estima-
tors considered include analogs of Hodges—Lehmann, Huber and LAD
(least absolute deviation) estimators. Some applications to the change
point and testing of the goodness-of-fit problems in threshold and ampli-
tude-dependent exponential autoregression models are also given. The
paper thus offers a unified functional approach to some aspects of robust
inference for a large class of nonlinear time series models.

1. Introduction. This paper establishes asymptotic uniform linearity of
M- and R- scores and an asymptotic expansion of the standardized randomly
weighted sequential residual empirical process in a family of nonlinear time
series and regression models. These results are then used to derive the
large-sample distributions of certain classes of M-, R- and minimum distance
(M.D.) estimators in these models. Section 2 gives some applications of these
results to the estimation, goodness-of-fit testing and the change point prob-
lems in some threshold and amplitude-dependent exponential autoregression
(EXPAR) models.

More precisely, let m A p A g > 1 be fixed integers, n > m be an integer,
Q be an open subset of the m-dimensional Euclidean space R™, R = R?, t’
denote the transpose of a p X 1 vector t € R? and |[t|| its Euclidean norm.
Let F be a distribution function (d.f.) on R; {¢;, i = 1,2,...} be independent
and identically distributed (ii.d.) F random variables (r.v.s); {Z,;, i =
1,2,...,n} be g-dimensional observable independent r.v.’s taking values in
RY, independent of {g}; and Y, :=(X,,...,X; )" be an observable r.v.,
independent of both {¢;,, i = 1,2,...} and {Z,;, i = 1,2,...,n}; and let 7 ; =
ofield{Yy; Z,,}, 7, = ofield{Y; ¢, 1 <j<i;Z,,, 1<k <i},2<i<n.
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In a pth-order nonlinear time series model considered here, one observes

an array of the process {X,,;, i = 1,2,..., n} satisfying the relation
(1.1) X, =h(0,Y,; ,,Z,) + ¢, i=1,2,...,n,
for some 0 € ), where Y,, =Y, Y, ;, ;=(X,;, ,...,X,,; ), and his a

known function from () X R? X R? to R that is measurable in the last p + q
coordinates so that &,,(t) = A(t,Y, ;, |,Z, ) is 7, ,-measurable, t € Q, 1 <
i <n. The r.v’s {Z,;} may represent regression or trend variables in these
models.

The above models include classes of nonlinear regression (NLR) models
and nonlinear autoregression (NLAR) models. In NLR models, 2(0,y,z) =
v(0,2), and in NLAR models, 2(0,y,z) = H(0,y), where v (H) is a known
function from Q X R? () X RP) to R that is measurable in the last g (p)
coordinates. In NLR models, {Z,,} represent the known design variables that
can be either random or nonrandom. Upon choosing 4(0,y,z) = H(0,y) +
v(0,z) in (1.1), one obtains a class of models where autoregression and
regression is present in an additive and nonlinear fashion, rather an impor-
tant class of models in statistics and econometrics. A class of submodels this
paper shall focus on in some detail is the family of NLAR models where
X,; = X, satisfies

(1.2) X, =H(,Y, )+e, i=0+1+2,...,

where {¢;,, i = 0,4+ 1,4+ 2,...} are i.i.d. F.

Jennrich (1969) and Wu (1981) study the asymptotics of the least squares
estimator (LSE) in NLR models. Hannan (1971) contains a similar study
when the errors are generated by a stationary time series. See the mono-
graph by Seber and Wild (1989) and references therein for more on NLR
models. Tong (1983, 1990) discuss numerous useful examples of NLAR mod-
els and the asymptotics of the LSE in some of these models.

Hwang and Basawa (1993) study the local asymptotic normality of a
variant of the model (1.1), where Z,; = Z;, with {Z,} being ii.d. r.v.’s, not
necessarily observable, and where {X,} are assumed to be stationary. They
also discuss the asymptotics of some likelihood based tests in (1.1) and of the
one-step MLE for a class of NLAR models (1.2).

The two examples we shall focus on in some detail are a self-exciting
threshold first-order autoregression [SETAR(2; 1, 1)] and EXPAR models. The
former is obtained from (1.2) upon taking

(13) m=2,p=1and H(8,y) = 0,y*+ 6,5, yER,0¢c(0,1)%

while the choice of

m=3,p=1and H(0,y) = {6, + 0, exp(—035%)}y,
yeR,0e(—-1,1) X R X (0,»),

in (1.2) gives the latter model. Here, x™:= max{0, x}, x 7 :==x"—x, x € R. A
general class of SETAR and EXPAR models of Tong (1990) are also included
in (1.2).

(1.4)
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To proceed further, fix a 6 € ) and let Py denote the probability distribu-
tion of (Y, X,,;,..., X,,,) under (1.1) when 0 is the true parameter value.
About A we shall assume the following:

(h1) There exists a vector of functions hn from Q X R? X RY to R™ such
that h,,(t) =h, &Y, , |,Z, ) is.F, -measurable,t € O, 1 < i < n, and satis-
fies the following: V¥V a > 0, k < o, s € (),

[20s(t) = hoi(8) = (€ = 9)'Bi(s)|

= 0.
—1/2 ”t - S”

3 n
lim sup P, sup
n 1<i<n,lt—sll<kn

Note that there is no loss of generality in assuming the %, ,-measurability
of h,; in (h1). Also, the differentiability of i(t,y,z) in t, for all y and z, alone
need not imply (h1). An example that illustrates this pointis when m =1 =p
and A(t, y, z) = t?y. This h, even though differentiable in ¢, does not satisfy
(h1) unless max{n'/?|X;_,; 1 <i < n} tends to 0 in probability. The above
examples (1.3) and (1.4) are shown to satisfy (h1l) in Section 2 provided the
errors have finite variance and positive Lebesgue density.

We now define various processes and scores that are useful for inference in
these models. From now on the dependence of X, ;, &,;, etc., on n will not be
exhibited, for convenience. Thus, we shall write X; for X,; and so on. Let
and ¢ be bounded nondecreasing real-valued functions on R and (0, 1),
respectively; R;; denote the rank of X; — A,(t) among {X; — h;(t), 1 <j < n},
l1<i<n,te Q;and G be a d.f. on R. Define

M(t) == n~ 2 Eh()§(X; — hy(t)),
Z(u,t) =n"1/2 Zhi(t)I(Rit < nu),

Z(u,t) =Z(u,t) —n" /2 Zhi(t)u, 0<ucx<l,
S(t) = folgo(u)Z(du,t) =12 Zhi(t)go(Rit/(n + 1)),

K(t) = fO1||Z(u,t)||2 dG(u), teQ.

Here, and in the sequel, the index i in the summation and the maximum
varies from 1 to n, unless specified otherwise. The M-, R- and M.D.-estima-
tors of 0 to be considered are, respectively,

by = argminM(H)], 8, = argmin|S(®), 8,0 = argmin, K(t).

The name R-estimator for 0 ¢ is borrowed from linear regression with known
design where its analogue is a measurable function of the residual ranks
only. But here S is a measurable function of observations and the residual
ranks; strictly speaking, 05 is thus not a rank estimator in the same sense as
in the linear regression setup.
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Analogues of the above estimators and their asymptotic distribution theory
in linear regression and autoregression (LRAR) models appear in Jureckova
(1971), Huber (1981), Bustos (1982), Koul (1992) and Koul and Ossiander
(1994), among others. Asymptotically efficient estimators at various error
distributions can be obtained from these classes of estimators in these
models. Well-known examples of M-estimators are obtained by choosing
Y(x) =xl(|x| < k) + csgn(x)I(|x| > k), k& a constant, or (x) = sgn(x),
thereby giving the Huber(%) and the least absolute deviation (LAD) estima-
tors, respectively. A useful example of an R-estimator is obtained by choosing
¢(u) = u, thereby giving the Hodges—Lehmann type estimator which is
known to be asymptotically efficient at the logistic errors in LRAR models. An
interesting example of an M.D.-estimator is obtained upon taking G(u) = u.
Koul (1992) and Koul and Ossiander (1994) observed that this estimator is
asymptotically more efficient than the Hodges—Lehmann type (LAD) estima-
tor in an LRAR model with double exponential (logistic) errors. It was also
noted that a large class of estimators {0,,} are asymptotically more efficient
than the least squares estimator at heavy tail distributions in these models.

In view of these desirable properties, it is only natural to investigate the
large-sample distributions of the above three classes of estimators for the
class of models given in (1.1) and (h1). One of the goals of this paper is to do
precisely that. We shall now state additional assumptions and the results to
that effect. In what follows, |lg|l.. := sup{|lg(x); x € R} for any g: R to R;
N, ={t € Q; [itll < b}, 0 < b < ; 0,(1) [0,(1)] stands for a sequence of r.v.’s
that converges to 0 (is bounded) in probability under P, Eg stands for
expectation under Py, and all limits are taken as n — %, unless specified
otherwise. With 6 € Q fixed throughout, consider the following assumptions.

(F) F has a uniformly continuous density f which is positive a.e.

(h2) n 'Y;h;(0)h;(0) = X, + 0,(1), where 2, is a positive-definite matrix.
(h3) n=/ max [y (0) ] = o,(1).

(ha)  n LE R0 +n %) —hy(0)[ =o(1), teo.

(05)  n 2 Lllhi(0 +n %) —hy(0)] = 0,(1), teq.

(h6) For every a > 0, there exists a § > 0 and an N < o, such that

P({‘( sup n 2 Y |h;(0 + nV%t) —h,;(0 + n %) < a) >1-a,
le—sli<s i

for all n > N.
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REMARK 1.1. If the underlying process and % are such that {h,(0)} does
not depend on n and is stationary and ergodic, then the distribution of Y,
will depend on 0 and the following hold: conditions (h2) and (h3) are implied
by

. 2
(h,1) E,| ()| <=,
while (h4) is equal to
. . 2
(h,2) E,|h,(0 + n~2t) —hy(0)| =0(1), teq,
and assumption (h5) is implied by
(h,3)  n'2E,|h,(0 + n~/%t) — hy(0)| = 0(1), teQ,

where E, denotes the expectation under the stationary distribution.

Tong (1990) contains various sufficient conditions for a nonlinear autore-
gression model to be stationary and ergodic. Some of these are discussed in
Section 2 for examples (1.3) and (1.4) mentioned above.

We shall now state a lemma which is basic to the proof of the asymptotic
uniform linearity of the above scores. Let

V(y,t) = n""2 Lhy() I(X; - hi(t) <),

dnl(t) = h’t(e + n‘il/zt) - ht(ﬂ)a hnl(t) = hL(O + nfl/zt),
(1.5) 1<i<n,
v(y,t) =n"? Th()F(y +d,(t),

W(y,t) =V(y,0+n1%t) —v(y,t), yeR, te Q.

LEmMA 1.1. Suppose (1.1) and (h1)-(h6) hold. Then, for every y at which
F is continuous and for every 0 < b < oo,

(1.6) sup [W(y,t) = W(y,0)[ =0,(1).
tenN,

If, in addition, (F) holds, then, for every 0 < b < ,

(1.7) sup|W(y,t) — W(y,0)[ =o0,(1)

and

supHV(y,O +n71%t) = V(y,0) — Ztf(y)
(1.8) . )
—n 12 [h;(0 +n~1/2t) — hi(O)]F(y)H =0,(1),

where the supremum in (1.7) and (1.8) is over (y,t) € R X N,.
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The result (1.8) directly follows from (1.7) and (F). Proofs of (1.6) and (1.7)
appear in Section 3, soon after Lemma 3.2. To state other results, we also
need

Vo= {z/f: R to R, nondecreasing right continuous,

Jdr =0, u(=) = w(==) < 1),

® = {¢:[0,1] to R, nondecreasing right continuous, ¢(1) — ¢(0) < 1}.
We are now ready to state the asymptotic uniform linearity result of the
M-scores.

THEOREM 1.1. In addition to (1.1), assume that (F) and (h1)-(h6) hold.
Then, for every 0 < b < oo,

(1.9) sup
YyeWV,teN,

M(0 +n"'/2t) — M(0) — Eet/fdde =0,(1).

The result (1.9) follows from (1.8), the fact that [Fd¢ = () for all ¢y € ¥
and that

M(t) — M(s) = n /2 ¥ [hy(t) — hy(s)]u (=)

~[[V(y,t) = V(3,9)] du(y),

uniformly in t,s in ) and € ¥, with probability 1. A

To use (1.9) in establishing the asymptotic normality of 0,,, one must first
ensure that [[n'/?(8,, — 0)Il = 0,(1). In view of the fact that [[M(8)|| = 0,(1), a
sufficient condition for this is as follows:

(B1) Forevery ¢ > 0,0 < a < o, there exists an N, and a k (depending on
g and «a) such that

P(,n( inf |M(0 + n~2t)| > a) >1-s, VYn>N.
itlI> %

A condition that, in turn, implies (B1) is given by (M1) below.

COROLLARY 1.1. In addition to the assumptions of Theorem 1.1, assume
that [fdy > 0 and

(M1) e M(0 + n"'/%re) is monotonicinr € R, Ve € R™ lell=1, n > 1,
a.s.

Then,V ¢ € P,

(1.10) n'/2(8, — 0) = {[d¢20} 1M(f)) +0,(1)
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and
(1.11) n'/2(8, — 0) = N,(0,2, (¢, F)),

where v(, F) == [y dF /([fd)>.

REMARK 1.2. As mentioned above, (M1) implies ||n1/2(6M -0l =0,.
This and (1.9) together then imply (1.10) in a routine fashion. The claim (1.11)
follows from (1.10) and the CLT for martingales as given in Corollary 3.1 in
Hall and Heyde (1980).

The assumption (M1) is, for example, always satisfied by those models
where A of (1.1) or H of (1.2) is linear in parameters and nonlinear in the
remaining arguments. Tong (1990) contains numerous examples of these
types of nonlinear time series models. It is a useful condition when ¢ is not
differentiable as is the case for the Huber(%) and the least absolute deviation
estimators. )

If ¢ is twice differentiable and {h,} are differentiable and satisfy certain
additional integrability conditions, then using standard arguments a la
Cramér, one can verify (B1) directly. See, for example, Tjgstheim (1986) in
connection with the maximum likelihood and the least squares estimators in
nonlinear times series models of the type (1.2). Obviously, this method does
not work if ¢ is not differentiable.

The following corollary gives an analogue of Corollary 1.1 for the least
absolute deviation estimator under weaker conditions. Its proof uses (1.6) and
a routine argument.

COROLLARY 1.2. Assume (1.1) and (h1)-(h6) hold. In addition, if (M1)
with (x) = sgn(x) holds and if the d.f. F has density f in an open neigh-
borhood of 0 such that [ is positive and continuous at 0, then
n'%(0,,4 — 0) = N, 2,1 /42(0)).

To state analogous results for R- and M.D.-scores and estimators, we need
to define

D= n*12¢(i/(n+1)), h*(0) = nflzhi(ﬂ),

Z(u) =n""* ¥ (h,(0) — h*(0))[I(F(&) <u) - ul,

q(u) =f(F(v)), 0<u<l,
§ = n /2 ¥ (In,(0) — h*(8))[ o(F(5,)) — 7).
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THEOREM 1.2. In addition to (1.1), (F), (hl) and (h3)-(h6), assume that
(h7) n! Z(hi(e) - h*(ﬂ))(hi(ﬂ) - h*(e))' =T, +0,(1)
for some positive-definite matrix I'y. Then, for every 0 < b < o,

(1.12) sup ||Z(u,0 +n72t) — Z(u) - l"etq(u)” =0,(1),
O<u<l,teN,

sup [S(8 +n~1/%t) — n'/2h*(0)p
(113) (pE(IJ,tENb
-S4+ F‘,tffdgo(F)H = 0,(1)
and
(1.14) sup  |K(p +n2t) — K(t)| = 0,(1),
Ged,teN,

where K(s) = [MZ(w) + Tyq(w)s|* dG(u), s € RY.

REMARK 1.3. Note that (1.14) follows from (1.12) trivially, while (1.13)
follows from (1.12) and the fact that S(t) = h*(8)g — [Z(u(n + 1)/n,t) do(w).
The result (1.13) gives the asymptotic uniform linearity of the S-score, while
(1.14) gives the asymptotic uniform quadraticity of the dispersion K. The
proof of (1.12) uses (1.7) in a crucial way and appears in Section 3.

COROLLARY 1.3. (a) In addition to the assumptions of Theorem 1.2, assume
that

(S1) e'S(0 + n"'/%re) is monotonicinr € R,e € R™, el =1, n > 1, a.s.,

and that
(¢l) © =0 forall sufficiently largen > 1.
Then
A _1/\
(1.15) n'/?(8; — 0) = {ffdgo(F)Fe} S +o0,(1)
and
(1.16) n'/%(8p — 0) = N,(0,T5 (e, F)),

where w(o, F) = [o*(w) du /{[fd o(F)}>.

COROLLARY 1.4. (a) In addition to the assumptions of Theorem 1.2, assume
that, for some 0 < g € L,([0,1],G),

(K1) [;e'Z(u,® + n '?re)g(u) dG(u) is monotonic in r €R, V e € R™,
lell =1, n > 1, a.s.
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Then
-1
(1.17) nY2(0,, — 0) = {f1q2 dG Fe} flnl/ZZ(u)q(u) dG(u) + 0,(1)
0 0

and

(1.18) n'/2(8,, — 0) = N,(0,T5'm(G, F)),

m

where

m(G, F) = [01/01[u Av - uv]q(w)g(v) dG(u) dG(v)/(/Olqsz) :

REMARK 1.4. Assumptions (S1) and (K1) ensure the n'/?-consistency of
the R- and M.D.-estimators, respectively. They may be replaced by any other
assumptions that will imply an analogue of (B1) for R- and M.D.-scores. In
any case, (1.13) and (1.14) together with (S1) and (K1) yield (1.15) and (1.17)
in a routine fashion, while (1.16) and (1.18) follow from these results and the
CLT for martingales as given in Corollary 3.1 in Hall and Heyde (1980). See,
for example, Koul (1992), Sections 5.4 and 7.4, for the type of argument
needed.

Akin to (M1), conditions (S1) and (K1) are always satisfied by those models
where h of (1.1) or H of (1.2) is linear in parameters and nonlinear in the
remaining arguments. See Section 2 for illustrations.

Next, we shall give an asymptotic expansion of the sequential residual
empirical process. We, in fact, prove a somewhat general result of broader
applicability from which this will follow. To that effect, let {g,;, 1 <i < n} be
an array of r.v.’s, with g,; being %, ,-measurable and independent of ¢,
1 <i <n.Define,for ye R, t € Q, u €[0,1],

[nul

T,(y,t,u) =n"1/7? Y guil(e <y + hi(t) — hi(9)),

i=1

[nu]
A1) 5 )ty — 2 Y gull(e <y + hi(t) = hy(0))

—F(y + hi(t) = h(8))],

where [ x] = the greatest integer in x. Write T,(y,t) and so on for 7,(y,t,1)
and so on. Also, all probability statements in the following theorem are
understood to be under the joint distribution of {Y,, X;, g,;, 1 <i < n}. We
have the following result.
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THEOREM 1.3. (a) In addition to (1.1), (F) and (h1)—(h3), assume the
following:

g +0,(1), g a positiver.v.

1/2
(g1) (n‘l Zg,?i)
(82) n~ '/ maxlg,;| = 0,(1).

(g3) n~t Y Egy =0(1).

Then the process {Tg(y, 0), y € R} is eventually tight, and, for every 0 < b < o,

(1.20) suF|Tg(y,0 +n712) = Ty (y,0)] = 0,(1)
¥,
and
(1.21) suf) T,(y,0+ n~1/2t) — T,(y,0) — t’n*IZgnihi(ﬂ)f(y) =0,(1),
Y, i

where the supremum is over (y,t) € R X N,.
(b) In addition to (1.1), (F), (h1) and (h3), assume that the following hold:

(g4) nt LEgh = 0(1).

h,(0)[" = 0(1).

(25) n~! Y.Eg,
(86) L Egi[h(0+n7%) —h(0)]"=0(1), seq.

Then, for every 0 < b < oo,

(1.22) sup |Tg(y,0 +n 2t u) - Ty(y,0, u)| =0,(1)

v, tu

and

sup |T,(y,0 +n~'?t,u) — T,(y,0,u)
(1.23) b

[nu]

—tn ' Y g,h(0)f(y) =0,(1),
i=1

where now the supremum is over (y,t,u) € R X N, x [0, 1].
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A proof of the above theorem also appears in Section 3. Now let

[nu]

F(y,t,u)=n"1 )Y I(X;, - hi(t) <y),
i=1
[nul

W) = T F(y+ () = h(0)),

W(y,t,u) =n"2[F,(y,t,u) — v(y,t,u)], yeR,teQ0<u<l.

Upon choosing g,; = 1 in Theorem 1.3, one obtains an analogous result for
F,. Because of its importance we state it as a separate result, though at the
cost of some repetition. Note that in this case (g1)—(g4) are trivially satisfied
while (g5) and (g6) are, respectively, equal to

(h3") nt LEy ()] = o),

(h8) Y Ep[hi(0 +n /%) —hy(0)] =0,(1), seQ.
We are now ready to state the following corollary.

COROLLARY 1.5. (a) Assume that (1.1), (F), (hl) and (h3) hold. Then,
VO<b <o,

(1.24) sup |W(y,0 + n~1%t) — W(y,0)| = 0,(1).
y,t
If, in addition,

(h9) nt L[hi(0)] = 0,(1),
then,V 0 <b < oo,

sup|n'/2[F,(y,0 + n='/%t) — F,(y,0)]

(1.25) »t

—tnt Th(0)f(5)] = o, (1),

where the supremum here and in (1.24) is over (y,t) € R X N,.
(b) Assume that (1.1), (F), (h1), (h3*) and (h8) hold. Then ¥V 0 < b < o,

(1.26) sup [W(y,0 +n 2t u) — W(y,0,u)| =0,(1)

y,t,u
and

sup n1/2[Fn(y70 + n_l/zt’ u) o Fn(y’e’ u)]
y,t,u
(1.27) [nu]
—tn™" X hy(8)f(y)] = 0,(1),
i=1

where now the supremum is over (y,t,u) € R X N, x [0, 1].
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From (1.25) we readily obtain the following corollary.

CoRrOLLARY 1.6. In addition to (1.1), (F), (h1), (h3) and (h9), assume that
there exists an estimator 0 such that

(1.28) In2(6 - 0)] = 0,(1).
Then

sup

n'/?[F,(y,8) — F,(y,0)]
yeR

(1.29)
—nt/2(6 = 0)'n ! Th(0)A(5)] = 0,(1).

Perhaps it is worth mentioning that the underlying time series need not be
stationary for the validity of all of the above results. The next section
discusses some applications of these results to estimation, goodness-of-fit
testing and the change point problems in SETAR and EXPAR models. The
procedures discussed for the change point problem are similar to those
discussed in Bai (1994) for ARMA models.

2. Applications. In what follows, (Hj) and so on stand for (hj) and so on,
with 2 replaced by H and (1.1) replaced by (1.2). Also, (F*) stands for
condition (F), where now the density f is assumed to be positive everywhere.
This condition is needed to ensure the stationarity and ergodicity of the
processes considered here. To begin with, we shall focus on the:

SETAR(2;1,1) model of (1.2) and (1.3). Here 8 = (0, 6,)', H,(t) = t'W,,
where W, = (X" ;, X;_,)". Hence, H,(t) = W,, and (H1) and (H4)-(H6) are
trivially satisfied. Moreover, with R, . denoting the rank of &, — rn~'/%e'W,

ire
among {&; — rn_l/Qe’Wj, 1 <j<n},

eM(0 +n ?re)=n""" )Y eW(s —rn"'?e'W,),
i

e'S(0+n?re)=n"12) eW,¢(R,,./(n + 1)),

[ €Z(u,0 +n 1 re)g(u) dG(u) = —n V> Le'(W, - W)r(R;/n),
0 i

where 7(u) = [{gdG. Consequently, ¢ nondecreasing implies (M1), while
(S1) and (K1) follow from ¢ being nondecreasing and Theorem 2.7E, of Hajek
(1969).

From Tong (1990), page 130, and Chan, Petruccelli, Tong and Woolford
(1985), it follows that if E&? <« and (F') hold, then the SETAR(2;1,1)
process specified at (1.2) and (1.3) is stationary and ergodic, and E, X7 < .
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Hence, by the ergodic theorem, (h2), (h3) and (h7) hold with
Ey(X;)” 0 Vary(Xg)  —mgko
0 Ey(X;)’ —nomo  Varg(Xg) |

where ug = Eo(X7), pny = Eo(Xy). We summarize the above discussion in
the following corollary.

205 FeE

COROLLARY 2.1. Assume that in the SETAR(2;1, 1) model (1.2) and (1.3),
(F") holds and that Ec? < . Then the following hold:

nl/Q(éM —0) = N,(0,3, (¢, F)) forevery y €V,
(2.1) nl/Z(éR - 0) = N,y(0,Ty'u(¢,F)) forevery ¢ € D,
nl/z(émd —0) = N, (0,5 'p(G, F)) foreveryG € ®.

Since v, p and p functionals also appear in LRAR models, the above
statement about the efficiency comparisons also holds for the above
SETAR(2;1,1) model.

Next, consider the problem of testing the goodness-of-fit hypothesis H,:
F = F, against the alternatives H,: F' # F,, where F is a known d.f. on R,
assumed to satlsfy (Fg). The Kolmogorov test Would reject H, for large
values of D, = nl/ZIIF F,ll.., where now F () =F,(, 0), with 6 an estima-
tor of 0 satlsfymg (1.28). Then from the above discussion and (1.29) we
readily obtain that

D, =W+ n2(8 — 0)'fy]. + 0,(1),
where W(-) = n'/?[F,(-,0) — F,(-)]—the empirical of the i.i.d. r.v.’s—and p =
( Mg ) /-L(;),'

On the other hand, recall, say, from Koul (1992), Section 7.2, that in AR(p)
models the analogous test satisfies D, = [|[W/|l.. + 0,(1), provided the mean of
F, is 0. Thus, unlike in the AR models, even if F; has zero mean, the D, -test
is not asymptotically distribution free (A.D.F.) in general in the SETAR(2;1, 1)
model.

Next, let F,, F, be two d.f’s with F, # F,. Consider the change point

problem where one wishes to test H¥: &, &5,...,¢, are iid. F, F not
necessarily known against the alternative H,: ¢, &,,..., & are ii.d. F; and
€415 Ejr2s-- s €, areild. Fy, for some 1 <j < n.To descrlbe a test procedure

for this problem let 6 be ~an estimator of 0 based on {X;; 0 <i < n} and
satisfying (1.28). Also, let Fnu, F,,_, denote the residual empiricals based on
the first [ nu] res1dua1s X, — 0 'W,, 1 < i < [nul, and the last n — [nu] resid-
uals X, — 0 W, [nu] + 1 < i < n, respectively, u € [0,1]. The

Kolmogorov—Smlrnov type test of this hypothesis is based on 9, =
supy,ulgn(y, u)|, where

Z,(y,u) = ([nu]l/n){1 = ([nu]/n)}n"*{F,,(v) — Fy_ ()},
yeR,uel0,1].
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Now, for the sake of brevity, write W(y, u) for W(y, 0, ) of (1.23). From

(1.27), assuming that E&? < « and the common F of Hj satisfies (F*), we
readily obtain that uniformly in y and u, under H,

[nu]
2,(y,u) =(1- u)[W(y, u) +n2(0 —0)n"' Y Wif(y)l
i=1

—Uu

W(y,1) — W(y,u) +n'/?(6—0)n"! i Wif(y)l

i=1+[nul]
+0,(1).
From the ergodic theorem it follows that, under H;,

[nu]

nt Y W —up
i=1

Y Wo-(1-wk

i=1+[nu]

- 0, sup -0, a.s.

u

sup
u

Hence, one readily obtains that, under HF,
2, = sup|W(y,u) —uW(y,1)| + 0,(1).

y,u

Thus, it follows, from Bickel and Wichura (1971), that &, = sup{|G(s, )|,
(s,u) € [0,1]%}, where G is a continuous Gaussian process on [0,1]? with
Cov{G(s, u),G(t,u)} = (s ANt —st)-(u A v — uv). Consequently, the test
based on &, is AD.F. for H{ against H;. Clearly, a similar conclusion can be
obtained for any other test of HF based on {Z,(y,u); vy € R, u €][0,1]},
n>1

The results of the previous section are general enough to allow one to
obtain similar conclusions in the SETAR(2; p, p) model where, for known
(d,r),1<d <p,reR,

p p

H(,Y, ;)= ) a; X, I(X;_y<r)+ P b, X, I(X,_y>r),
Jj=1 J=1

with 0 = (a,, ay,...,a,, by, by,...,b,)". This is a version of the model in

Tong (1990), (3.25), page 107. Under max{Zj—’:llajl, rr_lbk <1, (Fy) and

E|e| < «, this model is strictly stationary and geometrically ergodic.

Next, consider the SETAR(2;1,1) + regression model obtained from (1.1)
upon choosing m =3, p=1=gq {Z,) to be known constants and
hO,y,2) =0,y "+ 0,y + 0,2, y,z € R, 0 €(0,1)> X R. The observations
are no longer stationary now, but Theorems 1.1 to 1.3 can still be applied.
Note that here h,(0) = (W/,Z_,)'. Suppose

(X7 0 X,Z,
n 'Y h(0)hy(8)=n"tY| o (Xi1)? X;,Z,, | =320 +0,(1),
‘ Xz XiaZ,  Z%

n~'? max|X; |=0,(1) and n~'/?max|Z,|=o0(1).
12 14
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Then conditions (h1)-(h9) are satisfied as are (M1), (S1) and (K1) so that all
the results of the previous section are applicable under (F). It is perhaps
worth mentioning that even in this relatively simple model these results are
new.

Next, consider the EXPAR model of (1.2) and (1.4). Assume Es? <
and (F*). Then it follows from Tong (1990), page 130, that this model is
stationary and ergodic, and E,X? < «. Because x* exp(—ax?) is a smooth
function of @ with all derivatives bounded in x, for all £ > 0, (H_,1)-(H,3),
(H6) and (H9) are easily verified here with

X1
Hi(ﬂ) = X4 eXP(_O?,Xiz—l)
-0, X7 exp(—03Xi2,1)

plim n~! ZHl(O) =E,H,(0) =v, say.
Moreover, by stationarity, the left-hand side of (H8) is bounded above by
S{s;fEeXo2 + Ey X exp(— HSXOZ)[SS exp(—2sgn” 2X{)
+05n{1 - exp(—sgn’l/ng)}z]}

— 8{s7E,X¢ + EyX§ exp(—0,X7)[ % + 0353 X5} = 0(1).

Thus, all asymptotic uniform linearity results of the previous section are
valid.

Consider, for example, the goodness-of-fit problem of testing H,: F = F,
versus the alternatives H,: F # F,,, where F| is as above. Then, with D,, 0
and f, having the same meaning as in the SETAR example, from (1.29) we
readily obtain that

D, =W+ nV2(8 = 0) wfy|l. +0,(1).

Now, if additionally, F, is such that the stationary distribution is symmetric
around 0, then v = 0 and the D,-test would be A.D.F., but not in general.
Similarly, because of the fact

sup -0 a.s,

u

[nu]
n! .;1 (Hi(e) - EeHl(e))

the conclusion obtained about the change point problem in the SETAR
example is also valid here with obvious modifications.

Now, consider the estimation of 6 when 0, is known. Then, using argu-
ments similar to those in the above SETAR model, one can verify that (M1),
(S1) and (K1) are also satisfied. Thus, here the asymptotic normality results
about M-, R- and M.D.-estimators of 6; and 0, are valid. For example, we
have the following result.
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COROLLARY 2.2. Suppose that the EXPAR model (1.2) and (1.4) with a
known 605 holds. In addition, suppose that Ec? < < and (F*) holds. Then the

asymptotic normality conclusion of (2.1) hold here also with %, =
E,H, ,(0)H,(0), T, = X, — v,v, where
. X, X exp(—03X7)
Hll(e) = 2 2 2 2 ’
X exp(—0,X7) X7exp(—260;X7)

X
vi=Ey X, exp(—0,X5) |

Conditions (M1), (S1) and (K1) are not satisfied when estimating 6;. The
difficulty in estimating 6, is similar to that of estimating a scale parameter.
However, one can prove a Cramér type result for M-estimators when  is
smooth. See Tjgstheim (1986) for the case y(x) = «.

3. Proofs. An important tool needed for the proofs of (1.6), (1.7) and
(1.12) is a general result obtained in Koul and Ossiander (1994). For the sake
of completeness, we restate it here. Let (), &, P) be a probability space. For
each integer n > 1, let (n,;, &,;,v,;)» 1 <i <n, be an array of trivariate
r.v.’s defined on (Q,.%) such that {n,;,, 1 <i < n} are iid. r.v’s with d.f. F
and 7,; is independent of (vy,;, §,;), 1 <i < n. Furthermore, let {%,;} be an
array of sub o-fields such that &/, c&/,,, 1,1 <i <n, n > 1;(y,, &) is &;-
measurable; the r.v.’s {n,;,...,m,,_1; (3,:, §,1), 1 < i <j} are &/, -measurable,
2 <j < n; and n,; is independent of &, ;, 1 <j < n. Define, for an x € R,

Vn(x) ; ! Z ynzj(nnz <x+ fni)’

1

14

i=1

=n_
Vﬂ*(x) = T’L71 Z ’Ynil(nni < x)7
=n_

Jn(x) ; ! Z E{Vnz‘[(nnz <x+ gnz)LQ/nl}

n
n
n
i=

1

(3.1) :
=n"' Y v F(x+§,),
i=1

Ji(x) = n 1 Y yuF(x),

U,(x) =nl*(V,(2) = J,(x)),
Ui(x) = n/2 (Vi (x) = I3 ().

The following lemma is obtained from Theorem 1.1 and Corollary 2.3 of Koul
and Ossiander (1994).
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LEMMA 3.1. In addition to the above, assume that the following hold:

n 1/2
(A1) (n_l )y YnzL) =7y+o0,(1), v a positive r.v.
i-1
(A2) n~'/? max ly,;| = o0,(1).
1<i<n
(A3) 1m}ax [€,:] = op(l).

Then, for every y at which F is continuous,
(3.2) |U.(y) = U (9)| = 0,(1).

If, in addition, (F) holds, then the processes {U,} and {U*} are eventually
tight in the uniform metric and

(3.3) U, = Ufll. = 0,(1).

Now recall the notation from (1.5) and let

(34 WH(y,t) =n"'2Y h, ,®[I(s, <y) — F(y)l, yER, teR™

Let A, ;»V;, W; and so on denote the jth component of h ., V, W and so on,

1<i<n,1<j<m. Note that if in (3.1) we take
(3.5) Yni = ilnij(s)’ Mhi = &i» & =d,i(s), L = Fis

then under (1.1) and (h1), U,(y) and U, (y) are, respectively, equal to Wy, s)
and W(y,0), for all y € R and s € R™, 1 <j < m. We now state and prove
the following result.

ni’

LEMMA 3.2. Assume that (1.1), (F) and (h1)-(h6) hold. Then,V 0 < b < <,

(3.6) sup  [[W(y,t) — W*(y,t)[ =0,(1).
yER,teN,

Proor. Fix a b € (0,). In this proof the indices i,t in sup; ; and y in
sup vary over 1 <i<n, teN,, y < R. Observe that by (hl), V a > 0,
dn, 2 Vn>n,g,

P(,”(sup|hi(0 +n12t) — hy(8) — n 2t'h,(0)| < ban’l/z)
it

(3.7)
>1- a.
Hence, from (h3), we readily obtain
(3-8) sup |d,,;(t)] = 0,(1).
it

This verifies (A3) for the £,; of (3.5). ]

Next, by (h2) and (h4), we readily obtain that (n™'L;A2, (s)'/? = 0;,(0) +
0,(1),s € Q,1<j<m, where 0,,(0) is the jth diagonal term of X, so that
(A1) is verified for the v,; of (3.5) for every s € ), 1 < j < m. Finally, because
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foralls € Q,1 <j <m,

n-1/2 max|ﬁnij(s)| <n 1?2 max|fznij(s) — fLL-j(O)| +n 1?2 max|ﬁij(6)|,
12 i 12

9\ 1/2
o172 m?x|hnij(s) — i’zij(e)| < (n—l Z{hnij(s) — hij(e)} ) ,

(A2) is implied by (h3) and (h4) for the v,; of (3.5), for everys € Q,1 <j < m.
Hence (3.3) readily enables one to conclude that

(3.9) sup [W(y,s) — W(y,8) =0,(1), seQ.

To complete the proof of (3.6), because of the compactness of N,, it suffices
to show that Va > 0,36 > 0and n, <, > Vs €N,

(310) Pi( s ID(3) -D(y8)l>a|<a 0>,
yeR,|t—-sll<s

where D(y,t) = W(y, t) — W*(y, t).
For the sake of brevity, let o;(y,t) =I(s; <y + d,,(t)) — F(y + d,;(1),
yeR, teQ,1<i<n,and write a,(y) for a,(y,0). Then

W(y,t) =n 2 Lh, () a(y,t), Wi (y,t)=n""2 Lh,(t)a(y)

and
D(y,t) = D(y,s) =n /2 L [h,,(t) = h,i(9)][@(y,t) — a;(¥)]

+ n71/2 Zhnt(s)[az(y’t) - ai(yas)]
=D(y,s,t) + Dy(y,s,t), say, yeER,s,te.

To prove (3.10), it thus suffices to prove its analogue for D; and D,. But (h6)
obviously implies this for D; because |a,(y,t) — o;(y)| < 1 for all i, y and t.

We proceed to prove an analogue of (3.10) for D Let D,; denote the jth
component of D,. Write hmj(s) h,f”(s) mj(s) and D2J =D;; — Dy,
where D correspond to the D,; with {h,, ()} replaced by {(hZ (s)}. Thus, by
the triangle inequality, it suffices to prove an analogue of (3.10) for DJ
l<j<m.

Now fixan a > 0,s € N, and & > 0. Let A, := n~*/2(8|h,(0)|l + 2ba) and

2j

ni’

A, = { sup |d,;(t) —d,(s)] <A

1<:i< n}
teN,, Ilt—sll<s

From (3.7), it follows that
(3.11) Pi(A,)>1-a, n>n,.
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Next, define, for y,a € R, 1 <j <m,
D5 (y,s,a) =n V2 Y hE(s)[I(e <y +d,(s) +al,;)
—F(y +d,(s) +ad,;)].

By definition, d,,(s) + aA,; is Z,;,-measurable, a € R, 1 <i < n. Moreover,
by (h3) and (3.8),

max|dni(s) + aAni|
(3.12) < max|d,(s)| + maxn~'/2(5]h,(0)| + 2b«)

=0,(1).

The rest of the argument being the same as for (3.9), one more application of
(8.3) with ¢,;, = d,;(s) + aA,;, and the other entities as in (3.5), yields that

(3.13) sup|Zyi(y,s,a) —in(y,s,0)| =0,(1), aeR,1<j<m.
Y

Now, using the nonnegativity of {AZ (s)} and the monotonicity of the

nij

indicator function and the d.f. F, we obtain, thaton A,,Vt € N,, it — s|| < §,
| D3i(y,5,1)]
<|255(y,8,1) —255(y,s,0)| +| 25 (y,s, 1) —255(y,s,0)|

+ n’1/2 Zh,:i”(s)[F(y + dni(s) + Ani) - F(y + dni(s) - A’”)]‘

By (F) and the fact that x* < |x|, x € R, the last term in this upper bound is
no larger than

20 flnt L]k (9)|(8]Bi(0) [ + 20a),

which, in view of (h2) and (h4), can be made smaller than « with arbitrarily
large probability for sufficiently large n by the choice of 6. This together with
(3.11) and (3.13) completes the proof of an analogue of (3.10) for D,, and
hence of (3.6). O

PrOOF OF LEMMA 1.1. Rewrite W(y,t) — W(y,0) = W(y,t) — W*(y,t) +
U(y, t), where U(y,t) = W*(y,t) — W(y,0) = n /2% [h,;(t) — h,;(0)]a,(y).
Thus, in view of (3.6), it suffices to prove

(3.14) sup [U(y,t) [ =o0,(1).
y,t
Fixal<j<mandate& N, Let vy, = knij(t) - knij(O)' Write v,; = v,; —

Y.; so that the jth component of U is rewritten as U; = Uj+ — U;", where
U (y,t) =n" 12 Yyia(y).
i
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Because y,T is %,;-measurable, 1 < i < n, from (h4) we obtain

Var(U;*(y,t)) = n "' LE{%:} F(y)(1 - F(»))

(3.15)
<n! ZE{ynZZ} =0(1), y € R.
i
Next, fixan « > 0, and let —» =y, <y, < - <y, = » be a partition of R
such that [F(y,) — F(y,_))] < a, i =0,1,...,r. Then, once again using the
monotonicity of the indicator and F, we obtain

sup|Uji(y,t)| < 2 max |Uji(yk,t)| +an V2 Y |yl
y O<k=<r ;

This, (3.15), (h5) and the arbitrariness of @ enables one to conclude that
Sup”U(y’t)”=0p(1)’ te]\]b'
y

To obtain the uniformity with respect to t, we need to show that an analogue
of (3.10) holds for U(y, t)-processes. But this is implied by (h6), because

U(y,t) = U(y,s) =n /2 L [h,,(t) — h,,(s)] a(9).

This completes the proof of (3.14), and hence that of (1.7) of Lemma 1.1. The
proof of (1.6) uses (3.2) and is similar to the above proof. O

Our proof of (1.12) uses (1.7) and the tightness of the residual empirical
process in the uniform metric which follows from Theorem 1.3(a). Therefore,
we shall first prove Theorem 1.3. In the sequel all probability statements are
understood to be under the joint distribution of {Y,, X;, g,;, 1 <i < n} when
0 is the true parameter.

ProoF oF THEOREM 1.3(a). The proof of Theorem 1.3(a) follows from
Lemma 3.1 applied to y,; = g,,;, and the other entities as in (3.5), and by an
argument similar to the one used in the proof of Lemma 3.2. O

Our proof of Theorem 1.3(b) is facilitated by the following two lemmas.
Recall the definitions of {A,;} from (3.11) and let u,; = d,,(s) + al,;, a €R,
Isll < &.

ni’

LEMMA 3.3. Under (F), (h1)-(h3) and (gl), for some K < « and for all
a> 0,

lim sup P(suprfl/2 Ylgni[F(y +uy) — F(x + u,,;)]| sKa) =1,
n x,y i

a €R,|sll<b,
where the supremum is taken over the set {x,y € R; |F(y) — F(x)| < n™1/%}.

PrOOF. Let wu, = max; u,;, 7, = sup{{f(y) — f(x); [F(y) — F(x)| <
n 1%}, o, = supl|f(2) — f(V); |z — v| < u,}. From (F) and (3.12), 7, = o(1),
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w, = 0,(1). Also, from (h2)-(h4) and (g1), we obtain that n~'/*%,|g,u,;| =
0,(1). Lemma 3.3 follows from these observations and the inequality

n-1/2 Z'g”i[F(y +u,) — F(x +u,,)]

<n V2 Y lgul|F(y) = F(x)| + n= 2 Ylguu,li7, + 20,}. O

LEMMA 3.4. Let F be a continuous strictly increasing d.f., {&;} be i.i.d. F,
a>0, n>1 N=[N"Y%""] and {y} be the partition of R such that
F(y;)=j/N,1<j<N, y,= —%, yy,1 = ® Then, under (g4),

[nu]
(3.16) sup|n /% Y gnfi[l(si <yi1) —I(s <y;) - (1/N)] =0,(1),
u,j i=1

where the supremum is taken over 0 <u <1,0 <j<N + 1.

Proor. We shall give the proof of (3.16) only for the case of g, the other
case being exactly similar. Let .7, = ofield{¢;; 1 <j <i}. Fixa0 <j <N + 1,
and let

Vi=gh[I(e <y01) —I(&;<y) = (1/N)], S,= XV, 1l<i<n.

Note that {%,;, % _;; 1 <i < n} is a mean-zero martingale. By Doob’s and

ni’ 13

Rosenthal’s inequalities [Hall and Heyde (1980), pages 15 and 23],

P(maXIynA > a) <o 'E(,,})

2
E{Z,}) < C{E[ZE(VL-QLZI) + ZEV;‘}, for some C < oo.
i ;

But, because g,; < g/, for all i,
YEV! < ) Eg,, E(‘fi2|'gifl) <gl(1/N)<n'?gla/(1- a),

2
B| S B2 )| = (o/( - ) DBt
Observe that these bounds do not depend on j. Therefore,
P(Lh.s.of (3.16) > «a)
< N max P(maxl.#,| > an'/?) < C(a)n *N L Egl, = O(n /%),
J 12 i

where C(«) is a constant depending on C and «, and where the last equality
follows from (g4) and the definition of N. This proves (3.16). O
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Proor orF THEOREM 1.3(b). Since (1.23) follows from (F) and (1.22), it
suffices to give the proof of (1.22).

Proor oF (1.22). Write g,; = g}, —g,;, and V' (y,t,u) and V" (y, t, u) for
the difference inside the absolute value in the Lh.s. of (1.22) with g,; replaced
by g and g,;, respectively. By the triangle inequality, it suffices to prove
(1.22) for V* and V™. Since both g% and d,;(t) are 7, ;-measurable, by (F),
(g4), (3.8) and the dominated convergence theorem, we obtain that,
V(y,t,u) € R X N, X[0,1],

(8.17) Var{V*(y,t,u)} <n ! i EgZ|F(y +d,;(t)) — F(y)|= o).
i=1

Now, fixan @ > 0,ans € N, and 6 > 0. Let A, be as in (3.11). Define, for
a€eR, (y,t,u) e R XN, x[0,1],

U*(a,y,t,u)
[nul
= n—l/Z Z gnil[l(gz Sy + dnL(t) + aAni) - I(gi Sy)
i=1

—F(y +d,;(t) +ad,;) + F(y)].

Arguing as in the proof of Lemma 3.2, we obtain that on the set A,,Vt € N,,
It — sl <8,

[VE(y,t,u)
< sup|Ui(1,y,s,u)| + sup|Ui(—1,y,s,u)|
y,u y,u

[nu]

+supn /2 Y gE[F(y +d,(s) +A,,) = F(y +d,(s) —A,)],
y,u i=1

yeR,uel0,1].

But by (F), the last term in the above bound is at the most equal to
2071577 T lg,h(0)] + 207! Elg, lba),

which, in view of (g4) and (g5), can be made arbitrarily small by the choice of
5, with probability tending to 1 as n — . Thus, to finish the proof of (1.22), it
suffices, in view of the compactness of N,, to show that

(3.18) sup|Ui(a,y,s,u)|=op(1), a €R,s €N,.

y,u
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Now let N and {y;} be as in Lemma 3.4. Then, once again using the
monotonicity of the indicator function and F, we obtain

sup|Ui(a,y,s,u)|
y,u

< sup|U*(a, y;,s,u)|
J u

n
+supn /2 ) |gni||F(yj+1 tu,) —F(y + um)|
J i=1

+ SQP[F(yj+1) - F(yj)]n_1/2 2lg,l
J i

[nu]

+ sup nl% 0y gnii[l(gi Syj+1) - I(8i Syj) - (1/N)] .
Jou i=1

The last term in this upper bound is op(l), by Lemma 3.4. The third term of
this upper bound is at the most «/(1 — a)n 'Y |g,,l, for all n, while, by
Lemma 3.3, the second term is at the most K, for all sufficiently large n,
with probability tending to 1.

Now consider the first term. Let
Gni = gnii[l(si Syt ug ) — I(s Syj) —F(y; +u,)+ F(yj)]’

1<i<n,

Then U *(a, y,s,k/n) = n"'/*S,,. Also, observe that for each n, {S,,,7,;;
1 < k < n} is a mean-zero martingale array. Hence, as in the proof of Lemma
3.4, by Doob’s and Rosenthal’s inequalities, we obtain

P(sup|Ui(a,yj,s,u)| > a)
J.u

< N max P( max |Ui(a,yj,s,k/n)| > a) < Nn~? max E{S},}/a*,
j

1<k<n J

Bs,.)* < of e[ To(ain)| + Lace).

Because u,; is ,;,-measurable, we obtain, from (F), that

E( §n2i|9’;n) < g3i|F(yj +u,) —F(y)l < | Flleg il il

l1<i<n,0<j<N+1,as,
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and, using the definitions of «,; and A,

E[§E(§”%|Z’i)]z

2

<1712 E[Zg,%ildm(s) +aA,,|
. 2

< 2lfI? n {ZEg:idzi(@ + 2a%%n 1 Y Egh |y (0)]
+4(ba)’n"' Y Egh,

for all 0 <j <N + 1. Also, because |£,,l <lg,;l, £,E(,)* = O(n), by (g4).
From (g4)—(g6) and the definition of N, it thus follows that there exists an n*
and a constant B, depending on ||fll», s, a and «, but not on n, such that

P(sup|Ui(a,yj,s,u)| > oz) <BNn ' <B{a/(1-a)}n V2%, n>n*
Ju

thereby completing the proof of (1.22). O

Proor oF (1.12) oF THEOREM 1.2. The proof of (1.12) uses (1.7) and
representations similar to the ones used in AR models as in Koul and
Ossiander (1992), Section 3. Use Corollary 1.3(a) above to obtain the tight-
ness of the residual empirical process as and when needed. O
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