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ON THE ASYMPTOTIC PROPERTIES OF A FLEXIBLE
HAZARD ESTIMATOR1

BY ROBERT L. STRAWDERMAN AND ANASTASIOS A. TSIATIS

University of Michigan and Harvard University

Ž .Suppose one has a stochastic time-dependent covariate Z t , and is
Ž < Ž .. Ž Ž ..interested in estimating the hazard relationship l t Z t s v Z t , where

Ž . Ž .Z t denotes the history of Z t up to and including time t. In this paper,
Ž Ž Ž ... Ž Ž ..we consider a model of the form exp s Z t , where s Z t is a spline ofn n

finite but arbitrary order, and investigate the behavior of the maximum
likelihood estimator of the hazard as the number of knots in the spline

Ž .function increases with the sample size at some rate k s o n . For twicen
Ž .continuously differentiable v ? , we demonstrate that the difference be-

Ž Ž .. Ž .tween the estimator exp s ? and v ? goes to 0 in probability in sup-normn
f Ž . Ž Ž Ž ...for any k s n , f g 0, 1 . In addition, if f ) 1r5, then exp s Z t yˆn n

Ž Ž ..v Z t , properly normalized, is asymptotically standard normal. A large-
Ž .sample approximation to the variance is derived in the case where s ? isn

a linear spline, and exposes some rather interesting behavior.

1. Introduction. Suppose one is interested in estimating the conditional
Ž < Ž .. Ž .hazard function l t Z t , where Z t is the history of a stochastic time-

Ž . w xdependent covariate Z u for u g 0, t . An interesting and important class of
Ž < Ž ..problems in health-related research is when the hazard function l t Z t s

Ž Ž ..v Z t ; that is, the hazard, taken conditionally on the observed covariate
Ž .history Z t , is a function of the current value of the covariate alone. Such a

relationship might be expected to occur if observed differences in an outcome
Ž .variable such as survival are primarily mediated through differences in the

Ž .time-dependent covariate Z t . For example, in AIDS research, an individual’s
prognosis is measured by the level of destruction within the immune system.
This may be measured to some extent by the observed level of that individual’s
CD4q-lymphocyte count. Thus, one might expect the above relationship to
hold if an infected individual’s CD4q count level is the primary mechanism
by which their ultimate survival is determined. We shall consider such
models to be the ‘‘truth’’ throughout this article, meaning that it is assumed
throughout that the underlying hazard function being estimated has the

Ž Ž ..functional form v Z t .
Since this functional relationship is generally unknown, a flexible family of

Ž Ž . . Ž Ž Ž ...models may be used. One possibility is v Z t , b s exp b9f Z t , wheren
Ž .f ? defines a B-spline basis for a given set of knots. The parameters of this
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model are easily estimated via maximum likelihood, and the standard asymp-
totic properties of the resultant maximum likelihood estimate are easily
derived under reasonably mild regularity assumptions, the most stringent

wbeing that the model is a correct representation of the truth Strawderman
Ž .x1992 .

Usually, this last assumption will be violated, at least to some degree.
Splines are often used in statistical modeling because of their ability to
approximate unknown functions. In particular, as the sample size grows,
increasing the number of knots in a spline function at some lesser rate
generally allows the spline-based estimator to get uniformly closer to the true
function at some rate that depends primarily on the maximum difference
between adjacent knots. There have been a significant number of papers
concerned with proving such results for various statistical models; see, for

Ž . Ž . Žexample, Speckman 1985 and Portnoy 1988 . Stone 1980, 1982, 1986,
.1990, 1991, 1994 has made numerous contributions to this literature, most

recently with the development of a unified framework in which consistency
and optimal L rates of convergence for spline estimators in regression and2
density estimation problems can be established. Kooperberg, Stone and

Ž . Ž .Truong 1995b extend the results of Stone 1994 to hazard regression under
noninformative censoring, but do not consider time-dependent covariates.

ˆŽ .In this paper, the behavior of v ?, b is investigated for splines of arbi-n
trary but fixed order. The general problem is described in detail in Section 2,
where we give all relevant definitions and assumptions. In Section 3, we

ˆŽ . Ž .prove that v ?, b y v ? converges in probability to 0 in sup-norm as then
number of knots grows at a lesser rate than the sample size. This is done by
first proving the existence of a deterministic sequence of ‘‘least-false parame-

w Ž .x � 4 5 Ž . 5ters’’ Hjort 1992 , say b * , such that v ?, b * y v ª 0. Then, we show`n
ˆ5 Ž . 5that v ?, b y v ª 0 by demonstrating the existence of the sequence of`n P

ˆ ˆ� 4 5 5MLEs b such that b y b * ª 0. Existence and consistency are estab-` P
lished simultaneously in each case using a modification of the inverse func-

w Ž .xtion theorem cf. Foutz 1977 . In Section 4, it is shown via the martingale
ˆŽ . Ž .central limit theorem that log v ?, b y log v ? is asymptotically standardn

normal under proper normalization. Some remarks on useful extensions of
these results and rates of convergence are given following the proof. Appendix
A contains lemmas necessary for completing the proofs of these results. In
Appendix B, we derive a large-sample approximation to the asymptotic

ˆŽ .variance of log v ?, b for the case of linear B-splines. To our knowledge,n
explicit derivations of the form of the asymptotic variance for spline-based
estimators and such convergence results in the presence of stochastic time-
dependent covariates have not previously appeared in the literature.

2. Description of the problem. In a typical survival analysis problem,
Ž Ž ..the data consist of triplets X , D , Z X , i s 1, . . . , n, where each is an i.i.d.i i i i
Ž Ž ..copy of a random triplet X, D, Z X defined on some probability space

� 4 Ž .V, FF,Q . The random variable X s min T, C , where T and C, respectively,
� 4denote random failure and censoring times, and D s I T F C is the failure
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Ž .time indicator variable. The covariate Z ? is assumed to be a continuous-time
stochastic process with state space Q, where Q is a closed finite interval on R,

Ž . � Ž . w x4and Z X represents the history of this process to X, or Z u , u g 0, X .
For simplicity, Q is assumed to be time-independent. However, with some
modification and additional assumptions, the results extend in a straightfor-

Ž .ward manner to the case where the support of Z ? varies with t.
Ž .Throughout, Z ? shall be treated as an ancillary time-dependent covariatei

w Ž . xKalbfleisch and Prentice 1980 , Section 5.3 . This assumption requires the
entire path of an individual’s covariate to be predetermined in the sense that
the covariate path may influence, but may not be influenced by, the failure
process. For example, suppose the covariate path for each individual follows

Ž . Ž .the growth curve model Z t s g q g t, where g s g , g 9 comes fromi 0 i 1 i i 0 i 1 i
Ž .some underlying bivariate distribution e.g., bivariate normal whose parame-

ters do not depend on the failure time distribution for T. Then, given g , thei
entire history of the covariate path for that individual is predetermined even
though we may not be allowed to observe it in its entirety.

Without loss of generality, we assume that observation takes place for
w x Ž .t g 0, 1 . For technical reasons, we additionally require that i for each
w x Ž .t g 0, 1 , the joint density of T and Z t is at least twice continuously

w x Ž . �differentiable and bounded away from 0 and ` on 0, 1 = Q, and ii Pr T )
< Ž .4 Ž .1 Z 1 ) 0. One implication of assumption i is that the marginal density of
Ž . Ž . y1 Ž . w xZ t , denoted h u ; t , satisfies M F h u ; t F M on 0, 1 = Q for someQ 1 Q 1

positive finite constant M . We assume that censoring is noninformative, and1
that for all covariate paths the distribution function of the censoring time C

w . � 4is continuous on 0, 1 and the event C F 1 has probability equal to 1. Note
that these assumptions imply that the distribution of the observed survival

� w x4time X satisfies Pr X g 0, 1 s 1, where X may take on the value 1 with
Ž .positive probability regardless of Z 1 . Such an assumption is reasonable, for

example, if the observations come from a clinical trial where there is some
maximum follow-up time in effect.

In order to effectively use martingale results, we cast the problem in the
w Ž .xmultiplicative intensity model framework Aalen 1978 . For a sample of size

Ž . Žn, define for each individual i the 0]1 counting process N t s I X F t,i i
. Ž . Ž Ž .. Ž .D s 1 and its associated stochastic intensity function A t s v Z t Y t ,i i i i

Ž . Ž .where Y t s I X G t is the usual left-continuous ‘‘at-risk’’ process andi i
Ž .v ? is a deterministic twice-continuously differentiable function. Let the

� 4right-continuous filtration FF : 0 F t F 1 be the smallest s-algebra contain-t
ing all of the information on failure times, censoring and covariate histories

Ž i. � Ž . Ž .up to time t for all individuals. Specifically, if we let FF s s N u , Y u , Z :i i i i
4 Ž i. Ž . Ž . Ž .0 F u F t , then FF s E FF . We require the paths of Y u , Z u and A ut i i i i i

to be predictable given FF .t
Ž Ž ..As an estimator for v Z t , we consider the model

1 v Z t , b s exp b9f Z t ,Ž . Ž . Ž .Ž . Ž .Ž .n

Ž . Ž Ž . Ž ..where f ? s f ? , . . . , f ? 9 is the usual normalized B-spline basis for the1 k n
� 4k nqmspace of mth-order polynomial splines with knots J s t defined on Qn i 1
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w Ž .xcf. de Boor 1978 . For each n, we assume that J forms an extendedn
y1� 4 Ž .uniform partition of Q with mesh D s max t y t s O k and t andn i i iy1 n m

w Ž .xt fixed at the boundaries of Q cf. Schumaker 1981 . The basis functionsk n
Ž .f u , r s 1, . . . , k , are nonnegative on Q, positive on an interval of length atr n

most mD and sum to unity for all u g Q; let the resulting space of splines ben
Ž .denoted by SS D . For notational simplicity, the dimension of all matricesm n

and vectors are assumed to depend on k unless otherwise specified.n
The following definitions of sup-norm are used throughout:

Ž . 5 51. For any function r w , w g WW such that r: WW ª R, define r s`

< Ž . <sup r w .w g WW
5 5 < <2. For any k = 1 vector x, define x s max x .`n gs1, . . . , k gn

5 5 k n < <3. For any k = k matrix Y, define Y s max Ý Y .`n n gs1, . . . , k g 9s1 g g 9n

Ž .We note that for a given B-spline basis f ? and any conformable vector x, it
5 5 5 5follows directly from the properties of the B-spline basis that x9f F x .` `

This property is used in many of the upcoming proofs.
Ž .The relevant partial log-likelihood for b based on 1 is

n
1

l b s log v Z u , b dN u y v Z u , b Y u du ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .Ý H n i i n i i
0is1

Ž .with associated normalized score vector
nk 1n

S b s f Z u dN u y v Z u , b Y u du .Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ý Hn i i n i in 0is1

If we define the compensated counting process

t
2 M t s N t y v Z s Y s ds,Ž . Ž . Ž . Ž . Ž .Ž .Hi i i i

0

Ž .then S b may be rewritten asn

nk 1n
S b s f Z uŽ . Ž .Ž .Ý Hn in 03Ž . is1

= dM u q v Z u y v Z u , b Y u du ,Ž . Ž . Ž . Ž .Ž . Ž .i i n i i

which is a stochastic integral with respect to a martingale process plus a
Ž .remainder term; we note that S b is defined conditionally upon the Z ,n i

ˆi s 1, . . . , n. The maximum likelihood estimate b is found by solving the
Ž .equation S b s 0 for b. Similarly, the least-false parameter b * for an

w Ž .x w xsample of size n is defined as the solution to E S b s 0, where E ?n
denotes the expectation with respect to the true probability distribution of

w Ž .x U Ž . w Ž .x Ž . Ž .the data cf. Hjort 1992 . Letting S b s E S b , we see by 2 and 3n n
that

1U4 S b s k f u v u y v u , b p u , u h u ; u du du,Ž . Ž . Ž . Ž . Ž . Ž . Ž .H Hn n n Q
0 Q
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Ž . � < Ž . 4where p u, u s Pr X G u Z u s u . Under the assumptions given earlier,
Ž . w xp u, u is well defined and positive on 0, 1 = Q.

Let
­

5 H b s y S bŽ . Ž . Ž .n n­b

and

1
6 II b s k f u f9 u v u , b p u , u h u ; u du duŽ . Ž . Ž . Ž . Ž . Ž . Ž .H Hn n n Q

0 Q

Ž . Ž .be the negative of the first derivatives of 3 and 4 , respectively. Note that
Ž . Ž .6 is also the expectation of 5 under the true probability distribution of the
data.

With these definitions and assumptions, we investigate the asymptotic
ˆbehavior of b, b * and various quantities based on them. Specifically, in

ˆ 5 Ž . 5Section 3, it is shown that both b and b * exist and that v ?, b * y v ª 0`n
ˆ5 Ž . 5and v ?, b y v ª 0 as n ª `. For this proof, we only require that`n P

f ˆŽ . Ž . Ž .k s n for f g 0, 1 . In Section 4, we prove that log v n , b y log v n forn n
o Ž .n g Q the interior of Q , properly normalized, is asymptotically standard

1f Ž .normal when k s n for f g , 1 . This proof involves an application of then 5

martingale central limit theorem, and arises out of the decomposition of the
Ž .score vector as given by 3 .

3. Consistency. The main result is given in Theorem 1, and its proof
constitutes Sections 3.1 and 3.2.

ˆ Ž .THEOREM 1. Let b and b * denote the solutions to S b s 0 andn
U Ž . f Ž .S b s 0, respectively. Then, as n ª ` and for k s n where f g 0, 1 :n n

Ž . 5 Ž . 5a b * exists and v ?, b * y v ª 0;`n
ˆ ˆŽ . 5 Ž . 5b b exists with probability going to 1 and v ?, b y v ª 0.`n P

w Ž .xThe inverse function theorem IFT; see Rudin 1964 will be used to prove
Ž . Ž . Ž .both a and b . The proof of a , done in Section 3.1, requires a version of the

IFT modified for use with sup-norm. The necessary conditions are incorpo-
Ž .rated as part of the proof. The proof of b is given in Section 3.2 and employs

a stochastic version of the same. The idea for using the IFT is taken from
Ž .Foutz 1977 , who demonstrated how it could be used to simultaneously prove

existence and consistency in finite parameter problems. Using sup-norm,
Ž .Strawderman and Tsiatis 1995 formulate a modification of Foutz’s result

which is appropriate for parameter spaces of expanding dimensions, and the
result is given as Lemma 1 in Section 3.2.

Ž .3.1. Proof of Theorem 1 a . We shall later show that for n sufficiently
� U Ž . 4large there exist solutions b *: S b * s 0 . Assuming this to be the case, wen

desire to prove that

7 v ?, b * y v ª 0.Ž . Ž .n `
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� 4By the triangle inequality, it is easily seen that for any other sequence b ** ,

v ?, b * y v F v ?, b ** y v q v ?, b * y v ?, b ** ,Ž . Ž . Ž . Ž .n n n n` ` `

and the problem may be reduced to proving that both quantities on the
Ž .right-hand side converge to 0 as n ª `. Since v ? is bounded and continuous

with bounded and continuous first and second derivatives, standard approxi-
mation theory results yield for sufficiently large n, say n ) N 4 m, the1
existence of coefficients b ** which may be defined through a set of bounded

5 Ž .linear functionals of the form l log v, i s 1, . . . , k , such that log v ?, b **i n n
25 Ž . 5 Ž .5y log v s O D and log v ?, b ** - M , where M - ` depends only` `n n 2 2

5 5 w Ž . xon log v and the order of the spline m cf. de Boor 1978 , Chapter 12 . It`

follows by continuity that

28 v ?, b ** y v s O DŽ . Ž . Ž .n n`

and

9 v ?, b ** F M ,Ž . Ž .n 2`

Ž . 5 Ž .with M appropriately redefined. The proof of a now follows if v ?, b * y2 n
Ž .5v ?, b ** ª 0 and the existence of b * can be demonstrated.`n
These results may be obtained simultaneously using the IFT. Suppose that

U Ž .S b satisfies the conditions of the IFT in an «-neighborhood about b **, sayn
U , and the value 0 lies interior to a set of proportional size centered at«

U Ž . U Ž .S b ** which is itself contained in the image set S U . Then, the exis-n n «

� U Ž . 4 5 5tence of a locally unique solution b *: S b * s 0 such that b * y b ** s`n
Ž5 U Ž .5 .O S b ** is guaranteed. More specifically, if we can demonstrate the`n

existence of constants « ) 0, N - ` and M - ` such that, for n ) N :« 3 «

Ž . 5 y1Ž .5i II b ** F M ,`n 3
Ž . 5 Ž . Ž .5 Ž .ii sup II b y II b ** F 1r 2 M ,`5 byb **5 - « n n 3`U 2Ž . 5 Ž .5 Ž .iii S b ** s O D ,`n n

25 5 Ž . Ž .then b * exists for such n and b * y b ** s O D . The proof of a then` n
Ž .follows by the continuity of v ?, b as a function of b.n

Ž . Ž .Using Lemma A.1, it is relatively easy to prove i . From 6 ,

1
10 II b ** s k f u f9 u v u , b ** p u , u h u ; u du du.Ž . Ž . Ž . Ž . Ž . Ž . Ž .H Hn n n Q

0 Q

Ž . Ž . Ž . Ž .Let y u, u s v u , b ** p u, u h u ; u . Then, under the assumptions ofn n Q
Ž .Section 2 and the fact that b ** is bounded, the function y u, u is continu-n

w xous and bounded away from 0 and ` on 0, 1 = Q for n ) N G N . Thus, by2 1
Lemma A.1,

y111 II b ** F MŽ . Ž .n 3`

for n ) N and an appropriately chosen constant M - `.1 3
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Ž .In order to prove ii , we first use the properties of sup-norm to get that

1
II b y II b ** F k f u f9 u p u , u h u ; u du duŽ . Ž . Ž . Ž . Ž . Ž .H Hn n n Q`

0 Q `

= v ?, b y v ?, b ** .Ž . Ž .n n `

Lemma A.1 may be used to bound the first term on the right-hand side by a
Ž . 5 Ž .5 Ž .constant M - `. From 9 we know that v ?, b ** F M . Since v ?, b is`4 n 2 n

continuously differentiable in b, applying the mean value theorem yields

sup v ?, b y v ?, b ** F M «Ž . Ž .n n 5`
5 5byb ** -«`

Ž .for a constant M - `. Hence, setting « F 1r 2 M M M , it follows that5 3 4 5

1
sup II b y II b ** F .Ž . Ž .n n ` 2 M5 5 3byb ** -«`

Ž .Thus, an « ) 0 exists independently of n ) N such that ii is satisfied.2
U Ž .Consequently, for sufficiently large n, S b satisfies the requisite conditionsn

needed to apply the IFT in an «-neighborhood about b **.
Ž . Ž .To prove iii , we note from 4 and the properties of sup-norm that

1US b ** F k f u p u , u h u ; u du du v ?, b ** y vŽ . Ž . Ž . Ž . Ž .H Hn n Q n` `
0 Q `

2F M k f u du O D ,Ž . Ž .H1 n n
Q `

Ž . 5 Ž .5where the last part follows from 8 and the fact that h ?; ? F M and`Q 1
5 Ž .5 5 Ž . 5 Ž . 5 U Ž .5p ?, ? F 1. Since k H f u du s O 1 , it follows that S b ** s` ` `n Q n

U2Ž . 5 Ž .5O D . Hence, we may find an N such that S b ** is sufficiently small`n « n
U Ž .enough to guarantee that 0 lies in the image set S U .n «

� U Ž . 4Thus, for n ) N , a locally unique solution b *: S b * s 0 exists such« n
25 5 Ž . Ž .that b * y b ** s O D . Since v ?, b is continuous, it follows that, for` n n

such n,

212 v ?, b * y v ?, b ** s O D ,Ž . Ž . Ž . Ž .n n n`

Ž .completing the proof. In conjunction with 9 , this also implies

13 v ?, b * - MŽ . Ž .n 6`

for some constant M - `. I6

Ž . Ž .3.2. Proof of Theorem 1 b . A stochastic formulation of conditions i to
Ž .iii in Section 3.1 will be needed, and is given below as Lemma 1. The lemma

Ž .is proved in Strawderman and Tsiatis 1995 and parallels the proof found in
Ž . Ž . Ž . Ž .Rudin 1964 . The matrices H b and FF b are respectively defined in 5n n

Ž .and 6 .
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Ž .LEMMA 1. Let N* - `. For n ) N*, suppose that S b is a continuouslyn
differentiable mapping from R k n to R k n in a neighborhood of b *, where b *

U Ž .exists and solves S b * s 0. In addition, suppose that, for n ) N*:n

Ž . 5 y1Ž .5i there exists a constant 0 - c - ` such that II b * F c;`n
Ž .ii there exists « ) 0 that may depend only on c such that for all d ) 0

there exists N G N* such that, for n ) N ,d d

1
Pr sup H b y II b * ) - d ;Ž . Ž .n n `½ 52c5 5byb * -«`

Ž . 5 Ž .5iii S b * ª 0.`n P

ˆ� Ž . 4Then, as n ª `, a unique solution b : S b s 0 exists in a neighborhoodn
ˆ5 5 Ž5 Ž .5 .about b * with probability going to 1, and b y b * s O S b * .` `p n

Since the existence of b * has already been demonstrated for sufficiently
Ž . Ž .large n, and v ?, b is continuous in b, the proof of part b follows fromn

Ž . Ž .Lemma 1 if the validity of conditions i to iii can be established.
Ž . 5 y1Ž .5To prove i , we need to show that II b * remains bounded as n ª `.`n

The triangle inequality yields that

y1 y1 y1 y114 II b * F II b * y II b ** q II b ** ,Ž . Ž . Ž . Ž . Ž .n n n n` ` `

Ž . Ž . Ž .where II b ** is given in 10 . From 11 , the latter term is bounded by M .n 3
wFrom an inequality arising out of matrix perturbation theory Golub and Van

Ž .xLoan 1989 ,

y1 y1II b * y II b **Ž . Ž .n n `

2y1II b * y II b ** II b **Ž . Ž . Ž .n n n` `F ,y11 y II b ** II b * y II b **Ž . Ž . Ž .n n n` `

15Ž .

5 y1Ž .5 5 Ž . Ž .5 Ž .whenever II b ** II b * y II b ** F 1. Using 6 , it follows easily` `n n n
Ž . Ž .from 11 , 12 and Lemma A.1 that there exists an N - ` such that3

5 y1Ž .5 5 Ž . Ž .5II b ** II b * y II b ** is less than 1 for n ) N , and therefore` `n n n 3
5 y1Ž .5that II b * F M , where M F M q 1 - `. Without loss of generality,`n 7 7 3

Ž . � 4we may set N* described in the statement of Lemma 1 to max N , N ,3 «

where N was determined in Section 3.1.«

Ž .Condition ii of Lemma 1 will follow if there exists an « ) 0 such that

1
16 Pr sup H b y II b * )Ž . Ž . Ž .n n `½ 52 M5 5 7byb * -«`

goes to 0 as n ª `. By the triangle inequality,

H b y II b * F H b * y II b * q H b y H b * ,Ž . Ž . Ž . Ž . Ž . Ž .n n n n n n` ` `
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and the desired result will follow if there exists an « ) 0 such that, as n ª `,

1
Pr H b * y II b * )Ž . Ž .n n `½ 54M7

1
q Pr sup H b y H b * ) ª 0.Ž . Ž .n n `½ 54M5 5 7byb * -«`

To see that the first term goes to 0, we may begin by writing
nkn w xH b * y II b * s A y E A ,Ž . Ž . Ž .Ýn n i i` n is1 `

Ž .where the matrix A s A andi i g g 9

1
A s f Z u f Z u v Z u , b * Y u du.Ž . Ž . Ž . Ž .Ž . Ž . Ž .Hi g g 9 g i g 9 i n i i

0

Ž . � <The properties of B-splines and 13 immediately yield that Pr A yi g g 9

w x < 4E A F M s 1 for M - `. In addition,i g g 9 8 8

n n
2Var A F E AÝ Ýi g g 9 i g g 9

is1 is1
n

12 2 2F M E f Z u f Z u Y u duŽ . Ž . Ž .Ž . Ž .Ý H6 g i g 9 i i
0is1

12 2 2F nM f u f u p u , u h u ; u du duŽ . Ž . Ž . Ž .H H6 g g 9 Q
0 Q

12 2F nM M f u du du,Ž .H H1 6 g
0 Q

Ž .where the last inequality follows from the facts that i the marginal density
Ž . w Ž .x Ž . Ž . 2 Ž .of Z ? i.e., h ?; ? is bounded by M , and ii p u, u and f ? are eachQ 1 g 9

bounded above by 1. Evaluation of the integrals in the last term shows that
n 2w x wVar Ý A F M M nD . Applying Bernstein’s inequality Serflingis1 i g g 9 1 6 n

Ž .x1980 ,
nk 1n

Pr A y E A ) F 2 exp ynD M� 4Ž .Ý i g g 9 i g g 9 n 9½ 5n 4M7is1

for some constant M - ` that depends on M , M and M . This yields that9 1 6 8

1
217 Pr H b * y II b * ) F 2k exp ynD M ,Ž . Ž . Ž . � 4n n n n 9`½ 54M7

which goes to 0 as n ª ` since nD ª `.n
Ž .Now, to demonstrate 16 , we only need to show that

1
Pr sup H b y H b * )Ž . Ž .n n `½ 54M5 5 7byb * -«`
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goes to 0 as n ª ` for some « ) 0. Properties of sup-norm immediately give
that

nk 1n
H b y H b * F f Z u f9 Z u Y u duŽ . Ž . Ž . Ž . Ž .Ž . Ž .Ý Hn n i i i` n 0is1 `

= v ?, b y v ?, b * .Ž . Ž .n n `

By the triangle inequality, the first term on the right-hand side may be
bounded by

n nk kn nw x w xB y E B q E B ,Ž .Ý Ýi i in nis1 is1` `

Ž .where the matrix B s B has elementsi i g g 9

1
B s f Z u f Z u Y u du.Ž . Ž . Ž .Ž . Ž .Hi g g 9 g i g 9 i i

0

5 Ž .5 Ž .Since v ?, b * F M and v ?, b is continuous and differentiable in b,`n 6 n
applying the mean value theorem yields

sup v ?, b y v ?, b * F M «Ž . Ž .n n 10`
5 5byb * -«`

for some constant M - `.10
Thus,

1
Pr sup H b y H b * )Ž . Ž .n n `½ 54M5 5 7byb * -«`

nk 1n w xF Pr B y E B )Ž .Ý i i½ 5n 8 M M «7 10is1 `

nk 1n w xq Pr E B ) .Ý i½ 5n 8 M M «7 10is1 `

Now, by Lemma A.1, we may find a constant M such that11
5Ž . n w x 5k rn Ý E B F M , and hence the latter probability can be made`n is1 i 11

Ž .y1equal to 0 for any n ) N* by choosing « - 8 M M M . Using similar7 10 11
arguments to those before, the first term on the right-hand side goes to 0 as
n ª ` after applying Bernstein’s inequality. Thus, an « ) 0 exists indepen-

Ž .dently of n ) N* such that condition ii of Lemma 1 holds.
5 Ž .5 Ž .Finally, we must show that S b * ª 0. From 3 , the score function`n P

Ž .S b * may be expressed as the sum of two pieces. The first piece, which doesn
not involve b *, will be denoted as S M, and is a stochastic integral withn
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respect to a martingale process. The second piece, which does involve b *, will
NM Ž .be denoted as S b * . It is therefore sufficient to establish thatn

nk 1nM5 518 S s f Z u dM u ª 0Ž . Ž . Ž .Ž .Ý` Hn i i Pn 0is1 `

and

NMS b *Ž .n `

nk 1ns f Z u v Z u y v Z u , b * Y u duŽ . Ž . Ž . Ž .Ž . Ž . Ž .Ý H i i n i in 0is1 `

19Ž .

ª 0.P

n 1 Ž Ž .. Ž .Since each element of the vector Ý H f Z u dM u is a sum of bounded,is1 0 i i
mean zero random variables with variance bounded by a term of order nD ,n

5 M 5Bernstein’s inequality may be used to show that S ª 0. For the latter`n P
term,

nk 1nNMS b * F f Z u Y u du v y v ?, b *Ž . Ž . Ž . Ž .Ž .Ý Hn i i n` `n 0is1 `

n nk kn nw x w xs D y E D q E DŽ .Ý Ýi i iž /n nis1 is1` `

= v ?, b * y v ,Ž .n `

1 Ž Ž .. Ž .where D s H f Z u Y u du.i 0 i i
Using arguments similar to those in the previous section, the term in the

parentheses may be bounded in probability by applying Bernstein’s inequal-
2Ž . Ž . 5 Ž . 5 Ž .ity and Lemma A.1; from 8 and 12 , v ?, b * y v s O D and hence`n n

NM 25 Ž .5 Ž .S b * s O D .`n p n
Thus, the conditions of Lemma 1 have been demonstrated to hold for

ˆŽ .S b with probability going to 1. Therefore, b exists with probability goingn
ˆ5 5to 1 and satisfies b y b * ª 0. To complete the proof, we must show that` P

ˆ5 Ž . 5v ?, b y v ª 0. However, this follows immediately from the triangle`n P
25 Ž . 5 Ž .inequality, continuity and the fact that v ?, b * y v s O D . I`n n

o Ž .4. Asymptotic normality. For n g Q the interior of Q , we desire to
ˆŽ . Ž .prove that v n , b y v n , properly normalized, converges pointwise in lawn

to a normal random variable. Simple manipulations bring us to the following
sufficient result, stated below as a theorem.

1o f Ž .THEOREM 2. For n g Q and k s n , f g , 1 ,n 5

1r2n
20 v ?, b * y v ª 0Ž . Ž .n `ž /kn
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and
1r2 ˆn log v n , b y log v n , b *Ž .Ž .n n

21 ª N 0, 1 ,Ž . Ž .Lž /k s n , pŽ .n n

2Ž . Ž .where s n , p is such that the variance of 21 converges to unity andn
Ž . � 4p s n y t rD for g s r: t F n - t .n gn n n r rq1

2Ž .In the proof of the theorem, we shall demonstrate that s n , p is then
variance of

1r2n
M y1S 9 II b * f n ,Ž . Ž .Ž .n nž /kn

M Ž .where S is defined in 18 . The above is a sum of stochastic integrals, then
Ž .ith being taken with respect to the FF -martingale M t , i s 1, . . . , n. Thet i

2Ž .explicit form of the variance s n , p is given in Lemma A.5, and a consis-n
tent estimate of it is provided at the end of this paper. For a fixed sample size
n, this variance depends on n as well as its relative position between the

Ž .bracketing knots i.e., p . This is not immediately obvious nor intuitivelyn
appealing; however, it is relatively easy to explain, especially for linear
B-splines. For large n, we demonstrate this phenomenon for the case of linear
B-splines in Appendix B and briefly discuss its implications. The derivation
for higher-order splines proceeds similarly.

PROOF OF THEOREM 2

2Ž . 5 Ž . 5 Ž .Proof of 20 . It was proved in Section 3.1 that v ?, b * y v s O D ;`n n
thus,

1r21r2 1r2n n n
2v ?, b * y v s O D s O .Ž . Ž .n n` 5ž / ž / ž /ž /k k kn n n

1f Ž . Ž .Since k s n , f g , 1 , this goes to 0 as n ª `, proving 20 . In 5

ˆŽ . Ž .Proof of 21 . A first-order Taylor series expansion of S b around b *n
yields that

ˆ ˜ ˆS b s S b * y H b b y b * ,Ž .Ž . Ž . Ž .n n n

˜ ˆwhere b lies on a line segment connecting b and b *. For reference, the
Ž . Ž . Ž . Ž .definitions of S b and H b are given by 3 and 5 , respectively. Usingn n
ˆŽ .the fact that S b s 0, then after some algebra one obtains the expressionn

1r2 1r2n n
y1ˆ ˜22 b y b * 9f n s S b * 9H b f n .Ž . Ž . Ž . Ž .Ž .Ž . Ž .n nž / ž /k kn n

Ž .Note that the left-hand side of this expression is the numerator of 21 . Now,
Ž . Ž . M NM Ž .from 3 , the score function S b * may be expressed as S q S b * ;n n n
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Ž . Ž .definitions of the respective terms may be obtained from 18 and 19 .
Ž .Returning to 22 , we see that

1r2n
b̂ y b * 9f nŽ .Ž .ž /kn

1r2n
M NM y1 ˜s S q S b * 9H b f nŽ . Ž .Ž .n n nž /kn

1r2n
M y1 NM y1˜ ˜s S 9H b f n q S b * 9H b f n .Ž . Ž . Ž .Ž . Ž .Ž . Ž .n n n nž /kn

y1 y1 ˜Ž . Ž .By adding and subtracting II b * from H b and rearranging terms,n n
Ž .the proof of 21 now follows if as n ª `,

1r2 M y1n S 9 II b * f nŽ . Ž .Ž .n n
23 ª N 0, 1 ,Ž . Ž .Lž /k s n , pŽ .n n

1r2n
M y1 y1˜24 S 9 H b y II b * f ª 0,Ž . Ž .Ž . Ž .n n n P`ž /kn

1r2n
NM y125 S b * 9 II b * f ª 0Ž . Ž . Ž .Ž .n n P`ž /kn

and
1r2n

NM y1 y1˜26 S b * 9 H b y II b * f ª 0,Ž . Ž . Ž .Ž . Ž .n n n P`ž /kn

2Ž . ŽŽ .1r2Ž M . y1Ž . Ž ..where the scalar s n , p s Var nrk S 9 II b * f n . The proofs ofn n n n
Ž . Ž .24 ] 26 are done in Lemmas A.2]A.4. It is shown in Lemma A.5 that

2Ž . Ž .s n , p is bounded away from 0 and `. Hence, the proof of 23 , done below,n
Ž .completes the proof of 21 and therefore Theorem 2.

Ž . y1Ž . 2Ž .Proof of 23 . Since II b * and s n , p are deterministic, we mayn n
Ž .write each component of 23 as a stochastic integral of a predictable process

w Ž .xwith respect to a martingale process Fleming and Harrington 1991 ; that
is,

1r2 y1nk f9 Z u II b * f nŽ . Ž . Ž .Ž .1n i n
27 dM u .Ž . Ž .Ý H iž /n s n , pŽ .0 nis1

This converges in law to a standard normal random variable by the martin-
gale central limit theorem provided that the following two sufficient condi-

w Ž .xtions are met Andersen and Gill 1982 :

Ž .I As n ª `,
2y1nk f9 Z u II b * f nŽ . Ž . Ž .Ž .1n i n

v Z u Y u du ª 1.Ž . Ž .Ž .Ý H i i Pn s n , pŽ .0 nis1
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Ž .II As n ª ` and for all « ) 0,
2y1nk f9 Z u II b * f nŽ . Ž . Ž .Ž .1n i n

I Z u , n v Z u Y u du ª 0Ž . Ž . Ž .Ž . Ž .Ý H « i i i Pn s n , pŽ .0 nis1

where
1r2 y1k f9 Z u II b * f nŽ . Ž . Ž .Ž .n n

I Z u , n s I ) « .Ž .Ž .« ž /½ 5n s n , pŽ .n

Ž . 2Ž .Result I immediately follows from the definition of s n , p , Lemma A.5n
w Ž .xand the weak law of large numbers for triangular arrays cf. Feller 1971 .

Ž .To prove II , note that
y1 y1 y1sup f9 u II b * f n s sup II b * f u 9f n F II b * ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .n n n `

2 2Ž . Ž .n , u gQ n , u gQ

which is bounded by a finite constant for large n; see Section 3.2 for details.
Ž Ž . .Thus, for any « ) 0, there exists N such that for all n ) N , I Z u , n s 0,« « «

Ž . wproving II . Hence, the martingale central limit theorem cf. Fleming and
Ž . x Ž .Harrington 1991 , Theorem 5.3.4 may now be applied to prove that 27

Ž .converges in law to a N 0, 1 random variable, completing the proof of
Theorem 2. I

Ž .5. Remarks. These results have been obtained assuming v ? is twice-
continuously differentiable. From the proof in Section 4, we see that the

Ž .necessary convergence rates depend on this assumption only through 8 and
Ž . Ž .12 . Thus, if we had instead assumed that v ? was p-times continuously

kŽ . Ž .differentiable, the rates for 8 and 12 would be on the order of D for an
kth-order spline, where k F p. The asymptotic normality results then apply

f Ž .for k s n when f ) 1r 2k q 1 .n
In the course of proving Theorem 2, a stronger result than pointwise

asymptotic normality has actually been demonstrated. Specifically, note that
Ž .27 is composed of a sum of mean zero random variables, each of which is

Ž .bounded in absolute value by a term that is O k rn . In addition, then
Ž .variance of the sum is bounded above and below by terms of O k rn . Thesen

w Ž .facts, plus a corollary to the central limit theorem cf. Chung 1974 , page
x o201 , yield convergence in distribution uniformly for n g Q . Similar results

Ž .were proved by Stone 1990, 1991 .
Ž .Since this paper was submitted, an important related work of Stone 1994

Ž .has been brought to our attention. Stone 1994 elegantly established optimal
L rates of convergence for a wide class of spline-based estimators in regres-2

Ž .sion, generalized regression e.g., GLM’s and density estimation in a unified
Ž .framework. Kooperberg, Stone and Truong 1995b extend those results to the

case of hazard regression for time-independent covariates. In both papers, the
optimal L rate of convergence for functions satisfying a similar smoothness2

Ž . 1r5condition to v ? corresponds to k s n . We have not specifically addressedn
Ž .this question here. However, from the proof in Section 4, it is clear that 21
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Ž .converges to Z q W for Z ; N 0, 1 and some random variable W. The
Ž . 1r5 �random variable W is O 1 at k s n , and respectively satisfies P W sp n

4 � 4 1r5q« 1r5y«0 s 1 or P W s ` s 1 according to whether k s n or k s n forn n
some « ) 0. Given this usual bias]variance trade-off and the results of Stone
Ž . Ž . Ž1994 and Kooperberg, Stone and Truong 1995b , we conjecture but have

. 1r5not proved that n is also the optimal L rate of convergence for this2
problem. It may be possible to extend the results of Kooperberg, Stone and

Ž .Truong 1995b to establish this result directly.
Assuming that n1r5 is, in fact, the optimal L rate of convergence, a2

referee rightly points out that effective use of the asymptotic normality result
Ž .e.g., for constructing pointwise confidence intervals requires undersmooth-
ing the data. In other words, ‘‘mean zero’’ asymptotic normality occurs only
for k s n1r5q« for « ) 0, which implies that one must use fewer observa-n
tions per interval than is needed to achieve the smallest possible mean
squared error.

An interesting issue that arises out of the proof of asymptotic normality
concerns the behavior of the variance. In particular, the variance of the MLE
for large but fixed values of n is a polynomial function of the relative location
between two adjacent knots. This can be seen in Appendix B, where such an
expression is derived for linear B-splines. The variance in this case is
minimized when the point n is exactly halfway between the two bracketing
knots, and grows to nearly three times larger at the endpoints. Although
simple mathematical representations for the variance are not readily avail-
able in the general case, numerical calculations indicate that for even-order
splines, the variance is indeed minimized halfway between the bracketing
knots. Interestingly, similar calculations indicate that the opposite is true for

Žodd-order splines. For example, the variance for a third-order spline a
.piecewise quadratic polynomial appears to be minimized at the knots, and

2Ž .attains a maximum at the midpoint. In practice, the variance s n , pn
cannot be calculated, and a consistent estimator must be used. Using condi-

Ž .tion I from the proof of Theorem 2 and plugging in consistent estimators for
the unknowns, we obtain

nk 21n2 y1 ˆ ˆs n , p s f9 Z u H b f n v Z u , b Y u du.Ž . Ž . Ž . Ž . Ž .Ž .ˆ Ž . Ž .Ý Hn n n i in 0is1

The results derived here are not particularly useful with regard to determin-
ing the optimal number or position of the knots to be used in any finite-
dimensional problem. If, however, the interest lies in a specific set of points, it

Ž .appears that both the spline order and uniformly spaced knots can be
chosen to minimize the variance of the estimates at those particular points.

ŽIn other cases, one might use some data-driven technique e.g., Bayesian
.information criterion, cross-validation, etc. to address the problem of knot

selection in the finite-sample problem. However, determining the optimal
Žnumber and position of these knots as measured by some minimization

.criterion is a much more difficult problem. Important contributions in this
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area have been made by Charles Kooperberg and his colleagues. For algo-
rithms relevant to the hazard regression problem, see the recent work of

Ž .Kooperberg, Stone and Truong 1995a .

APPENDIX A

Lemmas for Sections 3 and 4.

LEMMA A.1. Let B s lim B , where the matrixnª` n

1
B s k f u f9 u y u , u du duŽ . Ž . Ž .H Hn n n

0 Q

Ž . w xand y u, u is a positive, continuous and deterministic function on 0, 1 = Qn
that is bounded away from 0 and ` for n G N for some N - `. Then,
5 5 5 y1 5B - ` and B - `.` `

wPROOF. For large and fixed n, the mean value theorem for integrals see
Ž .xApostol 1957 yields

1
B f k y u , j f u f u du du,Ž . Ž . Ž .Ž .H Hg g 9n n n g g g 9

0 Q

where j g Q. Since the knots are equally spaced with mesh size D ,g n

mf u f u du s D I ,Ž . Ž .H g g 9 n < gyg 9 <
Q

where the I m ’s are bounded nonnegative constants that depend only on thej
Ž . < <order of the spline m s p q 1 . In addition, they are positive if g y g 9 F p

m m w Ž .x Ž .and satisfy I q 2Ý I s 1 Schumaker 1981 . For example, if f ? is a0 jG1 j
linear B-spline basis, then

4¡ , if g s g 9,6

12 ~ < <28 I s , if g y g 9 s 1,Ž . < gyg 9 < 6¢ < <0, if g y g 9 ) 1.

Ž .Thus, for large n, B f k D T D , where T s t is a 2 p q 1-bandedn n n n n n ni j
m 5 5symmetric k = k Toeplitz matrix such that t s I and T s 1 for`n n ni j < iyj < n

1 Ž .each n, and D is a diagonal matrix with elements d s H y u, j du.n g g 0 n g
The behavior of Toeplitz matrices and their inverses has been extensively

studied. The eigenvalues of a general Toeplitz matrix can be shown to be
w Ž .asymptotically equivalent to those of a circulant matrix Brillinger 1980 ,

xpage 73 . In particular, the maximal eigenvalue, say l , of the matrix Tmax n
converges asymptotically to unity, and the minimal eigenvalue converges to

p 2p j
ml s I cos .Ýmin < j < ž /p q p mod 2jsyp
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Since m s p q 1 - `, it follows that l ) 0 and thus T remains positivemin n
definite as n ª `. The statement of the theorem implies that there exist
constants d and d independently of k for n G N such that 0 - d -1 2 n 1
d - d - ` for g s 1, . . . , k . Thus, D is positive definite as n ª `, andg g 2 n n
5 5D - d . Finally, since lim k D s 1, it follows that the matrix B s`n 2 nª` n n

5 5lim B is positive definite and thus invertible, with B F 2 d - `.`nª` n 2
5 y1 5To determine an upper bound on B , it is helpful to first recall the`

5 5facts that for a nonnegative definite symmetric matrix M, M is equal to2
5 5 wthe largest eigenvalue of M and is bounded above by M cf. Golub and`

Ž . xVan Loan 1989 , page 58 . Thus, it follows from earlier results that
5 y1 5 Ž .y1 5 5B - d l - `. Now, since B is bounded by some finite constant2 `1 min

wŽ . xK, the results of Demko 1977 , Theorem 2.2 immediately yield the exis-
Ž .tence of constants K 9 - ` and r g 0, 1 depending only on l , d , d andmin 1 2

<Ž y1 . < < iyj < 5 y1 5 Ž .the spline order m such that B F K 9r and B F 2 K 9 1 y r .`i j
Hence, not only is By1 bounded in sup-norm, but its elements decay expo-
nentially fast to 0 as one moves away from the main diagonal. I

LEMMA A.2. As n ª `,

1r2n
M y1 y1˜S 9 H b y II b * f ª 0.Ž .Ž . Ž .n n n P`ž /kn

1w xPROOF. Let a g 0, be a constant. We may write2

1r2n
M y1 y1˜S 9 H b y II b * fŽ .Ž . Ž .n n n `ž /kn

1r2n
M y1 y1˜5 5F S H b y II b *Ž .Ž .`n n n `ž /kn

aŽ .1r2 yan n
M y1 y1˜5 5s S H b y II b * .Ž .Ž .`n n n `ž / ž /k kn n

5 M 5Referring to Section 3.2, S ª 0 by Bernstein’s inequality. In particular,`n P
for all d ) 0,

n
M5 5Pr S ) d F 2k exp yO ,� 4`n n ½ 5ž /kn

which goes to 0 as n ª `. A similar argument therefore yields that

Ž . aq1r21r2 yan n
M5 5Pr S ) d F 2k exp yO ,`n nž / ž /½ 5 ½ 5ž /k kn n

which still goes to 0 as n ª `.
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5 y1Ž .5Since II b * remains bounded for large n, arguments similar to`n
those in Section 3.2 yield that

an
y1 y1˜H b y II b * ª 0Ž .Ž .n n P`ž /kn

if it can be demonstrated that
an ˜H b y II b * ª 0.Ž .Ž .n n P`ž /kn

By the triangle inequality, this will follow if
an

H b * y II b * ª 0Ž . Ž .n n P`ž /kn

and
an ˜H b y H b * ª 0.Ž .Ž .n n P`ž /kn

Ž .Using arguments similar to those used to obtain 16 , the first follows from
Ž .Bernstein’s inequality. For the latter, the continuity of H b , the meann

˜ ˆvalue theorem and the fact that b lies on a line segment between b and b *
imply that

a an n˜ ˜5 5H b y H b * F M b y b *Ž .Ž . `n n 12`ž / ž /k kn n

an ˆ5 5F M b y b * `12ž /kn

an
s M S b *Ž .13 n `ž /kn

an
M NM5 5F M S q S b *Ž .Ž .`13 n n `ž /kn

for appropriately chosen constants M - ` and M - `. It was just shown12 13
1a MŽ . 5 5 w xthat nrk S ª 0 for any a g 0, . Hence, since`n n P 2

a an n
NM 2S b * s O D ,Ž . Ž .n p n`ž / ž /k kn n

1f Ž .the latter term also converges to 0 in probability for any k s n , f g , 1n 5

as long as a F 0.5. I

LEMMA A.3. As n ª `,
1r2n

NM y1S b * 9 II b * f ª 0.Ž . Ž .Ž .n n P`ž /kn
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PROOF. Note that

1r2 1r2n n
NM y1 NM y1S b * 9 II b * f F S b * II b * .Ž . Ž . Ž . Ž .Ž .n n n n` ``ž / ž /k kn n

5 y1Ž .5 Ž . NM Ž .Since II b * remains bounded as n ª ` Section 3.2 and S b * s`n n
2Ž .O D ,p n

1r2 1r2n n
NM y1 2 y1S b * II b * F O D II b *Ž . Ž . Ž .Ž .n n p n n` ` `ž / ž /k kn n

1r2n
s O .p 5ž /ž /kn

1f Ž .Since k s n , f g , 1 , this goes to 0 as n ª `. In 5

LEMMA A.4. As n ª `,

1r2n
NM y1 y1˜S b * 9 H b y II b * f ª 0.Ž . Ž .Ž . Ž .n n n P`ž /kn

PROOF. Properties of sup-norm imply that

1r2n
NM y1 y1˜S b * 9 H b y II b * fŽ . Ž .Ž . Ž .n n n `ž /kn

1r2n
NM y1 y1˜F S b * H b y II b * .Ž . Ž .Ž .n n n` `ž /kn

1f y1 ˜Ž . 5 Ž .For k s n , f g , 1 , we know from Lemmas A.2 and A.3 that H b yn n5
y1Ž .5 Ž .1r2 5 NM Ž .5II b * ª 0 and nrk S b * ª 0; the desired result follows` `n P n n P

from Slutsky’s theorem. I

o 2Ž .LEMMA A.5. For n g Q and as n ª `, s n , p is bounded away from 0n
and `.

Ž .PROOF. Using the results of Aalen 1978 ,

nk 1 2n2 y1s n , p s E f9 Z u II b * f n v Z u Y u duŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ý Hn i n i in 0is1

1 2y1 � 4s k E f9 Z u II b * f n v Z u I X G u duŽ . Ž . Ž . Ž .Ž . Ž .Hn n
0

1 2y1s k f9 u II b * f n v u p u , u h u ; u du du.Ž . Ž . Ž . Ž . Ž . Ž .H Hn n Q
0 Q
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The behavior of the variance is primarily determined by the bilinear form
Ž . y1Ž . Ž .f9 u II b * f n . However, note that for fixed n , we may rewrite this bilin-n

Ž . Ž .ear form as g n 9f u , which is an mth-order B-spline in u with coefficients
Ž . y1Ž . Ž .g n s II b * f n . It follows under the assumptions of this paper that wen

2Ž .may find constants 0 - w, W - ` such that wQ F s n , p F QW, wheren

2Q s k g n 9f u duŽ . Ž .Hn
Q

s k D g n 9T g n ,Ž . Ž .n n n

where T is the banded Toeplitz matrix defined in Lemma A.1. Since T isn n
Ž .positive definite for all n and there is at least one and at most m of the

Ž . og n that are nonzero for every n g Q , the quadratic form Q ) 0. Thus,g
2Ž .s n , p is bounded away from 0 as n ª `. In addition,n

2y1< < 5 5sup Q F II b * T .Ž . `n n`
ongQ

5 5 5 y1Ž .5Since T s 1 and II b * is bounded, Q is also bounded above and` `n n
2Ž .therefore s n , p is bounded away from `. In

APPENDIX B

Ž .Derivation of variance in linear case. Let f ? denote the usual linear
B-spline basis on a uniform mesh. Since our main interest lies in asymptotic
results, we assume that the sample size n is large. Then, from the proof of
Lemma A.5,

1 22 y1s n , p s k f9 u II b * f n v u p u , u h u ; u du duŽ . Ž . Ž . Ž . Ž . Ž . Ž .H Hn n n Q
0 Q

1
f k D g n 9T g n v n p u , n h n ; u du,Ž . Ž . Ž . Ž . Ž .Hn n n Q

0

Ž . y1Ž . Ž .where g n s II b * f n . The last step follows from the continuity of then
Ž . Ž .integrand and the fact that g n 9f u has significant mass only in a very

Ž .small neighborhood about the point u s n for large n. If we let a n s
1 Ž . Ž . Ž .H v n p u, n h n ; u du, and note that0 Q

1
y1 y1 y1II b * f D T ,Ž .n n nk Dn n

Ž .where D is a diagonal matrix having elements a j for interior knotsn g
j g Qo, then we may writeg

29 s 2 n , p f a n Dy1 h n 9T Dy1 h n ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .n n n n
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Ž . y1 Ž . Ž .where h n s T f n . It is important to note that the elements of h n , sayn
Ž .h n , r s 1, . . . , k , are linear splines in n whose coefficients are given by ther n

y1 Ž .r th row of T . The elements of T are defined in 28 ; the results of Graybilln n
wŽ . x1983 , page 286 for tridiagonal symmetric Toeplitz matrices may be used to
find the elements of Ty1. Asymptotically, the elements form a geometricn 'sequence starting on the diagonal with the value a s 2 3 r3. For any ele-

Žment in the same row falling p columns away from the diagonal element to
p '.the left or to the right , the value of the sequence is ah , where h s 3 y 2.

These results are typical of the geometric falloff away from the diagonal
discussed in Lemma A.1.

y1 Ž .Since the elements of T are decreasing exponentially fast to 0 and f nn
Ž . Ž . Ž .is nonzero only for f n and f n only, the elements of h n decreaseg y1 gn n

Ž .exponentially fast to 0 away from the index g . Returning to 29 , this impliesn
y1 Ž y1 Ž .. Ž y1 Ž ..that the influence of D on D h n 9T D h n is minimal except in an n n n

y1 Ž Ž . Ž ..neighborhood about n . Thus, by replacing D with diag 1ra n ??? 1ra n ,n
it is easy to see that

s 2 n , p f a n Dy1 h n 9T Dy1 h nŽ . Ž . Ž . Ž .Ž . Ž .n n n n

1
f h9 n T h nŽ . Ž .na nŽ .

1
y1s f9 n T f n ,Ž . Ž .na nŽ .

Ž .where the last step follows from the definition of h n .
2Ž .To complete the derivation of s n , p , we need to determine the value ofn

y1Ž . Ž . Ž .f9 n T f n . Let us define p s n y t rD , the relative position of nn n g nn

between its two bracketing knots for a given n. Then, using the definitions of
Ž .the linear B-spline basis functions f n , j s 1, . . . , k , some elementaryj n

algebra yields that

2y1 2f9 n T f n s a 1 y p q 2p 1 y p ah q apŽ . Ž . Ž . Ž .n n n n n

'2 3
2' 's 4 3 y 4 p y 4 3 y 4 p q .Ž . Ž .n n 3

Thus, for values of n away from the boundaries of Q and n 4 1, we have
that

'1 2 3
2 2' 's n , p f 4 3 y 4 p y 4 3 y 4 p q .Ž . Ž . Ž .n n na n 3Ž .

o 2Ž .For n g Q , it is obvious from this expression that s n , p is a quadraticn
2Ž .function in p . In addition, taken as a function of p , s n , p is minimizedn n n

2Ž .at p s 0.5. The fluctuation in s n , p for a given n is bounded; in fact, forn n
2Ž .large n, the ratio of the maximum to the minimum values of s n , p for an'given n over a given interval is exactly 3 q 1.
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Initially, this result may appear curious; however, since one can think of
Ž .fitting the hazard model 1 as doing something akin to many local linear

regressions, it is a sensible result. The pointwise confidence bands in linear
regression are tightest near the mean value, and flare out from each point; a
similar phenomenon appears to be happening here. I
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