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EMPIRICAL PROCESS OF RESIDUALS FOR
HIGH-DIMENSIONAL LINEAR MODELS!

By ENNO MAMMEN

Ruprecht-Karls-Universitit Heidelberg

We give a stochastic expansion for the empirical distribution function
Fn of residuals in a p-dimensional linear model. This expansion holds for
p increasing with n. It shows that, for high-dimensional linear models, ﬁn
strongly depends on the chosen estimator @ of the parameter 6 of the
linear model. In particular, if one uses an ML-estimator éML which is
motivated by a wrongly specified error distribution function G, then ﬁn is
biased toward G. For p2/n — =, this bias effect is of larger order than the
stochastic fluctuations of the empirical process. Hence, the statistical
analysis may just reproduce the assumptions imposed.

1. Introduction. In many statistical applications the results of a statis-
tical analysis may be strongly influenced by the model assumptions imposed.
Sometimes this influence is only a trivial matter. However, there exist
examples where this effect is hidden in a more complex structure and may
not be noticed in a statistical analysis. This paper gives an example of the
latter case.

For high-dimensional linear models with i.i.d. errors, we consider the
problem of estimating the error distribution. We show that the empirical
distribution of residuals depends strongly on the used estimator for the
parameter of the linear model. In particular, if one uses an ML-estimator
based on the likelihood with incorrectly specified error distribution G, the
empirical distribution of residuals is shifted toward G. For high-dimensional
linear models this bias effect can be of larger order than the stochastic
fluctuations of the empirical distribution. In particular, then the true error
distribution may be rejected with high probability by goodness-of-fit tests.

These features are not apparent in an asymptotic analysis where the
dimension p of the linear model is fixed. For p fixed, the asymptotics of the
empirical process of residuals is well understood. A first asymptotic treat-
ment was given in Koul (1969). General independent errors are treated in
Koul (1984). An overview can be found in Koul (1992). In this paper we use an
asymptotic approach where p may increase as the sample size n — «. This
approach is appropriate for many applications in which p is not small
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compared with the number of observations. For high-dimensional linear
models this approach can offer explanations which cannot be obtained by
asymptotics for fixed dimension p. An asymptotic approach with fixed p is
misleading because the high dimensionality of the model gets lost asymptoti-
cally. Asymptotics with increasing p are also proposed for linear models in
Huber (1981), Shorack (1982), Bickel and Freedman (1983), Portnoy (1984,
1985, 1986), Welsh (1989) and Mammen (1989, 1993) and for log-linear
models in Haberman (1977a, b), Ehm (1986), Portnoy (1988) and Sauermann
(1989). Consistency of bootstrap and asymptotic normality are studied in Mo
(1991, 1992) for minimum contrast estimators of parameters with increasing
dimension. In Kreiss (1988, 1991) autoregressive processes of infinite order
are approximated by autoregressive processes with increasing order. There
too, asymptotic results are given for the empirical distribution of residuals in
this model.

Section 2 contains our results on empirical processes of residuals in
high-dimensional linear models. Some applications of these results are dis-
cussed in Section 3. In Section 5 it is shown that, under reasonable assump-
tions, M-estimators fulfil the conditions used in Section 2. This section has
been included because the asymptotic description of estimators in models
with increasing dimension is rather different from the case of fixed dimen-
sion. The proofs are given in Sections 4, 6 and 7.

2. Empirical distribution of residuals. In this paper we consider a
linear model

(2.1) Y, =X"0+e, i=1,...,n,

with ii.d. errors ¢y,..., &,. The design variables X; € R” are assumed to be
nonrandom. We study how the empirical distribution function F, of residuals
8=, -X"),i=1,...,n,

A 122
F(t) =~ Y15 <1)
=1

works as an estimator of the error distribution function F. In particular, we
are interested in seeing how the asymptotic behaviour of F, depends on the
choice of the estimator § of the parameter 6. .

An asymptotic description of F, can be based on the comparison of F, with
the empirical distribution function F, of the error variables

F(t)y=n"1 vill(si <t).

This has been done in Koul (1969, 1970, 1984, 1992) and Loynes (1980) [see
also Shorack and Wellner (1986), Section 4.6]. The comparison is based on the
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following expansions for 7 € R”:

N
Il
—

(2.2) .
=n V2 Y [F(t + X[ (- 6)) = F(1)] +0p(1)

v () X (X 0] + on(1).

The main step consists in showing that (2.2) holds uniformly in 7 over
compact sets [under the norming (A1), see below]. The application of 7= 6
yields

(2.3)  Vn(E,(t) = F,(t)) = n"Y2f(t) _i [X7(6-6)] +0p(2).

The expansion (2.3) even holds if p3/n — 0 [under reasonable conditions
on 0, see Ioannides (1987)]. However, in general, this expansion does not hold
unless p2?/n converges to 0. This has ‘been shown in Portnoy (1986), where
the finite-dimensional distribution of F was determined for M-estimators 6.
In particular, this implies that (2.2) does not hold uniformly for the case of
p%/n — «. For the asymptotic treatment of F, under this condition, a new
mathematical approach is necessary. .

In this paper we discuss the asymptotic behaviour of F, for p?/n — = We
consider estimators 6 admitting a linear approximation 6 +
X, X, X))y, X, x(&;) for some function y. Without loss of generality we
assume

n
(A1) Z X, X' =

P

Assumption (A1) corresponds to the Vn -norming in the special case of a
shift model (p = 1, X, = 1/vVn). We assume the design to be roughly bal-
anced in the following sense (note that the || X; I*’s are the diagonal elements
of the hat matrix, where || || denotes the Euclidean norm):

p
(A2) sup 1X,1% = 0 2.
l<i<n n
We allow p2/n to increase at the following rate:

(A3) % — o(n'/%).



310 E. MAMMEN

Furthermore, we assume that the linear approximation of 9 has the
following accuracy:

p2

(A4) H9—0—ZXX( D=

=1
holds for a function y with Ex(¢;) = 0.

In view of (A3), condition (A4) does not imply that the Euclidean norm
between 6 and its linear approximation converges to 0. The following condi-
tion ensures that the expectations Y, are estimated consistently.

l

(A5) There exists a b = b, € R? with [|b]| = O(y/p?/n) such that

sup | X760 — X7 (6 +b)|= op(\/g (log n)3/2).

1<i<n

The asymptotic bias of 6 is represented by b. Due to (A2) and (A3),
condition (AA5) implies the consistency of the linear fit, that is,
sup; -; - .1X0 — X0l = 0p(1). Typically, sup, ., . ,IX0 — X7 (6 + b)| is of the
order \/(p/ n)logAn (see Section 5). We shortly motivate this order: In a “first
approximation” 6 behaves like a p-dimensional Gaussian random variable
with covariance Ex?(s;)I,. Because of (A2) one expects an “asymptotic”
variance of order p/n for X TH The additional factor y/log n is the price to be
paid for the uniformity in i.

We use the following regularity conditions on y and the error density f.

(A6) The error density f is twice differentiable with bounded second deriva-
tive and is strictly positive.

(A7) The function y is differentiable with bounded derivative; E exp(¢ x(&;))
exists for |¢| small enough; Ex(e;) = 0.

We need one further condition describing how the exact location of the &’s
lying near a fixed point ¢ interacts with the value of 0.

(A8) For a sequence k, = © we define T, . as the ﬁnlte grid T, . =
k;In V27 n[-C, C] It is assumed that for all t € x,'n"1/%27 there
ex1sts a random variable 6(¢) with the following two propertles NI
depends only on the random set I(¢) = {i: |ls; — X b — ¢l
> 1/(p/n) (log n)?} and the values of the &;’s with index i in I(¢) [b is
the asymptotic bias introduced in (A5)]; (i) for all C > 0, it holds
thatsup{|X(6(¢2) — ): 1 <i<n,t €T, o} = op(n'/?).

Condition (A8) is our main key for starting the asymptotic expansion of F
In the asymptotic treatment of ¥, property (ii) allows us to replace 6 by G(t)
in the definition of ¥ (#). In the next step we condition on I(#) and on the
values of ¢, for i €1 (t) Then we use the fact that, conditionally, 6(¢) is fixed
now [see (1)]
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Now we are ready to state our main result.

THEOREM 1. Assume (A1)-(A8). For the empirical distribution function of
residuals F,, the following expansion holds:

|s‘upé ﬁ(ﬁn(t) - I:‘n(t)) - A(t)| =0p(1) forevery 0 < C < o,
Here
. - Lf(t)
_ ~1/2 T(h_ ~1/2 — LBy (s)].
A(t) =f(2)n Ele (60— 0) +pn2f(8)| x(2) + 5 ) Ex*(&1)

Statistical applications of the stochastic expansion of FA’n given in this
theorem are discussed in the next section. Let us now briefly consider the
situation where a scale estimator & is used additionally. The stochastic
nature of the errors may then be judged by the empirical distribution
function FA'S,,L of the standardized residuals ¢~ '(Y; — X'6),i=1,...,n. The
asymptotic behaviour of Fg , is stated in the following corollary.

COROLLARY 1. Assume (A1)-(A8). Furthermore, suppose that the scale
estimator & has the following accuracy: & — o = op(n~'/*) for a o > 0. Then
the following expansion holds for the empirical distribution function of stan-
dardized residuals Fg

sup |ﬁ(ﬁsn(t) - F'n(a't)) - As(a't)| =0p(1) forevery 0 < C < o,
ltl<C

where Ag(w) = Aw) + uf(uXd — o)/o.

3. Discussion of the stochastic expansion of ﬁ‘n. In this section we
apply the result of the previous section to the case of 6 being estimated by an
ML-estimator 6,y;,. For the error distribution function F we consider the
following parametric families:

F,=1{G: g'/g = —ci for a ¢ >0, where g =G is the
density corresponding to G}.

In this model the ML-estimator is an M-estimator with M-function i :
Z Xi‘l/(Yi - XiTéi - XiTéML) =0.
i=1

From the asymptotics with p fixed, one expects that éML has a linear
stochastic expansion L X, x(¢&;) with x(¢) = (¢)/Ezy'(¢;). The validity of
this stochastic expansion will be studied in Section 5. We consider two cases:

Case 1. The model %, holds (i.e., F € 7).
Case 2. The parametric model %, is misspecified (i.e., F & .7,).
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In the following discussion we will argue that, in high-dimensional models,
typically goodness-of-fit tests for models &, based on the empirical distribu-
tion of residuals F break down. A modification of F which works will be
proposed. Furthermore we will show that under mlsspemﬁcatlon (Case 2) the
estimate F is strongly biased toward the parametric error model ..

In the dlscuss1on of this section we assume that p2?/n — . Furthermore,
for simplicity let us assume that [~ I¥n Xl = o(n"/?). Then
n 1T XT(6 — 6) = op(pn~') [because of (A4)] and because n~1/2 =
o(pn 1) the stochastic fluctuations of the empirical distribution function of
residuals F, are of smaller order than the bias (see the expansion of F, in
Theorem 1), that is,

\ o r'(t) ) o
F,(t) = F(t) +pnf(¢) 0} Epx*(e1)| +op(pn?).

1
x(t) +5

Cast 1 (F €.5). For regular densities f, one has Ey[(f"/f)(e)] =
—ER(f /F)?(&)]. Using this equality we obtain, from the formula of Theo-
rem 1,

Fn(t) =F(t) +pn~'d(t) + op(pnt),

where d(t) = —f'(t)/{2Eu[(f'/f)*(e)]}. Typically, the distance between
F(¢) + pn~'d(t) and the model 7, is of order O(pn~') and not of order
o( pn~1). This difference will force most goodness-of-fit tests to reject the true
model &, with high probability.

However, this does not hold for the Gaussian errors (where the ML-estima-
tor is the least squares estimator). Note that ®(z/(1 + 8)) = ®(¢) — dte(t) +
0(8), where ® and ¢ are the distribution function and density, respectively,
of a standard normal law. For Gaussian F we obtain F(¢) + pn “d(t) =
F(t/(1 — lpn~") + o(pn~Y), that is, in this case F, is biased toward a
normal distribution with smaller variance. For normal errors we can avoid
this bias effect by using scaled residuals &,(1 — pn~!)~/2. This modification
corresponds to the use of the unbiased variance estimator (n — p) 'YX, 2?2
instead of the empirical variance n~'X"_,&?2.

For other estimators of 6 we suggest the followmg modification of F

FMOD, . is the empirical distribution function of & + 5pn"'x(§;),

1<i<n.

Typically, the function x is not known. For instance, in the case of
M-estimators, Er¢'(g;) may be unknown. We suggest estimating this quan-
tity and substituting it, in the definition of y, by its estimate.

It can be shown that Sup|t\gc\/;|FMOD,n(t) —F(t — spn (@) = 0p(1)
for any C > 0. This proves the following corollary.
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COROLLARY 2. Assume (A1)—(A8). For the modified empirical distribution
function of residuals Fyqp , the following expansion holds:

sup |\/;(I'qMOD’n(t) - Fn(t)) - AMOD(t)| =0p(1) forevery 0 < C < o,
ltl<C
where

(%)

Ayop(t) =f(t)n"1/? ZXT(O_ ) + pn~2f(¢) 0

i=1

1
= (1) + Spn P (D EX ().

x(t) + Ex*(e) -~

In the case where F' € 9, and the ML-estimator is used, one obtains
f'(t) }
x(t) + Ex? 0,
which implies Vn (Fyop, ,(¢) — F (1) = n V2L, X (0 — 6) + 0p(1), that

is, after such a modification of F we are back to the ﬁxed p asymptotics [see
(2 3)]. Hence, we suggest basing goodness of-fit tests on Fy;, Do

Cast 2 (Model misspecification; F ¢.%,). For i=1 and i =2, let G,
denote the element of %, whose density g; fulfils g;/g, = —c; Iy for ¢, =
(Epp®)/QERy") and ¢, = (Epyp®)/(Epy'). We show that the emplrlcal dis-
tribution function of residuals F, is strongly biased toward G, € 7. Further-
more, FMOD . 1s biased toward G, € Z,. Again, we apply the formulas of
Theorem 1 and Corollary 1 with )((t) y(8)/Epp'(e,). This yields

F(1) = F() + pn= X ( ) ra )[’;((f)) - jg; +op(pn7Y),
(1) &s(t)

+ o0 pn*1 .
() g2<t>} P(pn7)
Now, for 6 small enough, under reasonable conditions on ¥ and G,, i = 1,2,
f'(¢)  gi(t)
f(2) gi(t)

Fyop, o(t) = F(t) + pn 'Epx® (Sl)f(t)[

sup - G(?)

F(1) + af<t)[ < sup| F(1) = G(1)].

This implies
sup| B, (t) — Gy(t)| < sup|F(¢) — Gy(t)],
t t

sup | Fyop. ,(¢) — Go(t)] < sup|F(t) — Gy(1)],
t t

for n large enough with probability tending to 1. The differences between the
right- and left-hand sides of these inequalities are of order p /n. Therefore, F,
and FMOD , are strongly biased toward the parametric error model. Under
our assumptlons (p?/n — =) this bias effect is of a larger order than the
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stochastic fluctuations of If'n and FA’MOD’H. In particular, the least squares
residuals tend to look more like normally distributed variables than they
should. This effect has also been called supernormality, and, heuristically, it
may also be explained by the fact that every residual is a sum of independent
variables. M-estimators with bounded i~function produce estimates of the
error distribution with heavy tails. Qualitatively, this effect follows from the
smaller influence of outlying observations Y; on the value of the parametric
estimator 6.

The following simulations show this bias effect: 100 data sets of 50
observations have been generated with a normal distribution F, = N(0, 2
and with a normal mixture distribution F, = sN(— 2,1) + iN(2,1). Inde-
pendent standard normal pseudorandom variables have been chosen as
design variables X;; with p = 5. In all 100 runs of the simulation the same
design variables have been used. For both data sets, residuals have been
calculated using the least squares estimator 6,5 and the M-estimator 6§, with
= (—f5/f5). (Here f, is the density of F,.) This provides four sets of 5000
residuals. Kernel density estimates using these four sets are plotted in
Figures 1-4. The bandwidth is 0.75. The kernel is the biweight function. In
each figure, plots of the densities of F; and F, have been added.

We have used a bimodal F, and we have plotted densities instead of
distribution functions. This may help to interpret the figures. The plotted
kernel estimates are Monte Carlo estimates of the density of the expectation
of the empirical distribution of residuals (based on 50 observations).

Figures 1 and 4 show that there is no strong bias effect if ML-estimates are
used, which correspond to the true model. However, under model misspecifi-
cation, strong bias effects appear. This is shown in Figures 2 and 3. In both
cases the kernel estimates lie between the true and the “assumed” densities,
that is, there are bias effects toward the assumed model. This is in accor-
dance with the theory presented above. Note also that there is no large
difference between the kernel estimates in Figures 2 and 3. This means that
the bias effect is so large here that it does not have a large effect when
interchanging the true and the assumed model.

4. Proof of Theorem 1. The main idea of the proof is as follows. For
considerations on the value of F, at a fixed point ¢, we subdivide the error
variables ¢; into two groups:

{e;:0 €1(t)} “error variables with values lying near to ¢”;

{g;:i €I(t)} “error variables with values lying far away from ¢.”

[The set I(¢) is defined in assumption (A8).] First, we replace 9 by 6(¢) in the
definition of F,(#). Because of assumption (A8)(ii) this only leads to asymptot-
ically negligible changes of F,(¢).

The random variable 6(¢) depends on I(¢) and the second group {g;:
i €I(¢)} only. In the next step we condition on I(¢) and {g;: i< I(@)}.
Conditionally, A0(t) is fixed and nonrandom. Using exponential inequalities
we show that F,(¢) is asymptotically equivalent to its conditional expectation.
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Fic. 1. Density of the expectation of the empirical Adistribution of residuals [ short dashes, error
distribution F, = N(0, %), least squares estimator 0,51, density of F, (solid line) and density of
F, (long dashes).

The conditional expectation of F (¢) consists of a sum of smooth functions
(instead of indicator functions). These functions can be treated by Taylor
expansions. A more technical summary of the proof can be found after
equation (4.5).

Note that (A8) remains valid with «, replaced by max{x,/r: r € N,
k,/r < log n}. (This would make the grid 7, ., smaller.) Then

(4.1) k, = O(log(n)).

With y, = /(p/n) (log n)* and for a sequence A, with A, -« and A, =
O(log(n)), define the event A, as

n

A, =1{ sup |X-T(é—0—b)|s%,

‘é_ 6 — ZXiX(é‘i)

i=1

sup | X7(8(t) - )] < Asin 12

1<i<n,teT, ¢
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Fic. 2. Density of the expectation of the gmpirical distribution of residuals [ short dashes, error
distribution F; = N(0,%), M-estimator 6, with = (—f3/f3)], density of F; (solid line) and

density of Fy (long dashes).

For A, — o slowly enough, we obtain
P(A,)) — 1.

(4.2)
We set ¢; = t,(t) =t + X[b,
A t+X7(6(t) —0), if|XT(6(¢) —6-10b)| <,
i (1) = (8(2) - 6), i X7 (8(0) ) =%
t;(t), elsewhere,
tf=1t(t) =t;(¢) + v,
Note that it holds on A, (for_n large enough) that #, = ¢ + X7(4(¢) — 6).
By the monotonicity of F, and F,, it is sufficient for the proof of the theorem
to show that
sup |Vn (B, (¢) = F,(¢)) = A(2)] = 0p(1).

teT, ¢

(4.3)
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Fia. 3. Density of the expectation of the empirical distribution ofA residuals [ short dashes, error
distribution Fy = IN(— 3,1) + +N(2,1), least squares estimator 0;g], density of F; (solid line),

and density of F, (long dashes).

For F¥(¢) = (1/n)C7_,I(¢, < £,) we obtain, on A,
sup Vn |y (1) - F,(1)]

teT, ¢

< sup \/;|F',fr(t + A tnTV2) - B (t - Agln*1/2)|,

teT, ¢
Because of
sup|(\/zl7~'n + A)(t + A, 'n %) — (\/EF',L + A)(t - A;ln‘1/2)| =o0p(1),
teR

for (4.3) it suffices to prove

(4.4) sup |Vn (B (t) — F,(¢)) — A(2)| = 0p(1).

teT, ¢

We set

Vn (B (t) = F, (1)) = A(2) = 8y(t) + Sy(t) + Ss(¢),
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Fic. 4. Density of the expectation of the empirical dis{ribution of residuals [ short dashes, error
distribution Fy = +N(— 2,1) + 1N, 1), M-estimator 6, with = (—f3/f5)], density of Fy (solid
line) and density of Fy (long dashes).

with
Sy(t) = 1/ ._il [I(e <t7) —X(e <t) — (F(t7) — F(t))],

Sy(t) =n~ V2 i"ll(gi 8) ~X(e <t7) —n 12 Z ((:)) (F(i) —F(t;)),

where D, (¢) = I(t; < ¢ <t/)and T,,(¢) = F(tj) - F(t;) = ED, (¢),
5.0 =0t £ I PR = PG + (R = F0)| = 200,

After these prehmlnarles let us briefly describe the following steps of the
proof. We will show

(4.5) sup |S;(t)| =o0p(1) forj=1,2,3.

teT, ¢

This implies the theorem. The crucial step here is to show (4.5) for j = 2. For
this case we condition on I(¢) and the values of &; for i € I(¢). Then we use
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assumption (A8), which says that, conditionally, 6(¢) (and £,) is fixed. Using
exponential inequalities, we obtain for i & I(¢) that (asymptotically) I(s; < £,)
—I(g; < t;) can be replaced by its conditional expectations (F(f;) —
F(t7))/T,,(¢). The proof of (4.5) for j = 3 is based on Taylor expansions of
F(t) — F(¢)).

In the proofs, we make use of the Bernstein inequality repeatedly [see
Hoeffding (1963) or Pollard (1984)]: For independent Z1, ..., Z, with |Z,] < M,

EZ, =0 and X}, Var(Z,) < g0 it holds that

2
mn
P(Z, + - +Z 2exp| - ———|.

(12, o 2 m) < 2exp| — o 2Mn/3)

Step 1. Proof of (4.5) for j = 1. This can easily be seen by applying the
Bernstein inequality with Z, = n"%[I(¢; < ¢;) — I(g; < t) — (F(¢;) — F(2))]
and the fact that the number #7, . is of polynomial order [#T, . =
O(log(n)n'/?), see (4.1)]. The quantity #7, . denotes the number of elements
of T, ¢.

Step 2. Proof of (4.5) for j = 2. We obtain, for 0 < < 1,

P( swp IS0l =) = T P(lsi0)] =)
= XT‘, EP(|Sy(t)| = n|I(t), & fori € I(¢)).

Note that S,(¢) = X}_,Z; with

J

1/2 2 — Dnj(t) A _
Z;=n"Y [I(gj <i)—I(e<t;7) - m(F(tj) - F(t7))].

Because |{; — ¢} < vy, for j=1,...,n, wehave Z, = 0 for j € I(¢). For j & I(¢)
the conditional expectation of Z; [given I(¢) and the values of &, for i € I(¢)]
is zero and the conditional variance of Z; is bounded by (4n)"'. We apply the
Bernstein inequality to the conditional probability with Z; for j & I (¢). The
number of Z’s [j & I(1)] is n — #I(t) = X}_ D, ;(¢). For C' > 2sup, .y f(¢),
this provides

P( sup [8,(¢)] = )

teT, ¢
n2
< E|2exp| — +o(1
te%c Xp( on 1(n = #1(0)) /4 + n 22ny5 || T 0D
2
n
< Y 2exp|—— =
teT, ( Cv,/2 +n 1/2277/3)

+2P(n ' (n — #I(t)) = C',) + o(1)

+0(1) = 0o(1).

=2 Y P(n1 i D,(t) = C,

teT, ¢ i=1
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The latter equality follows from one further application of the Bernstein
inequality (see also the proof in Step 1).
Step 3. Proof of (4.5) for j = 3. We set

S3(t) = S31(t) + S30(¢) + Ss5(2),

where

“ Dnl(t) - 1—‘nl(t)

S31(2) = n=1/?

(F(t) = F(t)),

i=1 L,i(t)
Sia(t) =n7V/% L [F(t) ~ F(t) = f(D(X[b)],
Sa(t) =n 12 Z [ ((t)) (F() —F (s ))} —f(tyn12 ‘_iIXiT(é— )
— () pn | x(0) + E%E Z(e»}-
We have to show that
(4.6) sup |SSj(t)| =o0p(1) forj=1,2,3.

For j = 1 this follows by application of the Bernstein inequality (see also the
remarks at the end of Step 2). Note that I',;(¢)"1(F(¢,) — F(¢;)) is bounded by
1. For j = 2, one uses a Taylor expansion of F(¢;)) — F(t) and ©I_ (¢, — t)? =
Y (XTb)? = bl = O(p%n~Y). It remains to show (4.6) for j = 3. This will
be done in the Steps 3a-3c.

Step 3a. Proof of

nl( )
T.(t)

sup |n~ /2 Z
teT, ¢

=0P(1).

This holds because, with ¢, between ¢; and £,, this term is equal to

nl( )
I (%)
1 nl(t)

< — sup n~ Y%*y3sup|f’(¢)| sup Z
GtETn’C teR teT, ¢ci=1 ni(t)

= O(nl/zynz){ sup i [D,;(t) = T,,(¢)] + sup i L,i(¢)

teTnyci=1 tETn,Ci=1

=o0p(y?) + O(n'/??).

1 2
[ (fi) —F(¢;) _f(ti)(fi —t;) — Ef’(ti)(fi —t;) }

1
— Ssup
6 teT, ¢

=i/ Z S (B - 1)
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For the proof of the latter inequality the Bernstein inequality can be used

again. Step 3a is now complete because n'/?y? — 0 under our conditions.

Step 3b. Proof of

D,,(t)

(4.7) i
Fnz(t)

sup
teT, ¢

n
n-1/2 Z
i=1

f(t) (& —t;)

(82 Y XT(B— 6 - b) — pn~ () x(0)| = 0p(1).

i=1

Since the probability of #, — ¢, = XT(6(¢) — 6 — b) (for 1 < i < n) tends to 1,
it sufficends to 1, it suffices for (4.7) to show

(4.8) Sl;P nt/? an (f(t:) _f(t))XiT(é_ 6 — b)‘ =op(1),
teT, ¢ i=1
~1/2 = Dni(t) T(A N _
(4.9) 5up | / Elmf(ti)(xi (6(t) - 9))‘ = 0p(1),
~1/9 = Dni(t) _rni(t) T(A o _
t:l;'fc n i=21 L,i(¢) f(ti)(Xi(e ‘ b))
(4.10) ’

—pn 2 f(2) x(¢) | = 0p(1).

For the proof of (4.8) note that

n1/2 i (f(t,) — () XT(6— 06— b)‘
i=1

<

n-1/2 é(f(ti) — f(t))XiT i“lXj/\/(ej)

+|[n1/2 i(f(ti)_f(t))Xi -Hé—ﬂ—b— inX(Sj)
i=1 J=1
- 0p| w1 X () — ren 1+ 2 ],

where, in the latter equality, assumptions (Al), (A4) and (A7) have been
applied. [Assumptions (A1) and (A7) imply ngylejX(é‘j) = Op(llc, D for
sequences ¢, of vectors in R?.]
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However,
n 2 (f(t) — ()X < Sup n=V2 Y [A(8) — F(D)](Xe)
i=1 ell=1 i=1
n 1/2
< oon | £ (67| s [70) - 100
llell=1[i=1 <i<n
= sup [ £() ~ (1)),

Now claim (4.8) follows from sup, . |t; — t| = IXTb| = O(p3/2n~1) and from
the assumption that f has a bounded derivative.
Claim (4.9) can be shown using

A n D,.(t
sup |XiT(0(t) - 0)| =o0p(n %) and sup |n" '), () = 0p(1).
teT, ¢ teT, ¢ i=1 Fni(t)
To complete Step 3b, it remains to show (4.10).
Proof of (4.10). We remark first that
Dm- t)y —I,;(¢
sup (n”V% ) 52 ( )f(ti)
ETn,c i=1 Fnl(t)
(4.11)
X XiT(é— 0-b— Y X, x(¢) ) = 0p(1).
j=1
To prove (4.11) it suffices, in view of (A3) and (A4), to show
" D, .(t)—T,(t
(4.12) sup |[n /2 () ( )f(ti)Xi = op(p"*n=1*).
teT, ¢ i=1 1—‘nl(t)
For (4.12) one proves
n ~l/2 n D (t) =T (¢t
sup 1+ ZXS} nfl/Z nz( ) nz( )f(tl)le
(4.13) 1<j<p,teT, ¢ i=1 i=1 Li(2)

= op(p_1/4n‘1/4(log n)fl/z).

This can be seen by application of the Bernstein inequality.
Claim (4.10) follows now from (4.11) and

~1/9 Dni(t) - Fni(t) T _
(4.14) t:l;fc n- v ig} WO F(E) (XX x (&) | = 0p(1)
and

-1/2 = Dni(t) - Fni(t)

n

sup FUDIX X (&) — pn~ /2 f(2) x(2)

(4.15) teT, ¢
=o0p(1).

i-1 Li(2)
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It remains to show (4.14) and (4.15).
Proof of (4.14). Set

D,(t) — T,
Z(t)y=n"' % m(tr) -(t)nz(t)

We apply now the following bound of Whittle (1960). For quadratic forms
Z = X;.10,;é¢ with independent mean-zero random variables
&,y &,y L4545 &y, it holds for £ > 1 that

f(ti)(XiTXj)X(gj)'

k

EZ% < 9 C(MYCER) | % o(E(67) (B(c?)""| ,

=1

where C(k) = (2%/2/V7)I'(k + 1)/2) (T is the gamma function). We apply
this inequality with & equal to the integer part of log(n). For a constant b;,
Stirling’s formula provides 23*C(k)/C(2k) < b6 log(n)"¢™). Furthermore,
with some constants b, and b; we have

™M=

)y (XiTXj)2 = ,iIXT

i#]

[ XX - X.X7]X, < LIXI” =p

1

J

sup E

teT, ¢

(Dnt(t) =T

nl(t) ) < leog(n),yl—Qlog(n)
= - ,
EX(gj)2k < blgog(n) log(n)2log(n).

The latter inequality follows from assumption (A7) [and |x| < exp(|x])] be-
cause

2k 2k

ﬂ S (W) Eexp(|tx(2)]).

2k

2k 2k
|t )

Ex(s)™ < (

With the aid of these bounds we arrive at

31og<n) 1 2log(n)

log(n)
) log(n)

EZ(1)? < (%blbzbS

1/2
— (%) (blb263)1°g(n)(log n)2—10g(n)

— O(n—s loglog(n))’

with a constant & > 0. Using this and #7T, . = O(log(n)n'/?) [see (4.1)] one
can show (4.14) by means of the Tchebycheff inequality.
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Proof of (4.15). Equation (4.15) follows from

(4.16) sup |n ¥ AIX x5 = on(D),
(4.17) sup |n"'/2 Z Dnilt )||X|| () (x(&) — x(8))| = op(1),
teT, ¢ (t)
(4.18) sup |n~1/2 Z Dnilt) — ni(t)HXinf(ti)X(ti) =op(1),
teT, ¢ i=1 ni(t)
(419)  sup |n V2 S X £ x(8) — F(0) x(0)]] = o(1).
teT, ¢ i=1

Equations (4.16)—-(4.19) can be shown by methods similar to those used above.
The proof of the theorem is now completed by the following step.
Step 3c. Proof of

L Dnz(t) ~ 2
su n*1/2 fr ti ti_ti _ n71/2 "(E 2 i
(120) S [P D T @) e P (OB ()
= op(1).
Set U = X, X; x(&;). We first show
nl( )

(4.21) sup n~V/? Z — 1) = (XTU)?| = 0p(1).
teT, ¢ (t)

By assumptions (A5) and (A8) and sup, c zlf'(£)| = O(D), for (4.21) it suffices to
show

sup n 1/2 Z nl( )
teT, ¢ (t)

where V = 6(t) — 6 — b. Using (X7V)? — (XTU)?| = IX7(V — U)| X} (V +
U)|, the Cauchy—Schwarz inequality and p%/2n~3/2 = o(1), this follows from

(X7 ) - (XU = 0p(D),

3/2
(4.22) sup n~1/? Z D.i(t )(XiT(V— U))* =op(p )
teT, ¢ [,.(t) n
and
(4.23) sup n~1/? Z Dni(t )(XiT(V+ U))2 = 0p(pn~"?).
teT, ¢ (t)

Proof of (4.22). A simple upper bound for the left-hand side is

inf r,w.(z:)]ln-l/2 Zn:I(XiT(V— U)).

teT, ¢, 1<i<n

This bound is of the order o,(p3/2/n) because of (A4).
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Proof of (4.23). Claim (4.23) follows from (4.22) and

D (t
(420 mwp o £ PR (XIUY = 00,
teT, ¢ i—1 Lai(?)
Claim (4.24) can be shown using X7 (X7U)? = |U||> = O,(p) and
(4.25) sup | p(t)] = o0p(1),
teT, ¢
where
n D (t)—T.(¢t
p(t) _ n_1/2 Z m( ) nl( )(XiTU)2.

1 Fni(t)

A lengthy calculation gives sup,.q, . Var(p(?)) = O(p*?n~%/%) and
sup,cp |Ep(#)l = o(1). Because #T, o = O(log(n)n'/?) this implies (4.25).
We now show

i

Dnz(t)
1 Fni(t)

-1/2

™M=

sup F(8)(XFU) — pn~V2f (t)Ex?(s,)

(4.26) teT, i
= op(1).

This completes the proof of (4.20).
Proof of (4.26). This follows from (4.25) and

n

2

Eln 2 ¥ (XIU)" — pn ' 2Ex*(&,)| =o(1). O

i=1

5. M-estimators in high-dimensional linear models. In this section
we show that M-estimators fulfil the conditions of Section 2 under reasonable

assumptions. We start with the special case of the least squares estimator
0:5- We assume (A1), (A2) and the following:

(A3) p®/n = o(n'/*(log n)728/5);
(A4') &; has a finite Laplace transform: E(exp(te;)) < o for |¢| small enough,
and E(g;) = 0.

The next theorem states that, under these assumptions, least squares
estimates fulfil the conditions of Theorem 1. (In this case we have no
asymptotic bias; b = 0.)

THEOREM 2. Assume (Al), (A2), (A3') and (A4'). Then

(5.1) sup X0, s — X6 = OP(\/(p/n)log n )

1<i<n
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Furthermore, there exists a sequence k, — * such that

X7 (fs(t) — s 1< i <m0 € T, o) = op(n” )
forevery 0 < C < +o,

(5.2) sup{

Here 0,4(t) is defined as

0+ ¥ X+ ¥ X.E[eg]l
ieI(t) ieI(t)

& —tl < (p/n) (log n)z];

T, ¢ and I(t) are defined as in Theorem 1; in particular, because b = 0, we

have I(t) = {i: le; — tl = y/(p/n) (log n)*} now.

Now we come to the case of arbitrary M-estimators (5¢ defined to be a
solution of an M-equation

M=

(5.3) XY, - XM,) = 0.

1

We now assume (A1), (A2) and the following:
(A3") p%/n =o(n ") fora s> 0;

(A4") ¢ is a bounded function with three bounded derivatives and with

E(y(s,) = 0.

The next theorem states that under these assumptions M-estimators fulfil
the conditions of Theorem 1.

THEOREM 3. Assume (Al), (A2), (A3") and (A4"). Set x(x) =
y(x)/Ey'(g,). Then there exist a solution de of (6.3) and a b =05, € R?

fulfilling ||bll = O(y/ p*/n) and

(5.4) sup | X7, — X7(0+b)| = 0p(y/(p/n)logn ),
l<i<n
(5.5) j, — .ZX = 0p(Vp?/n ).
(5.6) Furthermore, there exists a «, —> © and, for all t € k, n~ Y27, there

exists a random variable 0 (t) that depends only on I(t) = {i: Ia -X'b —t| >
V(p/n) (log n)*} and &;, i € I(¢), with

sup{‘XiT(Qp(t) - 61,,)

:l<i<n,te Tn,C} =op(n~1%)

forevery 0 < C < +o,

This generalizes a result of Portnoy (1986), where the finite-dimensional
distribution of ¥, was determined for M-estimators ¢, under more restrictive

assumptions on the function ¢y and the design vectors X;,..., X, .



EMPIRICAL PROCESS OF RESIDUALS 327

6. Proof of Theorem 2. For the proof of (5.1) note first that

X' (s —0) = i XX ;e,.

i
Jj=1

Set p = ((n/p)log(n))/2. For C > 0 the Markov inequality gives
P(XiT(éLS - 0) > C\/(p/n)logn)
< Eexp( p[XiT(éLS —60) — Cy(p/n)logn ])
<n ¢ jl:[lEeXp( p(XiTXj)sj).

Now, by (A2), sup; _; ;. ,|p(X/X)| = OG/(p/n)log n) = o(1). Hence, with a
uniform constant C’, we obtain the following bound for the above expression:

e , 2
<n°¢ j]:[l(l + Cp2(X7X,)")

=

<n € exp(C’pz (XiTXj)Z)

Jj=1
< n—C+C’.

With C chosen large enough, this and the corresponding inequality for lower
tail probabilities show (5.1) to hold.
For the proof of (5.2) note first that

XiT(éLS(t) - éLS) =3 (XiTXj)[gj — E( glle; —tl < yn)]1(|8j —t] < yn),
j=1

where, as in the latter proof, ¥, = y/( p/n) (log n)?. The upper and lower tails
of the distribution of this expression can be bounded using the Bernstein
inequality (see Section 4) with M = O(y,p/n), V= 0(y’p/n) and n =
O(/V logn). For the proof of (52) note that the supremum in
sup{IX[(6,5(¢) — O, 9)l: 1 <i <n, t €T, .} is taken over an index set that
grows polynomially in n. O

7. Proof of Theorem 3. Claims (5.4) and (5.5) are immediate conse-
quences of results in Mammen (1989). In particular, (5.4) follows from
Theorem 1 and Lemma 2 in Mammen (1989). For the proof of (5.5) one can
use the stochastic expansion 6, of ), given in Mammen [(1989), Theorem 1].
It remains to show (5.6). We choose u;(¢) (for ¢t € T, ) with |u,(t) — ¢;| <,
such that

E(¢’(8i _Xin)| le; — ;] < Yn) = ‘»[f(ui(t))'
As in the proof of Thn = \/( p/n) (log n)* and ¢, = ¢,(t) = ¢t + Xb.
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We will show that for every t € T, . there exists a solution él,,(t) of the
following equation which fulfils (5.6):

Y Xl —XT[8,) —0]) + X Xip(wi(t) - X [6,(t) —0—b]) =0.
iel(t) i I(t)

To verify (5.6) we approximate 0A¢(t) by a variable 7,(¢) given by an explicit
formula. The variable 7,(¢) is defined as

%w(t) = éw +A_1[_ _Zn:IXi(‘p(éi) - ¢(ui(t)))l(|5i -t < Yn)

- XiXiT(‘V(éi) - ‘/’,(ui(t)))laéi -t < Vn)Xk X(gk)},
i, k=1

where A is the matrix A = Y7, X, X Ey'(%;) and &, = &, — Xb. Note that
éi —t= SL' - ti'

We show, for C > 0,

(7.1) sup XiT(é¢, - %p(t))‘ = OP(p5/4n75/4(10g n)7/2),
l<i<n,teT, ¢
(7.2) sup ||6,(t) — #,(t)| = op(p~1/?).
teT, ¢

Now p*“*n~%*(og n)"/? = o(n"'/?) and sup,_;.,lI Xl = O(p'/2n~1/2).
Consequently, (7.1) and (7.2) imply (5.6). ;
Proof of (7.1). It suffices to show the following, with X, = A™'X:

sup
(7_3) l<j<n,teT, ¢

= 0p(p*/*n =" (log 1)""*);

XJ‘T'_ilXi[‘/f(éi) = (i (8)]1(15 — t] < 7,)

sup
1<j<n,teT, ¢

7Y X(X7X,)

<[E(w'(&)| 13 -t <) = ¢ (u,(2))]

(7.4)
(105 — ¢l < %) — E[X(& — t| < %)]]w ()
= 0p(p**n/2(log n)”* + p>/*n~%(log n)*);
sup X7 X,(XIX)E(v'(&)| 15 —tl <9,)
l<j<n,teT, ¢ i,k=1
(7.5)

— o' (u;(¢))E[I(15 — t| < v,)] (&)

= 0p(p**n"**(log n)”?);
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sup | X[ X X(XX)[w'(&) - E(w'(&)|15 -t < )]
l1<j<n,teT, ¢ i,k=1

(7.6) XI(18; — t| < %) ¥(&)

= Op(p3/2n’3/2(log n)s/2 + p°/2n"2(log n)4).

Claims (7.3) and (7.5) can be proved by application of the Bernstein
inequality. For upper estimates of the quadratic forms in (7.4) and (7.6), one
can proceed as in the proof of (3.16) in Mammen (1989): one applies the
Markov inequality and uses the bounds for the Laplace transform of quadratic
forms given in Mammen (1989).

Proof of (7.2). Set

G(r)= ) Xiz,lf(ai - XT[r- 0]) + ) Xil,[/(ui(t) —XT[r—0- b])
iel(t) ieI(t)

Then 0 (¢) is a solution of G,(7) = 0. We give (7.7)-(7.9) (see below). Equation
7.7 1mphes that |G (Tl//(t))H = 0p(p~1/2). Equation (7.8) shows that the
matrix G(%,(¢)) is nondegenerate. Furthermore, in (7.9) we give bounds for
the norm of the trilinear form G}(6) in a neighborhood of 7,(¢). The
Newton-Kantorowitsch theorem (see below) implies that under these condi-
tions there exists a solution ,(¢) of G,(7) = 0 fulfilling (7.2);

sup | X X;y(s — X[5,(¢) - 6])
teT, cliel()
(7.7) + ) Xilp(ui(t) _XiT[%L/,(t) -0 b])”
i I(t)
=op(p '),
sup | L X X[(e — XT[3,(¢) - 6])
teT, clielt)
(7.8) + ¥ XXM (ui(t) — XP[3,(¢) — 0 - b]) — LEY/ (&)
i I(t)
=o0p(1)
and
_S‘ﬂ; L (Xle)(X[F) (X g)y" (e — X[ [7— 0])
t,7,e,f,gliel(t)
(79) b T (XPe)(XTF)(XT )" (1)  XIL -~ 0])
iEI@)
= 0p(1) Vd >0,

The supremum in (7.9) runs over all ¢ in T, ¢, over all 7 with 7 — 7¢(t)|| <d
and over all vectors e, f and g with unit norm |le]| =1, ||f]| = 1 and ||g|| = 1.
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We now cite a version of the Newton—Kantorowitsch theorem that will be
used here [Kantorowitsch and Akilow (1964)].

NEWTON—KANTOROWITSCH THEOREM. For a point x, € R? and a constant
r > 0, assume that a function G: R? - R? has two continuous derivatives for
x with ||x — x,ll < r. Furthermore, assume that I' = (G'(x,))" ! exists and that
for some constants A,m > 0 the following inequalities hold: [T G(xy)ll < m,
ITG" ()l < A for lx —xgll<r, h=A-n<3i ro=0(1—-V1—-2h)/hIn<r.

Then the equation G(x) = 0 has a solution x* with ||x* — x,ll < r,.

This theorem will be applied with G =G,, for t €T, ;. Equations
(7.7-(7.9) show that the assumptions are fulfilled with r, A and n indepen-
dent of ¢t € T, (. This proves (7.3).

Now we come to the proof of (7.7)—(7.9). Claim (7.9) can be shown using the
Cauchy—Schwarz inequality and the assumption that " is bounded. For the
proof of (7.7) and (7.8) we use the following two lemmas.

LEMMA 1. For every triangular area of independent random variables

Zy1sevesZy , With SUPy _ ;o oy EIZMI10 < +xand EZ, ; = 0, one has
n
/\amax( Z XiXiTZn,i) = OP(p3/5n71/2)9
i=1
where A, ..(B) denotes the maximal absolute eigenvalue of a matrix B.

LEMMA 2. Fort € T, . we consider triangular areas of random variables
Z, (V),...,Z, [(t) that are uniformly bounded, that is,

sup |Z, (t)] <+ (a.s.).

l<i<n,nz>1,t€T, ¢

For t € T, . we define the matrix B = B,(t) = L' X, X" 1|z, — t| <
Y)Z, (t). Then, for every ¢ > 0, it holds that

sup )‘amax(B) = OP(p5/8n_1/zn€)‘

te Tn, c
ProoOF OF LEMMA 1. It suffices to show
E trace(D") = O(p®n~?),
where D = ¥ X, XZ, ;. This follows from the evaluation of

Etrace(D") =E Y (X'X,)(X!X,) (X5 X:)Z0i, = Zniyye O
i1yeeesite=

Proor or LEMMA 2. It holds that

suple?Be| < sup |Z, ;(t)|sup|e” 3 X, X[ I(1&; — t| < v,)e],

e,t l<i<n,nz1,t€T, ¢ e,t i=1
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where the supremum sup, , runs over all vectors e in R” with unit norm
lle]l = 1 and all ¢ in T,, .. Therefore, without loss of generality, we can assume

that Z, , =1, for 1 <i<n,n>1
For every even integer  and for every ¢ € T, . we show

(7.10) E trace(B”) = 0([(log n)’p*/*n"%] "p),

where B =Y X, XTI, I, = I(|&, — t| < v,). With J large enough this im-

plies the statement of Lemma 2 because the number of elements of T, . has
polynomial growth. O

Proof of (7.10). It holds that
trace(B’) = ), (Xiinz)(XL?Z"XL.g) (Xf,X )I- o I

i1) 71 iy*

Now we divide the summation region {1,...,n}’ into pairwise disjoint
regions I such that every region I is defined by specifying for each pair j # j
if i; =1, holds for all i = (i},...,i;) in I or if i; #i; holds for all i in I
Consider now such a region I of i =(iy,...,i,). Denote the number of
different indices in I by R, that is, R = #{i,...,i,} for i € I. We denote the
different indices by %,,..., kg, that is, {ky,..., kg} = {iy,...,i,;}. To every
region I one can associate a pseudograph Z; with R nodes and </ edges. (In
contrast to a graph, a pseudograph may contain loops or pairs of vertices
connected by more than one eresponds to an index k,. There exists an edge
from node %, to node % if (k,,k) = (i, ;) or (k,k,)=0(i;,,) foraj
with 0 <j <J — 1 (where we set i, = i,;). [Indices (i;,7;,,) with i; =i,
would correspond to a loop.] The pseudographs are connected. First we treat
only sets I with pseudographs &, fulfilling the following:

For each node there exist at least four edges arriving
(7.11)
from another node.

Clearly, (7.11) implies R < J /2. We choose now a cycle (a closed path) ,
which pays exactly one visit to every node in ;. The Cauchy-Schwarz
inequality provides

igl(XilXiz)(Xiing) (XiCXil) < S}/283/2,
where

s,=Y I (xrx) and S,-Y I (x7x),

el (l‘jfl,ij)e/l el (ij71,ij)$/!

and where the notation i, =i, was used again. Using X' X, X =1,
Z?:1||Xi||2 =p and [X/X,| = O(p/n), for 1 <i, i’ < n, iteratively one can
show

S, =0(p(p/n)").
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For an estimate of S, note first that, after removing the edges of ., the
pseudograph may divide into L components with R,,..., R; nodes, where
R, + -+ +R;, = R.Because of R, > 2,for 1 <m < L, it holds that L < R/2.
By similar calculations as for S;, we obtain

L
S, = 0| (p/m)*" " T1 (p(p/m)"™)| = O((p/m)*" " p" 7).

These bounds give

) (Xiinz)(XiZXi3) (XZ;XH) = O((P/n)JiRPHRM)
(7.12) iel
= 0((p/n)J*Rp1+J/8)'

A simple calculation shows that equation (7.12) holds also for the case of
R = 1. Now we consider sets not fulfilling (7.11). Then there exists a node
that is connected with other nodes by only two edges. This means that there
exist integers j(1) and j(2) with j(1) < j(2) such that we obtain for all i in I
that i; = i, if and only if j(1) <j < j(2). For an i in I, consider

Z X (XTX )j(Z)*j(l)JrlXT

ré&R(i)
(7.13) l i(2)— j (2) - j(1)
_ (p/n)j(z)*j(l)l—‘n _ Z Xr(XrTXr)] —J XrT’
reR(i)
where R(i) is the set R(i) = {iy,...,i;0)-1,%j@)+1,--+> i} [, is a matrix with

uniformly absolutely bounded eigenvalues. Without loss of generality, one can
suppose I, = I . Formula (7.13) can be plugged into S =

Lo (XX (XTX ) (Xig X; ) repeatedly. Each application replaces S by a
sum of [1 + #R(i)] terms Sygw that are of the same type as S. The first term
is multiplied by a factor F = (p/n)’® /@ For the first term the old quanti-
ties J and R are replaced by Jygw = Jorp — (J(2) —j(1) + 1) and Rygy =
Ro.p — 1. Note that F(p/n)/~xew=Exsw = (p /n)7oro~Eouv For the other terms
we obtain Jygw = Jorp and Rygw = Rorp — 1, that is, (p/n)/vew Exew <
(p/n)7oo~Eoun  After repeated use of (7.13) we arrive at terms Sygy fulfill-
ing (7.11) or Rygw = 1. This shows for S = Sy, J = Jop and R = Ry
that (because of Rygyw < J/2)

© (X1X,)(XIX,) -+ (XIX,) = O((p/m)’ " pt5ore /4

iel

= 0((p/n)" " p*7/®).
Now the application of (p/n)’ FyE = O((log n)*/(p/n)?/?), for 1 <R < J,
yields (7.10).
Next we prove (7.7) and (7.8).
Proof of (1.8). Because sup; . ;e 7, (u,(t) — &1, IX[[7,(t) — 61D = 0p(1)
and (A1), it suffices to show [[X7_, X, X ('(&,) — E¢'(e)ll = 0p(1). This fol-
lows from Lemmis follows from Lemma 1.
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Proof of (7.7). The left-hand side of (7.7) is the norm of the following
expression:

Y Xo(a - X[5,(t) —60]) + X Xp(u(t) - X[[5,(t) — 6-0b])

ieI(t) 1eI(t)
= L [u(e X700 = o]) = wle - x7[4, - o]
+ ¥ X[y (ui(t) - XT[%,(¢) - 6-b])
l$l(t)

_‘»[f(si _XiT[%w(t) - 0])]
1(2) + - +Ve(2),

where

Vi(t) = i XiXiTEd’l(‘g‘i)[éJ/ - %//(t)]’

i=1
Vy(2) = '_ilXiXiT[w/(éi) - E’!’,(g‘i)][éw - 7A'nz/(t)]a

Vit) = ¥ XX (e - X2[d, - 0]) - w(2)][ 4, - 2.(0)],

i-1
“ " * T(H A 2
Vi(t) = X X (e5)| XF(6, - 2]
i-1
for an & lying between &, — X/7,(¢) and &; — X7,

Vs(t) = X Xi[d/(ui(t)) - ‘!’(éi)]’

i€ I(t)
Ve(t) = X X[{w'(wi(8) +8) = ¢'(& +8))
30
—{¥'(wi () — v (&) X" (7 (2) — 6-b),
for a &, lying between 0 and X (%,(¢) — 6 — b),
Vi(t) = L XX [0/ (u(0) = ' (&) [A(6) — 6],

ieI(t)

Vi(t) = ¥ XX (uy(0)) - w(5)][ 8- 6 b - ilxj)((ej) ,
ieI(t) Jj=

Vit = T XA ((0) - #(5)] T X x(e)
It j=1

By definition of 7,(¢) it holds that
Vi(t) + Vi(t) + Vo(2) = 0.
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It remains to show
(7.14) sup |Vi(t)| =op(p /%)  forj+1,5,9.
teT, ¢
This can be shown by calculations that we indicate briefly. For j = 2, (7.14)
follows from Lemma 1 and
(7.15) 16, = 2,(t)| = 0p(p**n**(log n)"?).

Equation (7.15) is an immediate consequence of (7.1). For j = 3 one applies
(7.15) and (5.4). For j = 4, (7.14) follows from (7.15), (5.4) and (A1l). For j = 6,
one applies Lemma 2 with
Z, = [(#'(wi(t) +8) = ¢'(&+8)) — (4'(ui(t)) - ¢'(5i))][5i7n]_1-
Because of (7.15) and (5.4), we have here
sup 18,1 = Op(p"/*n="?(log n)l/z).

1<i<n
For j = 7 and 8, one uses (7.15) (for j = 7) or (5.5) (for j = 8), Lemma 2 and
sup |‘V(ui(t)) - ¢'(&)] = Op(p'/?n="*(log n)). o

l<i<n,teT, ¢
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