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REDUCING MULTIDIMENSIONAL TWO-SAMPLE DATA TO
ONE-DIMENSIONAL INTERPOINT COMPARISONS1

BY JEN-FUE MAA, DENNIS K. PEARL AND ROBERT BARTOSZYNSKI´
Corning Hazelton, Inc. and Ohio State University

The most popular technique for reducing the dimensionality in com-
paring two multidimensional samples of X ; F and Y ; G is to analyze
distributions of interpoint comparisons based on a univariate function h
Ž .e.g. the interpoint distances . We provide a theoretical foundation for this

.technique, by showing that having both i the equality of the distributions
Ž Ž . Ž .. .of within sample comparisons h X , X s h Y , Y and ii the equality1 2 LL 1 2

ŽŽ Ž .of these with the distribution of between sample comparisons h X , X1 2
Ž ..s h X , Y is equivalent to the equality of the multivariate distribu-LL 3 3
Ž .tions F s G .

1. Introduction. The distribution-free comparison of two high-dimen-
sional samples has attracted substantial interest over the last 20 years. Many
authors have reduced this problem to the one-dimensional comparison of

Ž .interpoint distances. For example, Friedman and Rafsky 1979 proposed a
two-sample test based on the minimal spanning tree formed from the inter-

Ž .point distances; Atkinson 1989 compared a high-dimensional simulated
sample with an observed sample, using interpoint distances within samples.
Other distance-related tests for high-dimensional data were proposed by

Ž . Ž .Schilling 1986 and Henze 1988 .
Our paper will provide a theoretical foundation for this common technique

of examining interpoint distances to give a reduction of dimensionality. In
fact, the reduction of dimensionality can be based on univariate functions
other than distances. In Section 2 we provide the basic theorem, separately
for the discrete and continuous cases. In Section 3 we provide a brief
description of two simulation-based applications.

2. Main result. In the sequel, we let X , X , . . . and Y , Y , . . . be iid1 2 1 2
random variables from k-dimensional distributions F and G, respectively.
We assume that X and Y are independent for all i, j. Also, we use thei j
symbol s to denote the equality of distributions.LL

THEOREM 1. Let S and S be two arbitrary countable sets, and let X and1 2
Ž .Y be random variables with values in S and S , respectively. If h x, y is any1 2

Ž .real-valued nonnegative function on S = S such that h x, y s 0 iff x s y,1 2
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then
h X , X s h Y , Y s h X , Y iff F s G.Ž . Ž . Ž .1 2 LL 1 2 LL 3 3

Ž . Ž .PROOF. It is trivial that F s G implies h X , X s h Y , Y s1 2 LL 1 2 LL
Ž . Ž .h X , Y , so one needs only to prove the converse. From h X , X s3 3 1 2 LL
Ž . Ž .h Y , Y s h X , Y , we have1 2 LL 3 3

P h X , X F t s P h Y , Y F t s P h X , Y F t for all t G 0.Ž . Ž . Ž .Ž . Ž . Ž .1 2 1 2 3 3

In particular, when t s 0,

P X s X s P Y s Y s P X s YŽ . Ž . Ž .1 2 1 2 3 31Ž .
since h x, y s 0 implies x s y.Ž .

� 4 � 4Let S s x , i s 1, 2, . . . and S s y , i s 1, 2, . . . . Let the probability mass1 i 2 i
function of X and Y be1 1

P X s x s p , i s 1, 2, . . .Ž .i i

and
P Y s y s g , i s 1, 2, . . . ,Ž .i i

with Ýp s Ýg s 1. Suppose that S l S consists of the matched pairsi i 1 2
Ž .x s y . Thus, from 1w j x w j x

P X s X s p 2 s P Y s Y s g 2 s P X s YŽ . Ž . Ž .Ý Ý1 2 j 1 2 j 3 3
x gS y gSj 1 j 2

s p g ,Ý w j x w j x
x gS lSw j x 1 2

2Ž .

Ž .and it follows that S l S / B since P X s X ) 0 from the assumption of1 2 1 2
discreteness. Omitting the terms from outside S l S and using the Cauchy1 2
inequality, one has

Ž . 2 2 2 2

2

3 p g G p g G p g .Ý Ý Ý Ý Ýj j w j x w j x w j x w j x½ 5
x gS y gS x gS lS y gS lS x gS lSj 1 j 2 w j x 1 2 w j x 1 2 w j x 1 2

Ž . Ž .Since 2 implies that the first and last terms of 3 are equal, we obtain
2

2 2 2 2p g s p g s p g .Ý Ý Ý Ý Ýj j w j x w j x w j x w j x½ 5
x gS y gS x gS lS y gS lS x gS lSj 1 j 2 w j x 1 2 w j x 1 2 w j x 1 2

Since the p ’s and g ’s are nonnegative, only p , g for x g S l S can bew j x w j x w j x 1 2
positive. In addition, equality in the Cauchy formula means p s cg forw j x w j x
x g S l S , and c must be equal to 1 since Ý p s 1 andw j x 1 2 x g S l S w j xw j x 1 2

Ý g s 1. Iy g S l S w j xw j x 1 2

The proof above relies on the fact that the probability of two iid discrete
random variables assuming the same value is positive. Therefore, it cannot be
applied to the continuous case. However, the theorem is also proved in the
continuous case with some restriction on the density function. We start from
the following lemma.
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2Ž .LEMMA 1. Let X and Y have densities f and g with Hf x dx - ` and
2Ž .Hg y dy - `, respectively. Assume that 0 is a Lebesgue point of the function

Ž . Ž . Ž . k k
ku y s H g x q y f x dx. Let h: R = R ª R be a nonnegative continuousR

Ž . Ž . < < Ž .function such that h x, y s 0 iff x s y, and h ax q b, ay q b s a h x, y ,
; a g R, ; b g R k. Then

P h X, Y - tŽ .Ž .
lim s a f y g y dy,Ž . Ž .Hkttx0

where a s H dx.�hŽx, 0.-14

PROOF. We have

P h X, Y - t s g y f x dx dyŽ . Ž . Ž .Ž . H H
k� Ž . 4y : h x , y -t R

s u y dyŽ .H
� Ž . 4y : h 0 , y -t

Ž . Ž . Ž . ksince h x, x q y s h 0, y . Now, the function u y is locally integrable in R
2 �since f , g g L . Also, our assumptions about h imply that as tx0 the sets y:

Ž . 4 wh 0, y - t shrink regularly to 0. Thus see, e.g., Theorem 7.16 of Wheeden
Ž .xand Zygmund 1977 , we obtain

H u y y u 0 dyŽ . Ž .�y : hŽ0 , y.- t4
lim s 0.

H dytx0 �y : hŽ0 , y.- t4

Next,

dy s a t kH
� Ž . 4y : h 0 , y -t

Ž .note that a - ` . Therefore,

H u y dyŽ .�y : hŽ0 , y.- t4
lim s a u 0 s a f y g y dy. IŽ . Ž . Ž .Hkttx0

Ž .REMARK 1. The assumption of Lemma 1 regarding u 0 will hold if, for
example, g is bounded or continuous. Further, since the role of f and g can
be reversed in the proof, it is enough to have such a condition hold for either
density.

THEOREM 2. Let X , X , X be iid k-dimensional random variables with1 2 3
density f and cdf F and let Y , Y , Y be iid k-dimensional random variables1 2 3
with density g and cdf G, and suppose that the X’s and Y’s are independent.
If the densities f and g and the function h all satisfy the conditions of Lemma
1, then

4 h X , X s h Y , Y s h X , Y iff F s G.Ž . Ž . Ž . Ž .1 2 LL 1 2 LL 3 3
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Ž . Ž .PROOF. It is trivial that F s G implies h X , X s h Y , Y s1 2 LL 1 2 LL
Ž .h X , Y , so one needs only to prove the converse. From3 3

h X , X s h Y , Y s h X , Y ,Ž . Ž . Ž .1 2 LL 1 2 LL 3 3

one has

P h X , X - t s P h Y , Y - t s P h X , Y - t for any t G 0.Ž . Ž . Ž .Ž . Ž . Ž .1 2 1 2 3 3

Therefore,

P h X , X - t P h Y , Y - t P h X , Y - tŽ . Ž . Ž .Ž . Ž . Ž .1 2 1 2 3 3
lim s lim s lim .k k kt t ttx0 t x0 t x0

From Lemma 1 with f s g for the first two lines, we have

P h X , X - tŽ .Ž .1 2 2lim s a f x dx,Ž .Hkttx0

P h Y , Y - tŽ .Ž .1 2 2lim s a g x dx,Ž .Hkttx0

P h X , Y - tŽ .Ž .3 3
lim s a f x g x dx.Ž . Ž .Hkttx0

Therefore, since 0 - a - `,

5 f 2 x dx s g 2 x dx s f x g x dx.Ž . Ž . Ž . Ž . Ž .H H H
From the Schwarz inequality, one has

2
2 26 f x dx g x dx G f x g x dx .Ž . Ž . Ž . Ž . Ž .H H Hž /

Ž . Ž .But 5 shows that we have equality in 6 . Thus, since f and g are both
density functions, they must be identical a.e. I

REMARK 2. Combining Theorems 1 and 2 shows that our main result is
true for a wider class of situations. For example, we can allow for mixtures of
continuous and discrete distributions, with any function h satisfying the
conditions of Theorem 2. Also, in Theorem 2 we can widen the class of h’s by
allowing continuous monotone functions of h’s satisfying the conditions of the

Ž .theorem. In fact, we believe 4 is true for all distributions F and G and every
h which is a function of the Euclidean metric.

Ž .REMARK 3. None of the equations in 4 can be dropped. For example, if
1 Ž . Ž .X ' 0, Y s 0 or 1 with probability , then h Y , Y s h X , Y , but F / G.1 2 LL 1 32

Ž . < < Ž . Ž .However, when h x, y s max x y y , then h Y , Y s h X , Y does1F iF k i i 1 2 LL 1 3
imply F s G under some mild additional restrictions on the characteristic
functions of X and Y.
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REMARK 4. The proofs of Theorems 1 and 2 did not require the indepen-
dence of all three interpoint distances. In particular, we also have

h X , X s h Y , Y s h X , Y iff F s G.Ž . Ž . Ž .1 2 LL 1 2 LL 1 1

This may be useful in applications since it allows X to X, Y to Y and X to Y
distances to be computed from the same reference points.

3. Application. The results of this paper were motivated by a multidi-
wmensional simulation-based estimation problem see Pearl, Bartoszynski and´

Ž . Ž .xHorn 1989 and Maa 1993 . In this context, we had a number of experimen-
Ž . Žtal data points X , each being highly dimensional observations following the

.sample path of a stochastic multivariate prey]predator process . Realistic
modeling required a large number of parameters, making the likelihood

Ž .accessible only through extensive computer simulations of sample points Y .
Estimation of the parameters was based on ‘‘making the simulated Y’s as
similar to the experimental X’s as possible.’’ This was done by optimizing a
goodness-of-fit criterion which attempts to align the univariate distributions
of interdistances within the X-sample, within the Y-sample and between the
X’s and Y’s.

Besides the goodness-of-fit type of problem described above, the theorem
could be used to disprove conjectures about a possible equality of multidimen-
sional distributions in situations where analytical results are difficult but a
computer simulation of the distributions is possible. For example, consider
two complicated queueing systems, where for some n, the distribution of the
first n departure times is conjectured to be the same for the two systems.

Ž .Suppose that it is easy to simulate the two systems and let X s X , . . . , X1 n
Ž .and Y s Y , . . . , Y represent their random simulated departure times. We1 n

Ž . < <may now choose a function h, such as h x, y s Ý x y y , and simulate pairsi i
Ž . Ž . Ž .X , X , Y , Y and X , Y . Then we might use any omnibus test of the1 2 1 2 3 3

w Ž .equality of three distributions e.g., David’s 1958 three-sample
x Ž .Kolmogorov]Smirnov test to test the null hypothesis that h X , X s1 2 LL

Ž . Ž .h Y , Y s h X , Y . Rejection of this hypothesis is strong evidence against1 2 LL 3 3
the conjecture. Importantly, the user has complete control over the power of
the test through an increase in the number of simulations. If the conjecture is

Ž .false and h satisfies the assumptions of the theorem , then the test will lead
to a rejection with probability 1 as the simulation size goes to `.
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