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THE BAHADUR-KIEFER REPRESENTATION
FOR U-QUANTILES'

By MIGUEL A. ARCONES

University of Texas

We consider the distributional and the almost sure pointwise
Bahadur-Kiefer representation for U-quantiles. We show that the order of
this representation depends on the order of the local variance of the
empirical process of U-statistic structure at the U-quantile. Our results
indicate that U-quantiles can be smoother than quantiles. U-quantiles can
either be as unsmooth as quantiles or can behave as differentiable statisti-
cal functionals.

1. Introduction. First, let us recall the Bahadur—Kiefer representation
for quantiles. Let {X;}7_; be a sequence of i.i.d. r.v.’s, let F, be the empirical
distribution function, let F be the cumulative distribution function of X; and
let 0 < p < 1. Define ¢, := inf{¢: F,(¢) > p} and

(1.1) R, =& — &+ (F'(&)) (F(&) — F(&)),

where F(&,) = p. Kiefer (1967) showed that if F is second differentiable at ¢,
and F'(§,) > 0, then

(1.2) n¥4R, -, pYi(1 - p) g,/ g,

where g, and g, are two independent standard normal r.v.’s. He also proved
that

(1.3) limsup + (n/2loglog n)**R, = 21/2373/4pV/4(1 — p)"* as.

n—ow

The purpose of this paper is to present similar results for U-quantiles. Let
{X;}7_, be a sequence of i.i.d. r.v.’s with values in a measurable space (S, .%).
Let A: S™ - R be a measurable symmetric function. Let H(¢) =
Pr{h(X,,..., X,,) < t}. The empirical distribution of U-statistic structure is
defined by

(n—m)!

(14) H,(t) = ——

Z Ih(X,»l ..... X,

Gy,...,i,)Elr
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where I ={(i,...,i,): 1<i;<n and i, #i; for k #j}. Let 0 <p < 1.
he

G <
Suppose that H( 50) = p. The U-quantile is deﬁned by

(1.5) &, = inf{t: H,(¢) > p}.

Several common estimators are U-quantiles. For example, one very often
used alternative to the median as a center of symmetry is the Hodges—
Lehmann estimator: the median of 27'(X; + X)), 1 <i <j < n [see Hodges
and Lehmann (1963)]. This is the U-quantile (with respect to p = 1/2) of the
kernel A(x,, x,) =2 '(x, + x,). We refer to Lehmann (1975) for different
extensions of this estimator and applications to nonparametric statistics.
Another interesting example is the U-quantile of the kernel h(x,, x,) = |x; —
x,| with respect to p = 1/2. This U-quantile is a measure of the spread of the
distribution. It was introduced by Bickel and Lehmann (1979). Choudhury
and Serfling (1988) introduced an U-quantile which estimates the regression
slope. Consider the linear regression model: ¥; = a + BX; + §;; « and B are
constants and §; is an r.v. independent of X,. The U-quantile of the kernel
h((xq, y1), (x5, ¥5)) = (yy — y1) /(x5 — x,), with respect to p = 1/2, is a natu-
ral estimator of the parameter B. This estimator is the median of the values
(Y, - Y)/(X;, — X)), 1 <i <j <n. Some references in the study of U-quan-
tiles are Serfling (1984), Janssen, Serfling and Veraverbeke (1984), Helmers,
Janssen and Serfling (1988) and Choudhury and Serfling (1988).

Here, we will study the distributional and the a.s. behavior of

(1.6) R, =& — &+ (H'(&)) (H(&) —H(&)),

using empirical process techniques. Finding the asymptotic behavior of (1.6),
we grasp a very good insight into the effect of the influence curve in the
asymptotics of U-quantiles. The Bahadur-Kiefer representation of a statisti-
cal functional measures how close is, asymptotically, the linear expansion of a
statistical functional to the statistical functional itself. It is a way to measure
the differentiability of the statistical functional. We refer to Serfling (1980),
Chapter 6, and Dudley (1992, 1994) for other ways to measure differentiabil-
ity. One interesting application of Bahadur-Kiefer representations is to
obtain sequential fixed-width confidence intervals for a parameter [see Chow
and Robbins (1965) and Geertsema (1970)].

The leading idea to deal with (1.6) is to do a Hoeffding decomposition, to
show that the terms of order 2 and larger vanish and to find the order from
the first term of this decomposition. Next, we describe the Hoeffding decom-
position. Given a measurable function on S™, the U-statistic with kernel % is
defined by

(n—m)!

n!

(1.7) U,(h) =

We will abbreviate Eh = E[M(X,,..., X, )], P,f=n""EY}_, (X)) and Pf=
E[ f(X)], where X is a copy of X;. We define

(1.8) T (%150, %) = (8, — P) (8, — P)P" *f,
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where Qq,...,Q,f= [ - [f(xy,...,x,)d@Q(x) - dQ,(x,). Then, the
Hoeffding decomposition of the U-statistic U,(f) can be written as

(L9) Uf) = T (70 ).

hoo\k
In particular, this expansion applies to the term (H'(&,)) '(H,(&,) — H(&,))
in (1.6), allowing us to see how close &, — &, is to a true linear term. Here, we
will see that the order of

(1.10) Elg(X,t) - g(X, &)[] ast— &

determines the order of R,, where g(x,?) = Pr{h(x X,,...,X, )<t In
particular, we will see that if E[|g(X,t) — g(X, £)I°] = O(It - §0| )as t —
&y, for some v > 0, then

(1.11) nVMAR = 0p(1)
and
(1.12) (n/loglog n)**?/*R, = 0(1) aus.

Observe that by the Cauchy—Schwarz inequality

|H(t) — H( fo)|2 =|E[Ih(X1,...,Xm)st - Ih(Xl,...,Xm)sf(,Hz

(1.13)
= E[|g(X.0) ~g(X, &)
2
SE“Ih(Xl ,,,,, Xzt = Ihixy X026 | ] =|H(t) — H(&),
where by E; , we mean integration with respect to the coordinates

gyeneylp So, if H is differentiable at &, H'(&) >0 and Ellg(X,t) —
g(X, §O)I =00t — &!") as ¢t = &, for some v > 0, then 1 < v < 2. Finding
the exact order of (1.10) may be difficult or impossible, but, by (1.13), (1.11),
and (1.12) always hold with v = 1. For a smooth statistical functional, the
term R, is Op(n~!) and O(n '(loglog n)) a.s. (case v = 2). These are the
orders of all the examples mentioned above. These estimators enjoy a much
better differentiability than the median.

We must mention the previous work in this problem. Choudhury and
Serfling (1988) showed that, under some mild conditions,

(1.14) n**(logn) **(H,(&) —p + H'(&)(&, — &)) = 0(1) as.

[see also Lemma 4.2 in Geertsema (1970)]. This result was used in Gijbels,
Janssen and Veraverbeke (1988) to find weak and strong representations for
trimmed U-statistics. We also must mention the work by Shi (1995) in the
uniform Bahadur-Kiefer representation for the U-quantiles of A(xq,...,
x,,) = max(x,,..., x,,). Other papers related to the present one are the ones
by Carroll (1978), Jureckova (1980), Jureékova and Sen (1987), Deheuvels
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and Mason (1992) and Arcones (1994a) in the Bahadur—Kiefer representation
of M-estimators.

Our main tools are certain limit theorems which hold uniformly over VC
subgraph classes of functions. Given a set S and a collection of subsets &, for
A C8S,let A°(A) = card{A N C: C € &}, let m%(n) = max{A¥(A): card(A) =
n} and let s(%) = inf{n: m%(n) < 2"}; € is said to be a VC class of sets if
s(%) < «. General properties of VC classes of sets can be found in Chapters 9
and 11 in Dudley (1984). Given a function f: S — R, the subgraph of f is the
set {(x,£) € S X R: 0 <t <f(x) or f(x) <t < 0}. A class of functions & is a
VC subgraph class if the collection of subgraphs of . is a VC class. The
interest of these classes of functions lies in their good properties with respect
to covering numbers. Given a pseudometric space (T, d) the e-covering num-
ber N(e, T, d) is defined by

(1.15) N(e&,T,d) = min{m: there exists a covering of T'

' by m balls of radius < &}.
Given a positive measure u on (S,.”), we define N,(e,%, u) = N(¢,%,
Il Iz, w)- If # is a VC subgraph class [Pollard (1984), Proposition 2.25], there
are finite constants A and v such that, for each probability measure u with
wF? < oo,

(1.16) Ny(2,7, 1) SA((,U,FZ)I/Z/S)”,

where F(x) = sup;.-|f(x)l and A and v can be chosen depending only on
s(¥), that is, uniformly over all the classes of functions with the same
number s(¥). By the maximal inequality for sub-Gaussian processes [see
Theorem 2.3.1 in Marcus and Pisier (1981); see also Theorem 1 in Dudley
(1967)], there is a constant ¢ depending only on A and v such that for any
class of functions satisfying (1.16),

n 2

Z & (X))

i=1

(1.17) n'E| sup < cE[F*(X)],

fes

where {¢,)7_; is a Rademacher sequence independent of the sequence {X,}"_;.

One of the main ingredients to study the distributional Bahadur-Kiefer
representation of U-quantiles will be the weak convergence of a sequence of
stochastic processes. By weak convergence, we mean weak convergence of
random elements with values in [ (%) as in Hoffmann-Jgrgensen (1984).
1 (¥) is the Banach space formed by all the uniformly bounded functions on .#
with the norm || x|+ = supfeylx(f)l. Let{Z,(f): f€5}, n = 1, be a sequence
of stochastic processes, and let {Z(f): f €.} be another stochastic process.
The sequence of stochastic processes {Z,(f): f€ 5} is said to converge
weakly to {Z(f): f€.F}in [(F) if:

() sup;c #Z,(f)l < as. for each n large enough;
(i1) there exists a separable set S of [(¥) such that Pr*{Z € S} = 1;
(i) E*[H(Z,)] - E[H(Z)] for each bounded, continuous function H in
L(F).
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It is well known [see, e.g., Andersen and Dobrié¢ (1987)] that this type of
convergence is equivalent to the convergence of the finite-dimensional distri-
butions plus a finite-dimensional approximation, that is, {Z,(f): feF},
n > 1, converges weakly to {Z(f): f € 7} if and only if the finite-dimensional
distributions of {Z,(f): f €%} converge to those of {Z(f): f € 5}; and for
each n > 0, there exists a map 7:.% — 7 such that #{#f: f € 5} is finite and

(1.18) lim sup Pr*{sup|Zn(f) - Z(7f)| = n} <.
n—o fes

We also will use the fact that if {Z(f): f € .} is a stochastic process such that
there exists a separable set S of [ (¥) with Pr*{Z € S} = 1, then (, p,) is
totally bounded and Pr*{Z € C (7, p,)} = 1, where C(Z, p,) is the set of all
uniformly bounded and p;-uniformly continuous functions in &% and
pi(f1, f5) = E[min(|Z(f;) — Z(f,)], 1)] [see Arcones (1995)]. In particular, if
{Z,(f): f € 7} converge weakly to {Z(f): f € 7}, then

(1.19) lim lim sup Pr*{ sup | Z,(f1) — Z,(f2)| = n} =0
020 now pilfy, f2)<8
1, f2€
for each n > 0.

To study the almost sure Bahadur—Kiefer representation of U-quantiles
instead of using weak convergence, we use a property similar to the compact
law of the iterated logarithm: {Z (f): f€ .5} is a sequence of stochastic
processes such that there is a subset K of [ (%) satisfying that, with
probability 1, {Z,(f): f € 7} is relatively compact in /(%) and its limit set is
K. Given a sequence of stochastic processes {Z,(f): f € #} and a subset K of
1 (F), we have that the following are equivalent:

(a) With probability 1, {Z,(f): f € 7} is relatively compact in [ (%) and its
limit set is K.

(b) For each fi,..., f,, € F, with probability 1, {(Z,(f),..., Z,(f, )}, n > 1,
is relatively compact in R™ and its limit set is {(x(f}),..., x(f,,)): x € K};
and for each n > 0, there exists a map w: F —» 7 such that #{rf: f€F}is
finite and
(1.20) limsup sup|Z,(f) — Z,(7f)| <n as.

n-ox fesF

If either (a) or (b) holds holds, K is a compact set of [ (¥). If K is a compact
set of [(%), then (&, p,) is totally bounded and K c C, (%, p,), where
pa(f1, f2) = sup, c glx(f;) — x(f3)l. In particular,

(1.21) lim limsup sup |Z,(f1) —Z,(f,)|=0 as.
20 pow palf1, fa)<8
f1, f2€F

We refer for all last facts on the compact law of the iterated logarithm to
Arcones and Giné (1995). Usually K is the unit ball of the reproducing kernel
Hilbert space (r.k.h.s.) of a covariance function on Z. A function R: # X % - R
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is a covariance function on .7, if
m m
MDY ajakR(fj:fk) >0
j=1k=1

for each a4,...,a,, € R and each f,,..., f,, €. Then there is a mean-zero
Gaussian process {W(f): F € #} such that E[W(f)W(f,)] = R(f}, f,) for
each f1, f, € 7. Let Z be the linear subspace of L,, generated by {W(f):
f €5} The rk.h.s. of the covariance function R(:,:) is the following class of
functions on 7

{(@(f))es: there exists ¢ € Zsuchthat a(f) =E[W(f)é&] foreachf € 7}.
This space is endowed with the inner product
(ay, ay) =E[§&]

if a,(f) = E[W(f)¢] for each f €. and each i = 1,2. The unit ball of this
rk.h.s.is

K= {(E[W(f)f])fey— éeZ and E[fz] < 1}_
Here, py(f1, f2) = sup, c glx(f1) — x(f)l = IW(f) — W(F)lls. A reference in
rk.h.s’s is Aronszajn (1950).

2. The distributional Bahadur-Kiefer representation for U-quan-
tiles. Here, we consider the distributional order of the Bahadur—Kiefer
representation for U-quantiles. First, we give an upper bound to R,.

THEOREM 1. With the above notation, suppose that:

(1) there is a real number &, such that H(¢,) = p, H is continuous in a
neighborhood of ¢,, H is differentiable at &,, H'(§¢,) > 0 and

H(t) = H(&) + H'(&§)(t = &) + O((t - 50)2)
ast — &y
(i1) there is a sequence of real numbers {a,}, _, such that

a2E||g(X. &+ in?) - g(X,&)[] = 0(1)
for each t € R.
Then
(21)  a,n'?(H, (&) — H(&) + H'(&)(&, — &)) = Op(1).
Proor. ¢ will design a finite constant which may vary from line to line.
By (1.13) and hypotheses (i) and (i),
(2.2) a’?n~t =0(1).

Since, for each &> 0, H (&, + ¢) > H(&) + ¢) as. and H(¢, — ) <p <
H(¢, + &), we have that

(2.3) £, — & as.
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Since the class {I}, x,  x ,<.: ¢t € R}is a VC subgraph class of functions, by
Theorem 4.10 in Arcones and Giné (1993), {n'/2(H (¢) — H(¢)): t € R} con-
verges weakly to a Gaussian process. From this, (2.3) and the fact that
Ellg(X,t) — g(X, .90)|2] - 0, as t = &, it follows that

(24) n'/*(H,(&) — H,(&) — H(&,) + H(&)) —p 0.

By hypothesis (i), there is a § > 0 such that H(#) is continuous and increas-
ingin[&, — 8, &, + 8]. Hence, for {iy,...,i,) N{j,...,J) = D and i; < -
<i, and j; < - <j,,

Pr{h(X,,.... X, ) =h(X;, ..., X; ) €[ & — 8,6 + 8]} = 0.

This implies that, for all |s — &,| < §,

|H,(s) — H,(s —)| < (;}1)_1 (”}1) - (n r_nm)‘ <cn ! as.

Therefore, eventually

(2.5) |H,(&,) —p|l<en! as.
By (2.4) and (2.5),
(2.6) n'/*(H,(&) — H(&) + H(§,) — H(&)) —» 0.

By hypothesis (i), there exists a positive constant n such that if [¢ — &,| < n,
then |H(t) — H(&)l = 27 H'(EIt — &l So, if |£, — &l < 7, then

27 H'(£))n'?l¢, — &l <n'?|H(&,) — H(&)]
<n'?|H,(&) —H(&) +H(&,) - H(&)]
+n'/?|H, (&) — H(&)| = 0p(1).
From this and (2.3), n'/2|¢, — &, = Op,(1). The last estimation, (2.6) and
hypothesis (i) imply that
n'2(H,(&) — H(&) + H'(&)(& — &)) ~»p 0.
Next, we show that, for each M < oo,
sup a,n'/?|H,(& + tn~V/?) — H( & + tn~1/?)
(2.7) lel<M
—H,(&) + H(&)|=0p(1).

By the Hoeffding decomposition, it suffices to show that

(2.8) ‘sluiann”zl(Pn —P)(g(, & +tn V?) —g(-,&))| = 0p(1)

and

(29) sup ann1/2|Un7Tk,m(Ih§ §0+tn_1/2 - Ih§§0)| _)P 0
ltl<M
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for £ < 2 < m. Since the class {g(x, t): + € R} is increasing in R, it is a VC
subgraph class. Hence, by (1.17),

E[aﬁnlsluiKPn —P)(g(,é +tn %) —g(-, fo))ﬂ

< caiE[ sup |g(X, & +tn %) —g(X, §O)|2}
[tl<M

< caiE“g(X, & + Mnfl/z) — g(X, go)|2]
+aiE[|g(X, & —MnV?) - g(X, fo)|2] =0(1).

[Observe that the classes .7, == {g(-, & + tn~ /%) — g(-, &)): |t| < M} are all
VC subgraph classes and s(%,) < s(#,) for each n. So, we may choose a finite
constant ¢ in (1.17) uniformly on n.] Therefore, (2.8) follows. (2.9) follows
from (2.2) and Corollary 5.7 in Arcones and Giné (1993). Hence, (2.7) holds.
Composing the process in (2.7) with n'/2(¢, — &), we get that
a,n'*(H,(&) — H(&,) — H,(&) + H(&)) = 0p(1).

By this, (2.2) and (2.5),

a,n'?(H(&) — H(&,) — H,(&) + H(&)) = 0p(1).
So, the result follows. O
From a previous theorem, it follows that if condition (i) holds and there

existsa 1 < v < 2 such that E[|g(X, ) — g(X, £,)I°] = O(t — &,|") as t — &,
then

n@tD/MR = 0,(1).

Next, we will find the exact order of this representation under some extra
conditions. The exact order of this representation is determined by the order
of

(2.10) E[|g(X, & +in %) —g(X, fo)|2]
as n — . Finding the order of (2.10) could be difficult. By (1.13),
n'2E||g(X, &+ tn ) - g(X, &)
<nVH(& +tn V) —H(&)|=0(1),

that is, condition (ii) holds with a, = n'/*. So, under the easy-to-verify
condition (i) in Theorem 1, we have that

(2.11) n3/4(Hn( &) —H(&) +H'(&)(&, — fo)) = Op(1).

We will need the following CLT for triangular arrays indexed by VC
classes. It follows from Theorem 2.6 in Alexander (1987).
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THEOREM 2. Let O be a subset of R? and let 0, be a point in the interior
of ©. Let g: SX 0O - R be a function such that g(-,0) is a measurable
function for each 6 € ©. Let M <. Let Gg(x) =sup,_, .glg(x,0) —
g(x, 0,)l, where |-| is the Euclidean distance R?. Suppose that:

(1) there is a 8, > 0 such that {g(x,60) — g(x,0,): 10 — 6,] < 8.} is a VC
subgraph class;
(ii) there are sequences{a,),_, and {b,},_; such that a, = «, b, = 0 and

lim a? Var(g(X, 6, + tb,) — g(X, 6, + sb,))

exists for each |sl, |t| < M,

(i) a; E[Gy, (X)] = O(D);

(v) a)ElGy, (X)1g, (x)sra-1n12] = 0 for each 7> 0;

(V) lim, , o limsup, ,.sup;, - s o= u @all€(X, 0, + b)) — g(X, 0, +
Sbn)Hz = 0.

Then

a’nn’_l/2 Z (g(Xi’00 + tbn) _g(Xi’GO) _E[g(X’ 90 + tbn)]
i=1

+E[2(X,0,)]): 1t <M

converges weakly to the centered Gaussian process {Z(t): |t| < M} determined
by Z(0) = 0 and ||1Z(¢) — Z(s)llz = p(t, s).

1/4

Next, we see that under some conditions the order a, = n*/* is attained.

THEOREM 3. Suppose that:

(1) there is a real number &, such that H(¢,) = p, H is continuous in a
neighborhood of &,, H is differentiable at &,, H'(£,) > 0 and there exists a
finite constant b such that

H(t) =H(&) +H'(&)(t— &) +b(t— 50)2 + 0((t - 50)2)

ast = &;
(ii) there is a real number B such that

lim & 'E||g(X, & + et) — (X, & + es)[*] = B2l — sl

e—>0+
for each t,s € R.

Then
n3/4(Hn( &) —H(&) +H'(&)(& — fo))
—, mB(H'(&)) *(Var(g(X, &))" lg,

where g, and g, are two independent standard normal r.v.’s.

1/4 |1/2

g2’
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Proor. We claim that by Theorem 2,
(2.12)  {n¥*m(P, - P)(g(-, & +tn"2) —g(-, &)): 1tl < M)}

converges weakly to {Z(¢): |t| < M}, where Z is a mean-zero Gaussian process
with covariance given by

E[Z(t)Z(s)] = 27 'm?B(It| + |s| — |t — s])

for each s, # € R. Observe that g(x, ¢) is nondecreasing in ¢ for each fixed x.
So, by a standard approximation argument,

lim limsup sup n1/2E[|g(X, & +itnV?) - g(X, §0+Sn_1/2)|2] =0

20 pow pos|<s
Isl, ltl<M

for each M < «. Observe also that |g(x, )] < 1.
By Corollary 5.7 in Arcones and Giné (1993),

(2.13) sup n3/4|Unwk’m(Ih§§0+m,1/z - Ih£§0)| —-p 0 for2 <k <m.
ltl<M

From (2.12) and (2.13), the process
{Zn(t) =nY*(H,(& +tn"'/?) = H(& +tn™'/?)

~H,(&) + H(&)): It < M)

converges weakly to the process {Z(¢): |t| < M}. Let Tj; = {¢: [t| < M} U {oo},
let Z,() == n'/2(¢, — &), let Z(«) be a Gaussian r.v. with mean zero, covari-
ance m2(H'(¢,)) 2 Var(g(X, &,)) and independent of the process {Z(¢):]t| <
M}. By (2.11)

(2.14)  n'2(&, = &) + A (H'(&)) (Ny(&) — H(&)) =» 0.

So, from this and the central limit theorem for triangular arrays, the finite-
dimensional distributions of {Z,(¢): ¢ € T};} converge to those of {Z(¢): t € Ty}
Condition (1.18) holds for {Z,(¢): t € T3}, because it holds for {Z,(¢): [¢| < M}.
Therefore, {Z (¢): t € Ty;} converges weakly to {Z(¢): ¢ € T}s).
By composing Z,(¢) with Z, (=), we get that
n¥Y(H,(&) — H(§,) — H,(&) + H(&)) =4 Z(Z(»)).

We have that Z() has the distribution of m(H'(&,)) '(Var(g(X, &)Y %g,,
where g, is a standard normal r.v. For each ¢ € R, the distribution of

Z(m(H'(&y)) ' (Var(g(X, &)))""t)
is that of

mBml/Z(Hr( fo))71/2(Var(g(X, 50)))1/4|t|1/2g2,

where g, is a standard normal r.v. So, by conditioning on g,, we obtain that
the distribution of

Z(m(H'(&)) " (Var(g(X, &))" &)
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is that of

1/4 |1/2

mS/ZB(H'( fo))_lﬂ(var(g(X’ fo))) g1 g3,

where g, and g, are independent standard normal r.v.’s. O

Theorem 3 applies to A(xy,..., x,,) = max, _,_,x;. Let F(¢) be the distri-
bution function of X,. Suppose that (F(£,))™ = p, F is second differentiable
at &, and F'(£,) > 0. Then

n¥*(H,(&) — H(&) + H'(&)(&, — &))
-, mp(4m—3)/4m(1 _pl/m)1/4|g1|1/2g2’

where g, and g, are independent standard normal r.v’s. Observe that
H(t) = (F(¢))™ and

g(x,t) = Pr{max(x, X,,...,X,,) <t} = xst(F(t))m_l.

So, H'(&,) = mp™ =Y/ mF'(&)) and Var(g(X, £,)) = p@™~ /™1 — p/™). For
s <t

e 'E[lg(X, & + te) — g(X, & + se)’]

— e (F (& +te))" = F(& +5)" ) F(& + se)
+ e W(F(& +te))" (F(& + te) — F(&, + es)),
which converges to pX™~1V/™(¢ — s)F'(&,). We also have that
e 2E[(g(X, & +te) —g(X,&))g(X, &)] — 0.
Next, we see how the order n in the Bahadur—Kiefer representation of
U-quantiles can be attained.
THEOREM 4. Suppose that:

(1) there is a real number &, such that H(¢,) = p, H is continuous in a
neighborhood of &,, H'({,) > 0 and there exists a finite constant b such that

H(t) =H(&) +H'(&)(t— &) +b(t— 50)2 + 0((t - 50)2)

ast — &, for some b € R;
(i1) there is a real number B such that

lim & 2 Var(g(X, & + et) —g(X, & + es)) = B(¢ — s)2

e—>0+
for each t,s € R;
. _ 2
(iii) 8&%& & 2E[|g(X, & +et) —g(X, &)l Ilg(X,§o+€t)—g(Xy§0)|ZT] =0

for each t € R and each > 0;
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(iv) there is a real number o such that
lim e’lcov(g(X, g tet) —g(X,&),8(X,&)) =at

e~ 0+

for each t € R.

(v) There is a 8 > 0 such that for any |t — &,| < 8 and for any combina-
tions i; < -+ <i, and j, < -+ <j, such that {iy,...,i,,} #{Ji,---»Jm)> WE
have that

Then
n(H,(&) — H(&) +H'(&)(& — &))

converges in distribution to A\, g% + \,g2, where g, and g, are independent
standard normal random variables,

(2.15) A= =27 ey + bey ) — 2*1(01’102’2 +2bcy 509 5 + bzcgyz)lﬂ,
(2.16) Ay = —271(cq g +bey y) + 27 (e qeq 9 + 2bCy g 5 + bzcg,z)l/2
c11=mB% ey, =m?(H'( fo))_QVar(g(X, &)) and

¢ = —m*(H'( §0))71a.

b

(2.17)

ProOF. Observe that, by hypotheses (i) and (ii), m > 2. By the method in
the proof of Theorem 3,

(n(H,(& +tn %) —H(& +tn™V2) — H,(&) + H(&)): Itl < M}

and n'/%(¢, — £,) converge jointly to {tY; : |[¢| < M} and Y,, where Y, and Y,
are jointly normal random variables with mean zero and

E[Y?] =c¢; 1, E[Y}] =cy, and E[Y\Y,] =c;,,
where ¢, ;, ¢, 5 and ¢, , are as in (2.17). Hence

n(H,(&) — H(&) — H(&) + H(&) +b(&, — &)%)

converges in distribution to Y;, Y, + bY;?. We have thlat all A(X;,...,X; )in
[&, — t, & + t] are different. So, |H,(&,) — pl < ( ) . Therefore,

n(H,(&) — H(&) +H'(£)(& — &))

converges in distribution to —Y,Y, — bY;. If ¢; 1¢5 5 —¢f, =0, Y, and Y,
are linearly dependent, and the distribution of —Y,Y, — bY,? is that of Ag?2,
where g is a standard normal random variable and

A=E[-Y,Y, - bY]| = —(cy5 + bey 5).
If ¢; 1¢5 5 — i 5 = 0, then

. _
MET + A85 = —(cr gt bey,y) &7 — (¢ 9+ bcy,) &5,
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where x~= max(—x,0), x™= max(x,0), A; and A, are as in (2.15) and (2.16)
and g; and g, are two independent standard normal random variables. So,
M g7 + A,85 has the same distribution as Ag”. Assume now that ¢, j¢, , —
ci, > 0. Let Z; = cy3/%(cy 1095 — €7 5) ey Yy — ¢1,Y,) and Z, =
¢y 5'?Y,. We have that Z, and Z, are two independent standard normal
random variables and -Y,Y, — bY} = —a,Z,Z, — a,ZZ, where a, =
(c11C90 — €1 )% and a, = ¢q 5 + bey 5. Let g1 = q1 'ayZ; + g7 (ay + (af +
a)V*Z, and g, = q,'a,Z, + q; (a, — (a2 + a2)/?)Z,, where

)1/2)1/2

q, = 21/2(a% + a3 + ay(ai + aj and

(2.18) e
qs = 21/2(a% + a2 — aQ(a% + a%) / ) )

Then, g, and g, are two independent standard normal random variables and
—a,Z,Zy — ayZ; = M &7 + A8,
where A; and A, are as in (2.15) and (2.16). So, the result follows. O

Theorem 4 applies to h(x,, x,) = x; + x,. Suppose that Pr{X, + X, <
£} = p, the distribution function F of X is second differentiable and its first
and second derivatives are uniformly bounded and [ F'({, — x)F'(x) dx >
0. Then the thesis of Theorem 4 holds for A(x,, x,) = x; + x, with

H'(&) = [ F'(¢ - x)F'(x) dx,

b=2" [ F'(&—x)F(x)dx,

2

B2~ [ (6 -0 F () o= ([ F (6 - 0P (x) ds
o« = fiF( €y — x)F(& —x)F'(x)dx

—f:F’( £ — x)F'(x)dx/:F( £ — x)F'(x)dx

and g(x,t) = F(t — x).

Theorem 4 also applies to the kernel A(x,, x,) = |x; — x,|", where r > 0.
We omit the details. As mentioned in the Introduction, the U-quantile over
this kernel, in the case r =1 and p = 1/2, was considered by Bickel and
Lehmann (1979). It is an estimator of the spread of the distribution.

Theorem 4 also applies to the kernel A((xq, y1),(xg,y5) = (y5 —y1)/
(x4 — x;) (under some regularity conditions). Consider the linear regression
model: Y; = o + BX, + §;; « and B are constants and §, is an r.v. indepen-
dent of X,. The U-quantile over the kernel s, with respect to p = 1/2, is an
estimator of the regression slope 8. Here

g((xy,y1),t) =Pr{(B—1t)X, + 8, <y, — tx; — a}.
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3. The a.s. Bahadur-Kiefer representation of U-quantiles. First,
we present some results on the law of the iterated logarithm for processes.
The following lemma is similar in spirit to Theorem 3.1 in Kuelbs (1976).

LEMMA 5. Let {Z,(t): t € T} be a stochastic process indexed by a parame-
ter set T'. Let p be a pseudometric on T'. Let K be a compact subset of C (T, p).
Assume that the following conditions are satisfied:

) (T, p) is totally bounded,;
(i) lim;_, o limsup, ,.sup,q, . <5Z,(t;) — Z,(t,) = 0 a.s;
(iii) for each m € N and each ti,...,t,, € T, with probability 1, the se-
quence ((Z,(¢,), ..., Z,(¢,)},_, is relatively compact in R™ and its limit set is
contained in {(x(¢,), ..., x(¢,)): x € K}.

Then, with probability 1, the sequence {Z,(t): t € T} is relatively compact
in L(T) and its limit set is contained in K.

PrOOF. By the Arzela—Ascoli theorem, with probability 1{Z,(¢): ¢ € T} is
relatively compact in [ (T"). Let {tp};’;=1 be a countable dense subset of (T, p).
Let A be a measurable set having probability 1, such that in A,

lim limsup sup |Z,(¢) —Z,(¢t,)|=0

820 noo p(ay,t)<6
and for each m € N the sequence {(Z,(¢,), ..., Z,(t,));_; is relatively com-
pact in R™ and its limit set is contained in {(x(¢)),..., x(¢,,)): x € K}.
Suppose that x € [(T') is a limit point of a sequence {Z,(¢): ¢ € T} satisfying
the previous two conditions. By the first condition, x € C (T, p). Let n; be a
subsequence such that an — x. By the second condition, for each m > 1,
there is an x™ € K such that

(x(t1),-s x(ty,)) = (x"(8y),..., x"(2,)).
Since K is compact, the sequence {x™};_, has a limit point y € K. Since
x,y € CT, p) and x(t,) = y(¢,) foreach p > 1, x =y. O

We also need the following law of the iterated logarithm.

THEOREM 6. Let {X;}_, be a sequence of i.i.d. r.v’s with values in a
measurable space (S,.#). Let g: SXT —> R be a function such that
g, t): S > R is a measurable function for each t € T. Let R(-,) be a
covariance function on T. Let {b,} be a sequence of real numbers from the
interval (0,1] and let {a,} be a sequence of positive real numbers. Suppose
that:

(i) there is a scalar product defined for each t € T and each 0 < u < 1,
so that ut € T , ,
(i) limsup a2n~'Var( }] Ag(X,b,t)) < Y, AMAR(t,t,) for each

n—o j=1 j k=1
t,--5t, € Tand each Ay,..., A, €R;
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(iii) {b,} and {a,n"'(loglog n)~'/%} are nonincreasing sequences;
(IV) limya 1+ limsupnaw SUPp: n<m<yn ar;1|am - an' =0

and lim ;. limsup, ,..sup,,. .. n<,,b0, 10, — b,/ =0;
(v) foreacht € T, lim,_,,_p(ut,t) = 0, where
p%(s,t) =R(s,s) + R(t,t) — 2R(s,t).

(vi) lim lim sup supn_la,%E[(g(X, b,t) — E[g(X, bnt)])2]
™0+ psw teT
XIG(X,b")ZT(loglog n)*l/za,;ln) =0,
where G(x) = sup, . rlg(x, b,t) — E[g(X, b,)]|;
(vii) there are positive constants ry and r,, such that

Y sup e Pr{G(X, byi) = rzj(logj)l/zaz‘jl} < o0;
Jj=2 rog )~ t<r<r,
(viii) (T, p) is totally bounded,;
(ix) a,(2loglog n)~*/2 sup, (P, — P)g(:, b,t)| = ;0;
(x) limsup; , , limsup, ., sup,. ., aon ' Var(g(X, b,s) —
g(X,b,t) =0.
Then, with probability 1,
(81)  {(2loglogn) '*a,(P, —P)g(-,b,t):teT}), n=1,

is relatively compact in I (T') and its limit set is contained in the unit ball of
the r.k.h.s. of the covariance function R(:,-).

Proor. It follows from Lemma 5, using the method in the proof of
Theorem 3.1 in Arcones (1994b). So, we omit the proof. O

Since the first element of the Hoeffding decomposition of I, _, can be
difficult to find, we first give a sharp upper bound.

THEOREM 7. Let h: S™ — R be a symmetric measurable function and let
0 < p < 1. Suppose that there is a real number &, such that H(¢)) = p, H is
continuous in a neighborhood of &,, H is differentiable at &,, H'(£,) > 0 and
there exists a finite constant b such that

(3.2) H(t) = H(&) +H'(&)(t— &) +O((t - &)%)
ast — &,. Then
limsup (n/2loglog n)”*|H (&) — H( &) + H'(£&)(&, — &)| <l a.s.,

n—ow

where | = 21/2373/4m3/2(Var(g(X, &)Y *.

Proor. Take
1/2

M > m(H'(&)) '(Var(g(X, &)))
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Let b, = (2loglog n/n)'/? and let
Z,(t) = (n/2loglog n)”*(H,(& + tb,) = H(& + tb,) — H,(&) + H(&)).
By Theorem 4.7 in Arcones and Giné (1995),

(3.3)  sup (n/2loglog n)3/4|Unwk’m(IhS§0+tbn — Ih3§0)| -0 a.s.
ltl<M

We claim that by Theorem 6, with probability 1,
(3.4 {(n/2loglog n)”*m(P, — P)(g(-, & + b,t) —g(-, &)): Itl < M}

is relatively compact and its limit set is contained in the unit ball of the
r.k.h.s. of the mean-zero Gaussian process {Z(¢): |¢| < M} having covariance
E[Z(t)Z(s)] = 27 'm?H'(&))Is| + |t| — |s — t]) for each s,t € R; that is, the
limit set is contained in

(35) K, = {('y(t))|t|SM: (0) = 0 and ffw('y’(t))z dt < m*H'( go)}.

We are applying Theorem 6 with T'=[—M, M1, R(s,t) = E[Z(¢)Z(s)] and
a, = n®*2loglog n)~*/*. We have that

p
lim sup b, 'm? Var( Y /\j(g(X, & +b,t) —g(X, fo)))
j=1

n— o

p
< .Z MAR(E, 1),

because

E[ .i )‘j(g(X7 & T bntj) -8(X, fo))l) -0

and

b, 'm2E

Jj=1

( i )‘j(g(X, &+ bntj) -8(X, 50))) }

<b,'m’E

p 2 p
Z )\j(IhS§0+bntj - IhSio)) ] - Z )\j/\kR(tJ’tk)'
Jj=1 jk=1

The rest of the hypotheses in Theorem 6 are either trivial or can be checked
similarly to the conditions already checked. So, (3.4) and (3.5) follow. By
(3.3)-(3.5),

(3.6) (Z,(t): It] < M)

is a.s. relatively compact and its limit set is contained in K,,. Let

(3.7) Z,(%) = (n/2loglog n)"?(&, — &)
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and let Z(=) be a Gaussian r.v. with mean 0 and variance

m?(H'(&,)) " Var(g(X, &))

and independent of the process {Z(¢): [¢| < M}, let Tjs = [-M, M] U {~} and
let p(s,t) = |Z(t) — Z(s)|ly, where s, t € Tj;. Using the method in Remark 10
in Arcones (1994a) (applying Kolmogorov’s exponential inequalities), it is
easy to see that for any ¢,,...,t, € Ty, (Z,(¢),..., Zn(tp))} is a.s. relatively
compact and its limit set is contained in the unit ball of (Z(¢,),..., Z(z,)).
Since {Z,(¢): |¢] < M) satisfies a type of compact law of the iterated logarithm,

lim limsup sup |Z,(¢) —Z,(t;)| =0 as.
820 now gy ltyl<M
p(t1,£9)< 8

and ((—M, M1, p) is totally bounded. So, it is also true that
lim limsup sup |Z,(¢) —Z,(t;)| =0 as.
820 poe ¢ t,eT

p(ty,t9)<d

and (T3}, p) is totally bounded. So, by Lemma 5 the process {Z,(¢): t € Ty} is
a.s. relatively compact and its limit set is contained in the reproducing kernel
Hilbert space of {Z(¢): ¢t € T};}; that is, it is contained in

K, = {(V(t))teT;;,I v(0) =0 and
(H'(£) " [* (v/(0))* at

+(Var(g(X, £))) (H'(£))(v(=))* < m2}.
By Theorem 4.1 in Arcones (1993),

(38) (n/2loglogn)*(H,(&) — H(&) + H'()(& ~ &)) >0 as.
From this, the law of the iterated logarithm of {Z (¢): ¢ € T};} and composi-
tion

{(n/2loglog n)**(H,(&,) — H(&,) + H,(é) — H(&)))]

is a.s. relatively compact and its limit set is contained in
1 M
[r@)v0) =0 and #(e) " M ()" ar
(3.9) N
+(Var(g(X, 50)))_1(H’( fo))zv2 < mz}.

By the argument in Proposition 1.1 in Deheuvels and Mason (1992), the set in
(8.9)is [—1,1], where [ = 21/2373/*m3/2(Var(g(X, £,)NY*. O

Next, we see how the order (n/2loglog n)®/* can be attained in the
Bahadur—Kiefer representation of U-quantiles.
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THEOREM 8. Let h: S™ — R be a symmetric measurable function. Let
0 < p < 1. Suppose that:

(1) there is a real number &, such that H(¢,) = p, H is continuous in a
neighborhood of &,, H is differentiable at ¢,, H'(¢,) > 0 and there exists a
finite constant b such that

H(t) =H(&) +H'(&)(t— &) +b(t— 50)2 + 0((t - 50)2)

ast — &y;
(ii) there is a real number B such that

lilgl s*lE[|g(X, & +et)—g(X, &+ ss)|2] = B2t — s
e—>0+
for each t, s € R.
(iii) lirgl+ 6_1/2E[(g(X, & + et) — g(X, §0))g(X, §0)] =0
for each t € R.
Then, with probability 1,
{(n/210glog n)**(H,(&) — H(&) + H'(£)(&, — &)}
is relatively compact and its limit set is [ —1, 1], where
I =2V2373/4m3/28(H'(&,)) *(Var(g(X, &)))"".

In particular,

lim sup (n/2loglog n)* *(H, (&) — H(&) + H'(&)(é, — &)) =1 a.s.

n— o

PrOOF. Take M > m(H'(£,) *(Var(g(X, &))" 2. The proof is similar to
the proof of Theorem 7. We have that by Theorem 3.1 in Arcones (1994b)

{(n/z loglog n)3/4m(Pn - P)(g(-, & +t(2loglog n/n)l/z)
-8( 50)): It| < M}
is a.s. relatively compact and its limit set is
{(v(t))mgu: y(0) =0 and f_MM(?"(t))Z dt < m2,82}.
So, the arguments in Theorem 7 imply the result. O
Theorem 8 applies to A(x4,..., x,,) = max, _,_,, x;,if there exists &, with

(F(¢)™ = p, where F(¢) is the distribution function of X;, F is second
differentiable at £, and F'(¢,) > 0. In this case

] = 21/23—3/4mp(4m—3)/4m(1 _pl/m)1/4'
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THEOREM 9. Let h: S™ — R be a symmetric measurable function. Let
0 < p < 1. Suppose that:

(1) there is a real number &, such that H(¢,) = p, H is continuous in a
neighborhood of &,, H is differentiable at ¢,, H'(&¢,) > 0 and there exists a
finite constant b such that

H(t) =H(&) +H'(&)(t— &) +b(t— 50)2 + 0((t - 50)2)
ast = &;

(ii) there is a real number B such that
lim & 2 Var(g(X, & + et) —g(X, & + &s)) = B2(t — s)2

e—>0+
for each t,s € R;

(iii) lim, ,, ¢ 2E[lg(X, & + M)

—g(X, & - 8M)|21|g<x,§0+8M>fg(x,§OfsM)\ZT] =0
for each M, > 0;
(iv) there is a real number a such that

lim e 'Cov(g(X, & + €t) —g(X, &), 8(X,&)) = at

e—>0+
for each t € R;

(v) there is a 8 > 0 such that for any |t — &l < 8 and for any combina-
tions iy < -+ <1, and j; < -+ <j, such that {i{,...,1,} # {ji, - s Jm), WE
have that

Pr{n(X,,....X, )=h(X,....X;, ) =t} = 0.

Then, with probability 1,
{(n/2loglog n)(H, (&) — H( &) + H'(&)(& — é))}n=>1,

is relatively compact and its limit set is {A;x} + Ayx3: x7 + x5 < 1}, where \,
and A, are in (2.15) and (2.16).

PrOOF. Take M > m(H'(&,)) '(Var(g(X, £,))'2. Let
Z,(t) = (n/2loglog n)(Hn( &, + t(2loglog n/n)l/Z)

—H( ¢, + t(2loglog n/n)"?) — H,( &) + H(&)))
for [t| < M and let Z,(«) as in (3.7). By the method in Theorem 8, we get that
{Z,(t): t € Ty} is as. relatively compact and its limit set is

{(¥(8))iery: v(t) = tu, for [t| <M and
Y(OO) = Uy, where (u17 uz) = K}’

where K is the unit ball of the reproducing kernel Hilbert space of the
random vector (Y;,Y,), where Y; and Y, are jointly normal random variables
with mean zero and

E[Y12] = C1,1aE[Y22] =Cgo 9 and E[Y,Y,] = C1,25
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where ¢, 1, ¢, 5, and ¢; , are as in (2.17). By composition

{(n/210glog n)(H,(&,) — H(&,) — H(&) + H(&) +b(&, — &)%)},
nx>1,
is a.s. relatively compact and its limit set is

{wyuy + buj: (uy,uy) € KJ.
Therefore,
{(n/2loglog n)(Hy(£0)(&, — &) + H(&,) — H(&))}hn =1,
is a.s. relatively compact and its limit set is
L= {-uju, — bu3: (uy,u,) € K}.
Now,
K= {(E[Yl(blY1 +b,Y,)], E[Y,(b,Y, + szz)]): 16,Y; + b,Y,lls < 1}.

If ¢, 1¢5 5 — €, =0, then Y} = ¢{/?g and Y, = sign(c, ,)cy/5g, where g is a
standard normal random variable. Thus,

K = {(E[Y,xg], E[Yyxg]) = {(cl/2x,sign(c, ,)cl/2x): 22 < 1)
and
L= {_(‘31,2 +bey 5)x?: x% < 1}.
We have that
{Maf + A3 xf + x5 < 1}
= {(c1,2 +bey5) 2 = (¢ + bey o) a3 al +al < 1) =1L,

where A; and A, are as in (2.15) and (2.16). So, the claim follows in this case.
Assume that ¢; j¢, 5 — ¢}, > 0. Letting Z; = ¢, 5/%(cy 1¢5 5 — €7 5) 7' ?(cg 5 X
Y, — ¢, ,Y,) and Z, = ¢, 3/*Y,, we have that Z, and Z, are independent
standard normal random variables and

K = {(E[Y(d1Z, + dyZ,)], E[Yy(d1Z, + dyZ,)]): 1 d 2, + dyZylls < 1.
_ 1/2 _
= {(Cz,§/2(01,102,2 - C%,2) d, + 02,12/201,2‘120%,/220{2)3 di +dj < 1}-
From this and the fact that
- 1/2 _ 2
_(C2,12/2(01,1C2,2 - 052) d, + ‘32,12/201,2d2)05,/22d2 - b(c%,/gdz)
= —a,d,d, — a,d3,
where a; = (¢; 1¢y 5 — ¢} 5)"? and a, = ¢, , + bey 5, We get that
L ={-a,d\d, —a,d}: d} +dj < 1}.

If x, =q;'a;d; + q7(ay, + (a? + a2)'/?)d, and x, =q;'a,d; + q; (a, —
(a? + a2)/?)d,, where q, and g, are as in (2.18), then

—a,ddy — a,d? = A\ x% + Ayx2
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and
d? +d3 =x? + x3.
Therefore,
L ={Mx?+ Agad: x? + x5 < 1}

and the result follows. O

Theorem 9 applies to kernels like A(x;, xy) = x; + x4, A(xq, x5) =[x —
x5!", r >0, and A((x, ¥, (x5, ¥5)) = (y5 —v,) /(x5 — x,), under some regu-
larity conditions. We omit the details.

Using arguments similar to those used above, it is easy to obtain the
following theorems.

THEOREM 10. Let {X;}_, be a sequence of i.i.d. r.v’s with values in a
measurable space (S, 7). Let (T, p) be a pseudometric space. Letg: S X T' > R
be a function such that g(-,t): S — R is a measurable function for each t € T.
Let {b,} be a sequence of real numbers from the interval (0,1] and let {a,} be a
sequence of positive real numbers. Suppose that:

(i) there is a scalar product defined for each t € T and each 0 < u < 1, so
that ut € T,
(i) limsup, . sup,.ra’n~'Var(g(X, b,t)) < ;
(iii) {b,} and {a,n '(loglog n)~'/%} are nonincreasing sequences;
(iv) limsup, ., SUp, -, <2,@, @, < %;
(v) there are positive constants r, and ry, such that

s

sup e gl Pr{G(x, byi) = r21(10gj)1/2a2_j1} < oo,

2 ry(og < r<ry

J

where G(x) = sup, . rlg(x, b,t) — E[ g(X, b,)]|;
(vi) (2loglog n) '/%a, sup,. (P, — P)g(-, b,t) = Op(1).

Then there is a finite constant ¢ such that

limsup sup (2loglog n) '*a,|(P, — P)g(-,b,t)| <c a.s.

n—-%  |tl<M

THEOREM 11. Let h: S™ — R be a symmetric measurable function. Let
0 < p < 1. Suppose that:

(1) there is a real number £, such that H(¢,) = p, H is continuous in a
neighborhood of &,, H is differentiable at £,, H'(£,) > 0 and there exists a
constant b such that

H(t) = H(&) + H'(&)(t — &) + b(t — &)° + o((t - &)%)

ast — &y;
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(i1) thereisa l <v < 2 such that

limsuplelfvE“g(X, & +e) —g(X, fo)ﬂ < .

e—>0

(iii) there is a &6 > 0 such that for any |t — &)] < 8 and for any combina-
tions i; < -+ <i,, and j; < =+ <j, such that {iy,...,i,} #{Ji,---»Jm)> W€
have that

Pr{n(X,,....X, )=h(X,,....X;, ) =t} = 0.
Then there is a finite constant ¢ such that

limsup (n/2loglog n)" "2/ H (&) — H(&) + H'(&)(&, — &) <c a.s.

n—ow
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