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THE 2d + 4 SIMPLE QUADRATIC NATURAL
EXPONENTIAL FAMILIES ON R¢

By M. Casavnis!

Université Paul Sabatier

The present paper describes all the natural exponential families on
R? whose variance function is of the form V(m) = am ® m + B(m) + C,
with m ® m(6) = (§, m)m and B linear in m. There are 2d + 4 types of
such families, which are built from particular mixtures of families of
Normal, Poisson, gamma, hyperbolic on R and (negative-) multinomial
distributions. The proof of this result relies mainly on techniques used in
the elementary theory of Lie algebras.

1. Introduction. For an accurate presentation of the simple quadratic
natural exponential families, let us introduce some notation.

Let E be a real vector space with finite dimension d, let E* be its dual and
let E¥XE - R: (0,x)— {0,x) be the duality bracket. We denote by
Z(E*, E) [respectively, Z(E, E*)] the space of the symmetric linear opera-
tors from E* to E (resp. from E to E*), that is, the space of linear operators
V: E* > E such that for («, 8) in (E*)?, {a,VB) = (B, Va) [resp. ¢: E - E*
such that for (u,v) in E?, (yu,v) = {Yv,u)].

For a positive Radon measure on E, we note

L,:E* —>]0,%[: 0+~ fexp(@, xyp(dx),
O(u) = interior{@ €EE*;L,(0) < +00},
k,=logL, onO(u).

L, and k, are, respectively, the Laplace transform and the cumulant function
of w.

Let .#(E) denote the set of w such that u is not concentrated on an affine
hyperplane of the space and ®( w) is not empty. Then, for u in .Z(E), the set
of probabilities F = F(u) ={P(6, u)dx) = exp{<0, x) — k,(0)}uldx); 6 <
O(w)} is called the natural exponential family (NEF) generated by w. The
measure u is called a basis of F.

Since u is in .#Z(E), k,, is strictly convex and real analytic on O( w), so that
its first derivative k/,: O(u) - E:

0~ kj(0) = [xP(6, u) dx
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defines a diffeomorphism from @( w) to its range My, called the mean domain
of F. Let yj,: My — O(u) be its inverse function, and for m in My, P(m,
F) = P(yy(m), u). Now the covariance operator of P(m, F) is denoted by
Vi(m). Clearly,

(1.1) Vi(m) = k(4,(m)) = [4(m)] " €Z(E*, E).

The function V;: M, — Z(E*, E) is called the variance function of F. This
function V, plays an important role in the study of the NEF. Indeed, V;
characterizes the NEF F in the following sense: if F, and F, are two NEF
whose variance functions coincide on a nonempty open set of My N My, , then
F, =F,.

Several classifications of all the NEF whose variance functions have a
given form have appeared in the literature during the past 15 years. For
instance, the Morris class describes all the real NEF F such that Vi(m) is a
polynomial of degree less than or equal to 2 in the mean m [see Morris
(1982)]. Other sets of NEF on R have also been classified as the Mora class of
polynomial variance functions with degree less than or equal to 3 [Mora
(1986); see also Letac and Mora (1990)] or various subsets of the class of Vj
of the form PA + QVA, where P, A and @ are polynomials with degree less
than or equal to 1, less than or equal to 2 and less than or equal to 2,
respectively [Kokonendji (1993); Letac (1992)].

Several classifications have been realized in higher dimensions, which
concern more precisely the extension of the Morris and Mora classes in R<.
One paper on the subject is Bar-Lev, Bshouty, Enis, Letac, Li Lu and
Richards (1994). However, a very different point of view is to consider the
quadratic class. It can be defined as the set of NEF F such that

(1.2) Vy(m) =A(m,m) + B(m) + C,

where A: E X E » %/(E*, E) is bilinear, B: E —» %,(E*, E) is linear, and C is
a constant element of Z(E*, E).

Classifying all these variance functions is an ambitious project and only a
few steps have already been performed: Letac (1989) has obtained the sub-
class A =0 of the products of Normal and Poisson NEF; Casalis (1991)
described the homogeneous quadratic case B = 0 and C = 0, generalizing the
gamma NEF on R [where V,(m) = m?/p] by the Wishart NEF on symmetric
cones. The present paper is one additional step toward this aim; it classifies
all the variance functions V; of the form

(1.3) Vy(m) =am ® m + B(m) + C,

with ¢ in Rand m ® m: 6 —» {0, m)m in Z(E*, E). Such variance functions
(1.3) and the corresponding NEF are called simple quadratic.

It may seem rather restrictive to keep the quadratic part as “simple” (i.e.,
of the form “am ® m”). Furthermore, one may feel a bit frustrated by the
relative simplicity of our results; indeed, all the simple quadratic NEF are
basically obtained by combination of conditional distributions of the one-
dimensional Morris class, which simply seems to indicate that to produce
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really new and genuinely multidimensional distributions with quadratic
variance (e.g., the Wishart distributions), nature requires a more involved
am ® m quadratic part than a m ® m. Furthermore, it should be pointed out
that, out of the Wishart NEF and their translates, or trivial products of them,
we have yet no other examples of quadratic (and not simple) NEF. Recall also
that the very classification of the Wishart distributions, that is, the homoge-
neous quadratic NEF, was a delicate process, involving the von Neumann-
Wigner-Jordan classification of Euclidean Jordan algebras. Therefore, many
new ideas are probably necessary to continue this program of classification of
quadratic variances.

However, the simple quadratic NEF remain quite interesting. Here is a list
of situations where they occur naturally.

1. They constitute an important tool in the determination of the so-called
Mora class in R?. Indeed, Hassairi (1992, 1994) introduces some specific
action of the linear group G of R X E on the space Z(E, E*). Observing that
this action transforms a simple quadratic variance function into a polynomial
with degree less than or equal to 3, he defines the Mora class on R? as the set
of the NEF obtained in this way and describes it entirely using the present
list of simple quadratic NEF.

2. As for the real case, one easily checks that the uniformly minimum
variance unbiased (UMVU) estimator of the variance V5(m) written in (1.3) is
simply given by n(n + a)"'V,(X,), where X, is the sample mean of n
random variables X,,..., X, with common distribution P(m, F). This result
is not true for general quadratic NEF on R¢ [Casalis (1992a)] and it remains
a conjecture even in one dimension that this fact characterizes the simple
quadratic class [Letac (1992), page 61].

3. The computation of the UMVU estimator of the generalized variance
detk” u(9) is easy to get for the simple quadratic class [see Kokonendji and
Seshadri (1996)].

4. Another property is related to the Bayesian theory and states the
equality of two conjugate prior distributions families of a simple quadratic
NEF. For a given NEF F(w), let II be the family of prior distributions on
O(p):

7 m(d0) = C, . exp t{<0, my) — k,(0)} Lo, (0) db,

where ¢ > 0, m, € My and C, ,, a normalizing constant, as considered by
Diaconis and Ylvisaker (1979). The family II is said to be conjugate if the
posterior distributions of 6, given X when (0, X) is II, ,, (d0)P(6, u)(dx)
distributed, still belongs to II.

Besides II, Consonni and Veronese (1992) consider (at least on R) two

other families of prior distributions on M. The first one, 11, is defined by a
similar construction as for I, that is, for suitable (¢, m),

o m(dm) = C, . exp t{(y(m), my) — &, (4,(m))} Ly, (m) dm,
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while the second one, IT*, is just the set of the images &, (w, ,, ) of 7, ,, of I
by k,. Then, considering real NEF, Consonni and Veronese state that =
IT* if and only if the initial NEF F( ) is in the Morris class. 3

On RY, the situation is much more complicated. Here, the equality II = IT*
is still satisfied by the simple quadratic and the Wishart NEF. Actually, up to
now, we have not been able to determine the whole class of NEF for which
[1 = IT*. The only available criteria are that there is equivalence between the
three following facts:

ORI
(ii) There exists (B,b,c) in E X R?, such that for all m in M,
det Vo(m) = exp{{y,(m), B) + bk, (m) + c}.
(iii) There exists (B, b) in E X R such that for all m in M, and any basis
(e))", of E with dual basis (e¥)Z_,, we have

M=

[Vi(m)e;]ef = B + bm.
i=1

A similar statement has been independently established by Gutierrez-Pena
and Smith (1995). These authors have also extended Consonni and Veronese’s
problem to any parametrization @(u) = A: 6 — A = ¢(0) of F(w).

5. Finally, different characterizations of the Morris class involving orthog-
onal polynomials are due to Feinsilver (1986), Meixner (1934) and Shanbhag
(1979) [see also Letac (1992) for a presentation in terms of NEF]. They have
been recently extended to R? by Pommeret (1995). For this, the simple
quadratic class is the natural object to replace Morris class. The whole
quadratic class can also be characterized similarly but with weaker hypothe-
sis on polynomials. Using these orthogonal polynomials, Feinsilver (1991)
deduced an interesting correspondence between the simple quadratic class
and three Lie algebras with finite dimension. In particular, the Gaussian
families are put in one-to-one correspondence with self-adjoint operators of
the Heinsenberg—Weyl algebra, the Poisson families with those of the oscilla-
tor algebra and the simple quadratic NEF with a nonnull quadratic part with
those of SL(d + 1) [see also Pommeret (1995)]. Such work done with other Lie
algebras would enable us to get new quadratic NEF.

We now come to our results. Section 2 presents 2d + 4 particular NEF on
R They are important because when we take affinities and powers of each of
them, we actually get all simple quadratic NEF; this is the essence of our
Theorem 2.1, the main theorem of the present paper. Its proof is long and
technical and is given in Section 3. However, the discussion relies only on
algebraic arguments from the following three simple necessary conditions:

(i) Ca,Vie(m)B) =B, Vg(m)a) (symmetryof V),
(@D (i) Vi(m)(Ve(m)a)B = Vi(m)(Ve(m) B)e,
(iii) Vz(m) is positive definite on M.
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Condition (ii) comes from the symmetry of y;;(m) = (Vp(m)™1) [see (1.1)]
as a Hessian operator. We have gathered in Appendixes A and B some
delicate points of our arguments.

2. The (2d + 4) types of simple quadratic NEF.

2.1. We begin first by defining what we call a type. Let GA(E) denote the
affine group of E and let ¢ be in GA(E), ¢: E —» E: x — gx + v, with linear
part g in the linear group GL(E) and translation vector v. If F' is a NEF on
E, then ¢(F) defined as the set of images by ¢ of each probability of F is still
a NEF characterized by

M¢(F) ‘P(MF)

(2.1) . ,
V(,D(F)(m) = gVF(QD m)g ,

where g' denotes the transpose of g acting on E*. All the NEF ¢(F) with ¢
varying in GA(E) are called the affinities of F.

Now, if u generates F' and if p is a positive real number such that (L )P is
still the Laplace transform L, of some u, in .#(E), then the NEF F, F( ©p,)
is called the pth convolutlon power of F. (Note that p is not necessarlly an
integer). F, is characterized by

MFP = pMpy
m
Ve (m) = o[ )
p

The set of possible p is called the Jorgensen set of F.
Now, two NEF, F and F', are said to be of the same type if there exist an
affinity ¢ in GA(E) and a positive real number p such that F, = ¢(F").
Note that any affinity or convolution power of a simple quadratic NEF is
simple quadratic, too. Hence, to describe the class of simple quadratic NEF in
R4, we only have to specify one NEF for each of its different types. We will
say that this NEF generates the corresponding type.

2.2. We now present 2d + 4 simple quadratic NEF in R? For each of
them, we specify the variance-function and a basis (or occasionally its Laplace
transform). These NEF generate 2d + 4 different types. The first ones, d + 1,
correspond to affine variance functions, that is, V(m) = B(m) + C, and have
already been determined by Letac (1989). The last ones, d + 3, correspond to
simple quadratic variance functions Vy(m) = am ® m + B(m) + C with a #
0. When d = 2, we find again the five types given in Casalis (1992b). It was
proved there that these eight NEF (five corresponding to the case a #+ 0 and
three to the case @ = 0) generate the whole class of simple quadratic NEF in
R2. Ti’le main result of the present paper is to prove the following theorem
for R<.
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THEOREM 2.1. Any simple quadratic NEF in R? is one of the 2d + 4 types
described below.

(a) The (d + 1) Poisson-Gaussian types (PG),, k=0,...,d. They are
defined from the following (d + 1) NEF characterized by Letac (1989) as the
only NEF with an affine variance function.

For £ in {0,1,...,d}, let F be the family of the products of £ Poisson
distributions and (d — k) normal distributions. Hence, F is also determined
by

Mp(m) = (0,%)" x R
Vy(m) = diag(m4,...,m,,1,...,1)

my

1

(b) The (d + 1) negative multinomial-gamma types NM-ga),, k = 0, ..., d.
We shall first introduce the well known negative-multinomial distributions
on R? as distributions of a natural exponential family. For a detailed bibliog-
raphy about them, see Ratnaparkhi (1988). The following representation
comes from Letac (1989).

Let {e,,...,e;} denote the canonical basis of R? and let e, be the null
vector. Then consider the measure vy(dx) = Z?:lSEi and for n in N, v¥" the
nth-convolution of v, (with the convention v’ = 8,,)- Now form

s

(2.2) V=

vg" = (8, — vo)* Tt

n=0

Clearly, the Laplace transform of v is given by

L,(6)= (1 - f‘, exp(@i))_ on O(v) = {He R; ie”i < 1}.

i=1 i=1

The family F(v) is the analogue of the real family of the geometric distribu-
tions. It is composed by the probabilities P(m, F) defined on N by the
statement: if S = m, + -+ +m,, then

P(m,F)(n,e; + - +ngey)
(2.3) 1
1+ S

ng+ - +ny
nl’.--’nd

m, ny my ng
(1+S) (1+S) '
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The variance function of F(v) is given on My, ={m € R%; YV J, m; > 0} by
Viw(m) =m @ m + diag(m,,...,my).

For p > 0, the pth power v, of v generates the family of the negative-multi-
nomial distributions with parameter p on R F(v) is the (NM—ga), family.

To define the (NM~-ga),_, family, we consider the following mixture of a
(d — 1)-dimensional negative-multinomial family and a gamma family on R.
Let »““~ denote the measure given in (2.2) on R?~ !, and for p > 0 let y, be

the following measure on R:

1
(2.4) y,(dx) = I‘(p)acp‘l]l((]7oc)(ac) dx.

We then introduce
w0 (dxy, . dag) = v (dxy, o dx g ) Yo, 41 (dxg)

with Laplace transform on

d-1
O(ub) = {96 RY; ) exp(6;) + 6, < 0}’
i=1

d-1 -1
Lﬂ(dfl)(g) = _0d - Z exp(@l)) .
i=1

The variance function of F = F(u?~V) is defined on M, = (0,*)¢ by
Vy(m) =m ® m + diag(m,...,my_4,0).
The powers F, of F are generated by the measures
py mV(dxy, o, dag) = v (dxy, e dXg ) Y p(dg)

for all p > 0. They are composed by the distributions of the random variables
(X4,...,X,), where (X;,..., X, ;) has a negative-multinomial distribution
with parameter p and X, conditionally on (X,,..., X;_;), has a gamma
distribution with parameter Y¢- X, + p.

The d — 1 other (NM-ga), families admit a Gaussian part in addition. Let
k bein{0,1,...,d — 2}. We still denote »**) and v, the measures on R* and
R, respectively, given by (2.2) and (2.4). Let )\;d_k_l) be the normal distribu-
tion on R?"*~! with mean 0 and covariance pI, ,_,. Then we put, if £ > 1,

:“(k)(dxl’ tro dxd) = V(k)(dxl’ cr dxk)'yz?:lxﬁ- 1( dxk+1)

XAER=D(dx, oy, dxy)

Xp+1

and
/J«(O)(dxl, ceey dxd) = 'yl(dxl))\(xdlil)(dxz, ceey dxd).
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Then we have

d k
O u®) = {BeRd;GkH*-% Y. 62+ Zexp(@i)<0},
i=k+2 i=1

k -1
2 exp( 01‘)) )

d
Lm’”(e):(_ekﬂ_% Z 0i2_
i=k+2 i=1

B+l —he
MF(M(k)) = (0’00) + % Rd k 1,
Ve(ui(m) =m @ m + diag(my,...,m;,0,my,q,...,my, ;).

(Note that a # 0 and C = 0 for these NEF).
Here again, the powers F, of F(u™)) are generated by

p(dxy, ..., dx,) = P (dey, ..., dxg)yer o0 p(dxy, )

X ANED(dx,, q,...,dx,)

Xp+1

for all p > 0. They are composed by the distributions of (Xj,..., X,), where
(Xy,..., X;) has a negative-multinomial distribution with parameter p, X, . ;
given (X,,..., X,) is gamma distributed with parameter X*_, X, + p, and
(X4, 9,---, X, given (X4,..., X, ;) are d — k — 1 real independent Gauss-
ian variables with mean 0 and variance X, , ;.

Note that the cases where the three negative-multinomial, gamma and
Gaussian families are mixed do not appear in R2. The family F(u”) on R?
appears the first time in the paper of Bar-Lev, Bshouty, Enis, Letac, Li Lu
and Richards (1994) as one of the NEF whose margins are in two different
Morris families.

We now describe two isolated types.

(¢) The multinomial type M. We take again the representation of the
multinomial distributions from Letac (1989) and refer the reader to Ratna-
parkhi (1988) for a bibliography about them.

Let {e,...,e;} denote the canonical basis of R? and let e, be the null
vector. Then the measure u(dx) = Z?=05€L_ on N? generates a NEF F with
variance function on My = {m € R%, Vj, m; > 0, £¢_;m; < 1} equal to

Ve(m) = —m ® m + diag(m,...,my).

For any p in N\ {0}, the pth power F, of F is the set of probabilities
P(m, F,) defined by

P(m,F,)(n,e; + - +nge,)

(2.5) _ p L Em” 112 N
Ng,Nyy..., Ny D -1 p ’
where n,, nq,..., n, are positive integers with sum p.

(d) The hyperbolic type H. Similar to the (NM-ga),_, type, this last case is
built from the following mixture of a negative-multinomial family on R~ 1!
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and the Morris family of the hyperbolic cosine distributions on R. Let »¢~V
be the measure on R~ given in (2.2) and for p > 0, let a, be defined by its
Laplace transform on | — w/2,7/2[ equal to Lap(ﬁ) = (cos 6)7P. Now we
introduce

p(dxy, ..., dxg) = v (dxy, ... dxg_y) Qpi-jy+1)(dxg)-

Then
d-1
O(p) = {06 R%; ) exp(6;) < cos Od},
i=1
L(6)= (cos 6; — exp(6,) — - —exp(Hd_l))fl,
M, = (0,2 ' xR,
d-1
Ve(m) =m®m + diag(ml,...,md_l, Y. m; +1].
i=1

The powers F, of F' are generated by the measures
pp(dy, ..., dxy) = vi V(dxy, ..., dxg 1) age 1, ,(dx,)

for all p > 0. Therefore, F, is composed with the distributions of (X, ..., X)),
where (X, ..., X,;_,) has a negative-multinomial distribution and X, condi-
tioned by (X3, ..., X,_1), has the hyperbolic cosine distribution with parame-
ter ¢ 1X, + p.

Note that here we have a simple quadratic NEF with a # 0 and C # 0.
However, let us indicate that there exists an affinity for which C = 0. This
fact will be used in Section 4.

Let 7, denote the translation of vector v; let g be the linear operator such
that ge, =e, +e, ;fori=1,...,d — 2, ge,_, =e,_, and ge; = e; and let
¢ be the affinity g o7, . Then

my
0
Vor(m)=mem+ m,
—Mg-1 TMy
0 _md md_l

With the previous notation, ¢(F) is generated by i defined by
a(dxy,...,dxy)

= V(dfz)( dxq,..., dxd72)7(z;1;12xi+ 1)( V(Zlg);lzxi+ 1)( dx;_1) Qyd-ly + 1(dxy).

An interpretation in terms of random variables is easily gotten from the
previous description.

Let us end the section with the following remark about the structure of the
simple quadratic NEF. It is easy to check that if (X;,..., X,;) is a random
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variable with a negative-multinomial law P(m, F) given by (2.3), then, for
any k=1,...,d — 1, (X,,..., X;) still has a negative-multinomial distribu-
tion [still given by (2.3) on replacing d by k], while X, ,; conditionally on
(Xy,..., X;,) has a negative-binomial distribution with Jorgensen parameter
1+ X% ,X,. The same remark holds true for a multinomial distribution
P(m,F,) given in (2.5): (X,,..., X;) has the distribution P((m,..., m;), F,)
in R* [still given by (2.5)], while X, conditionally on (X,,..., X,) has a
binomial distribution with Jorgensen parameter p — Y% ,X,. Hence, any
simple quadratic distribution presented in this section has the following
remarkable property: if (X;,..., X,) is so distributed, then the law of X;
belongs to a Morris family and for any %2 = 2,..., d, the law of X, condition-
ally on (X, ..., X, _,) is also a Morris distribution with Jorgensen parameter
depending on an affinity of (X;,..., X,_;). Nevertheless, such mixtures do
not always give simple quadratic NEF.

3. The classification of the simple quadratic variance functions.
This section is entirely devoted to the proof of Theorem 2.1 giving all the
types of simple quadratic variance functions Vy(m) = am ® m + B(m) + C
on R<.

The case a = 0 has already been developed by Letac (1989) and yields the
(d + 1) Poisson—Gaussian types (PG),. Therefore we only consider the case
a # 0. Via the following lemma, whose proof is reported in Appendix A, the
problem is reduced to the case where C = 0.

LEmMA 3.1. Let F be a NEF on [R{d~with variance function Vy(m) = am ®
m + B(m) + C with a # 0 and let V, be the polynomial function on R4
defined by Vg. Then, if d > 2, there exists m, in R such that Vy(m,) = 0.

Consequently, if 7_,, ~denotes the translation of vector —m,, then from
(2.1), the variance function of 7_,, (F) clearly is

VT_MO(F)(m) =am ® m + B(m)
with

B(m) = a(m ® my + m, ® m) + B(m).
(In Section 2 we have written the d + 3 variance functions corresponding to
a # 0 with a C null. For the hyperbolic type, we have done the translation
T, )

€q-1"
Theorem 2.1 is now reduced to the following statement:
PrOPOSITION 3.2. Let F be a NEF on E with variance function

(3.1) Vy(m) =am ® m + B(m) (a #0).

Then F belongs to the M, H or (NM-ga), types.

ProoF. The proof is divided into several steps. In the first one, we
introduce some linear endomorphisms {Q(«a), o € E*} of Z(E*) in a one-to-
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one correspondence with the operators {B(m), m € E} of (3.1), so that know-
ing @: a — Q(a) will be equivalent to knowing B and hence, given the real
number a, to knowing V: m — V(m) = am ® m + B(m). We also write the
necessary conditions (1.4) satisfied by V in terms of @ and then deduce
the different possible forms of the Q(a).

In order to classify the functions V in types, we have to simplify the
functions @ as much as possible by some action of affinities on V. Hence, in a
second step, we translate the action of affinities on the operators Q(«)
(Lemma 3.4).

In a third step, we examine each possible form of Q(«) separately, simplify
it and finally recognize the corresponding V and hence F.

First step. Let F be a NEF with variance function of the form (3.1). Then
the three conditions (1.4) satisfied by V; can simply be written

(i) {a, B(m)B) =(B, B(m)a),
(3.2) (i) B(B(m)a)p=B(B(m)p)a,
(iii) for m in My, Vy(m) is positive-definite.

Let us define the unique linear map Q: E* — Z(E*) such that for («, 8) in
(E*)? and m in E,
(3-3) (Q(a)B,m) =(B,B(m)a),
that is, @ (a)m = B(m)a.

For example, the @(a) corresponding to the d + 3 simple quadratic NEF
with a # 0 presented in Section 2 are as follows.

(a) For the (NM-ga), NEF,

ifk=d, Q(a)=dag(ay,...,a,);

@ 0
ap
ifo<k<d-1, Q(a)= 0
L O
0 0

(b) For the M.NEF: Q(«) = diag(ay,..., ay).
(c) For the HNEF,

a, 0
Q(a) =
Qg2
—0g_q &g
0 Qg Qg1

From (3.2)(iii), we derive the following necessary condition.
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LEMMA 3.3. Let Vi be a variance function such that Vy(m) = am ® m +
B(m) and let @ be the linear endomorphism of E* defined in (3.3). If H is a
subspace of E* such that for all a in H, we have Q(a)a = 0, then H has
dimension 0 or 1.

Proor. For any m in M, and « in H, we have (Q(a)a,m) =
(a,B(m)a) =0, thus {a,Vy(m)a) = ala,m)®. Let m* denote the sub-
space of E* orthogonal to m. Then if the dimension of H is greater than or
equal to 2, the intersection m* NH is not reduced to {0} and for any « in
m* NH, {a,Vz(m)a) = 0. Hence V; is not positive-definite on M, which
contradicts (3.2)(iii). O

Written with @, (3.2)3) and (ii) become

(i) Q(a)B=Q(B)a,
(i) Q(a)Q(B) =Q(B)Q(a).

Thus, the vector space @ = {Q(a), a € E*} generates a commutative subalge-
bra of Z(E*). Using the theory of nilpotent Lie algebras [Dynkin (1950),
Theorem II, page 380], we can split the space E* into a direct sum of r
subspaces Ef of dimension n;, i = 1,...,r, invariant under the endomor-
phisms @Q(a) and for which there exists r, in {0,1,...,r} such that the
following hold.

(3.4)

1. If 0 <i < r, there exist a basis ef = (e};);_, , of Ef and vectors d’
and wjk, 1<j<k<n,,of E such that the matrix in e} of the restriction

of Q(a) to EF is exactly

(a,d?) (a,wi)
(35) Qi(a) = -
0 (a,d?)
2.If ro+1<i<r, then n,/2= pl €N and there exist a basis e} =
(ef)j_1 ., of Ef, and vectors a',b’,s},,t4, 1 <j <k <p,, such that,
writing
. i i . (a,shy e ty)
(3.6) D'= (a,a} (a,b')) and W = 7 7
_<a7bL> <a;aL> _<a,tjlk> <a,8}k>

the matrix in e} of the restriction of Q(a) to E is
D' i
(3.7) Qi(a) = |
0 D'

(See also Appendix B.)



1840 M. CASALIS

Moreover, the relations (3.4) are equivalent to

(i) Qi(a)B=Q;(B)a for(a,B) € (E})?,
(3.8) (i) Q,(a) =0 ifac Jg E},

(i) @;(a)Q:(B) =@Q:(B)Q;i(a).

The second equality, (3.8)(ii), clearly implies that the vectors di,w Jk or
a',b', s}, and tj, are vectors of the dual space E; of Ef. We note by
(e”)J 1,...,n, the dual basis of e}.
Second step. To simplify the matrices (3.5), (3.6) and (3.7), we can only
work with affinities which preserve the types of NEF. Therefore, we have to

know their action on the operator Q.

LEMMA 3.4. Let F be a NEF on E with variance function given by (3.1).
Let g be in GL(E) and let 7_ m be the translation of E of vector —m, such
that Vy(m,) = 0. Then the variance functions of g(F) and 7_,, (F) are also of
the form (3.1). Moreover, the associated operators Q, and Q,,, satisfy

Q () = (g") ' Qg'a)g’,

Q,(a) =Q(a) +ala,myid + aa ® m,.

Proor. The result follows from an obvious calculation using (2.1) and
(3.3). O

Therefore, given a NEF F with variance function (3.1) and @ as given in
(3.3), the only translations that we are allowed to use to simplify @ are the
translations of vectors —m, such that Vp(m,) = 0. The following lemma
describes the set of such vectors.

LEmMA 3.5. Let be V(m) =am ® m + B(m) and let Q be as defined in
(3.3). Then we have the following statements:

(@) If V(m,) = 0, the hyperplane H, = {a € E*; (a,m,) = 0} is stable
under Q.

(i) Conversely, let H be a hyperplane of E* invariant by the Q(«a). Let be
ecH*={x€E;VacH {a,x)=0} with e # 0 and e* € E* such that
(e*,e) = 1. Then we have V(—((Q(e*)e*, e)/a)e) = 0.

Proor. Here again, the result comes from the definitions through a
simple calculation. O

Third step. We will now study and simplify each form of @, given in (3.5)
and (3.7) separately by affinities. Observe that a linear operator acting on a
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E} only (and hence equal to the identity on @, E;) does not change the @;
for j # i. However, this is no longer true for a translation and the whole
matrix @ has to be modified in that case. We thus successively examine the
three following cases:

1. @, has the form (3.7); _
2. @, has the form (3.5) with d' € E;;
3. @, has the form (3.5) with d* = 0.

CasE 1. We consider the situation where @; has the form (3.7).

LEMMA 3.6. Suppose that n; = 2p is even and that Q; has the form

(8.7) in the basis ef = (ff, f1*, fo, fa"s .., ;5 [)7). Let {e; =
(fy, f15 for fas- s [y )} be the dual basis of {e}},. Then p =1 and there
exists a linear operator g of E acting only on E¥ such that

—a, ) La,fD
(3.9) (Qg)i(a)= —(a,f}) —(a,}1>'

Proor. We have only to consider E¥. Then, with the notations of (3.6) and
(3.7), writing

P p
a' = Y (apfi +aifi), Sip = Z(sjk,zfz"'s}k,zﬁ)
k=1 =1

and with similar notation for b’ and ¢,, we get from (3.8), for p > 2,

QUEE = QUEFE — a1 =by =0
QUEN I = QU I = ay = b, = 0.

Hence, if H is the subspace generated by f; and f;*, we have Q(a)B = 0 for
(a, B) in H2 From Lemma 3.3, @ does not yield a variance function. Hence
p = 1. Now, since Q(a)B=Q(B)a, we also get o) =b;, b = —a; and
(a;, b;) # (0,0). The linear transformation g of matrix

1 —a, —bl)

a% + b% bl _al

in the basis (f}, f1) and equal to the identity on @, E; simplifies @(a) into
Q,(a) given in (3.9). O

PROPOSITION 3.7. Let F be a NEF with variance function (3.1), let @ be the
associated operator defined by (3.3) and let E* = ®_ | E} be the decomposi-
tion of E* into invariant subspaces. Then, there exists at most one Ef such
that Q; has the form (3.7).
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Proor. Ifit is not the case, suppose that on Ef and Ej, @, and @, have
the form (3.7). Then n,; = n, = 2 and, after a linear transformation, @, and
Q@ can be written as in (3.9) in the basis (ff, f1*) and (£, f3*). Then the
corresponding function V(m) = (V;;(m)) = am ® m + B(m) satisfies (with
obvious notations), for i = 1,2, V,,(m) = am? — m;, V,,(m) = am,m, — m/,
V.. (m) = am’? + m; and V,,(m) = am,m,, so that the principal minors

Vi(m) = (am; — 1)m; (1=1,2),

V.
i il _ _ 2 2 .
V. V. = (am; 1)(mi + m/ ) (i=1,2),
Vi V.
" il m;my(1l —am; — am,)
Vis Vi

are not all positive. So V is positive-definite on no open subset of E and,
hence, V is not a variance function. O

Cask 2. We now examine the triangular form (3.5).
Let us begin with the following lemma.

LEMMA 3.8. Suppose that in the basis e = (e;);_,
Q to EF is the triangular matrix

<aadi> <a7wjik>
Qi(a) = )
0 (a,d)

n,» the restriction of

,,,,,

where d' and wj, are in the dual space E;. Then (i) d' = d,e;, and (i) if

d' + 0, there exist a linear operator g acting on E; (and then equal to the
identity on ®;,,E;) and vectors (W), < j<y < n, of E; such that

@, <a,Lf}jik>
(Qg)i(a) =
0 «a

in;

PROOF. (i) comes from the relation Q(e})e}, = Q(ej})ef; and (ii) is ob-
tained with g = idg, 5 + (1/d)idg . O

PROPOSITION 3.9. Let F be a NEF with variance function (3.1), let @ be the
associated operator defined in (3.3) and let E* = &,E¥ be the decomposition
of E into invariant subspaces. Then the following hold.

(1) There exists at most one E¥ with dimension greater than 1 such that Q)
has the triangular form (3.5).
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(i) If there exists such a E}, then for any other @; (j # i) of the form (3.5),
d’ # 0.

Proor. (i) If it is not the case, suppose that EF and E} are subspaces of
dimension greater than 1 such that @, and @, have the form (3.5) in the
basis (ei;);_y ., and (e5;);_; ,,. Then from Lemma 3.8, for i =1,2,
Q;(ef)) = 0. Hence, if H is the subspace generated by e¥, and e};, we have
®Q(a) = 0 on H. From Lemma 3.3, @ does not yield a variance function.

(i) If @; has the form (3.5) with d’ = 0, then Q(e};) = Q(e};) = 0 and we
conclude by using Lemma 3.3, with H generated by e}, and e};. O

To summarize, if there exists a subspace Ef with dimension n; > 1 such
that @, has the triangular form (3.5), then, up to a linear transformation,
there exist a basis (e};) of E*, a scalar ¢, equal to 1 or 0 and vectors w/, of E,
such that the matrix of @ in the basis of e* = (e})) is exactly

Q:i(@) 0
[Q(a)].. =
0 Q. (a)
with
_ —(a,en> (a,e12>
Ql(a)_(<a’e11>) or —a, ey —{a, e |
Qi(a)=(a,ey)) fori=2,...,r -1,
8r<a, e,«nr> <a7wj,}e>
Q. (a) = .
0 8r<a’ern,>

In particular, the hyperplane H = {a € E*;  «a, emr> = 0} is invariant under
the Q(a). From Lemma 3.5, the vector

RGN S

my = e, =——e
a g a "

satisfies V(m,) = 0. If m,, # 0, that is, &, = 1, by the translation 7_,, , @ is
changed into the operator @ defined in Lemma 3.4 by

Q(a) =Q(a) — @, id-a®e,,,
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and having the matrix form in the basis e*:
Ql(a) —(a, ey
) a * = . b
[Q(a)], C ae )

0 Q,(a)

where
Qi(a) =Q,(a) — a,, idg fori+r
and
Qr(a) = Qr(a) - arn, ldEf _t(ar1>"'7 arn,) ® ern,
0 <a7wj'}e _ar1+<aawi,n,>
0 —ar2+<a,w§’nr>
0 0 . 0 _arn,,1+<a’wr;,71,n,>
0 0 . 0 -,
Clearly, Ef,..., E¥_ | are still invariant subspaces on which @(«a) has either
complex eigenvalues or the simple eigenvalues (a,e; —e,, ). The other
eigenvalues of Q(a) are 0 and —(a,e, , ) = —a,, . From Appendix B, E*

can be split as a direct sum @/ :11E~'§“ of (r + 1) invariant subspaces such that

E* =E* for i =1,...,r — 1, E* is a real line and on E*,,, Q(«) has the
unique eigenvalue 0. Therefore, in a suitable basis of E*, that is, e* =

(ef,..., ek ek |,...,e¥)or e* = (e¥,ef", e5,eh,...,e*), we have
Ql(a) 0
[Q(a)].. = A
0 Qr+1(a)
with
A —a;  af
@i(a) = (a;) or (_ai ai),
(3.10) Q(a)=(a) fori=2,...,r—1
A 0 ({a,wi'?
Qr+1(a)=(0 (¢ )).

CasE 3. We now restrict our attention to the only subspace E* |, on
which Q(a) is given by the matrix @,, ;(«) in (3.10).
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To simplify the notation, we write E* and Q(«) for E* , and @, (a),
respectively. We will prove by induction that there exists a linear transforma-
tion g of E changing @ into @,, with matrix

0 a, a,
(3.11) [Q(a)],. = 9 o - 0
0 O 0
Write
0 <a,wij>
LI ,
0 0

with w;; = X} _,w;; ,e,. The relations Q(e})e} = Q(e¥)ej imply here that

(3.12) I

' Wk, if i > inf{j, k}.

We will kill the w;; ; for j > 1 successively by induction.

Step 1. j = 2. Then Wiy 5 # 0. If not, on the subspace generated by ej and
e¥, Q(a)B = 0, which is impossible from Lemma 3.5. Let us denote &, =
sign(w,, ,) and consider the transformation g, such that g,(e;) = &;e,

& 192 T Wiy

s, j=3 Wiz,2

8169

and for i > 3, g (e;) = e;. Then a simple calculation gives

Qi) = (g!) ()Q(gla)g!
0 <a,wi(})>
0o 0

with w(}) = e,.
Step 2. Suppose that there exists a linear transformation g, of E such
that

Qr(a) = (g(tk))ilQ(g(tk)“)gfk)
(3.13) 0 o, wff

o 0
with w,; =e; for j <k and w;; = 0 for i > 2 and j < k. Then we will prove
the following:

1. for i > 2, w;, ., = 0;
2. Wipy1 0417 0;
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3. if &,,, = sign(w,;,,, ,,,) and g, ., is the transformation such that for
i<k, g ie) = &6,

_ €r+1€k+1 Wik+1,j
gri1(erin) = T 12 — e,
|wlk+1,k+1| jek+2 Wik+1,k+1

and for j >k + 2, g,,(e;) = e, then the property (3.13) for (& + 1) is
obtained with g, .1y = g+ 1804

To prove (1), we only write the equality Q( B)Q(ef ek, ; = Q(eF)Q(BleF 1,
for any B. For (2), we have Q(e}, )ej 1 = wipi1 i€l If Wipi1 441 =0,
then for any «, B8 in the subspace generated by e} and e}, ;, Q(a)B = 0.
From Lemma 3.5 this is impossible. From this, a simple calculation yields the
property (3.13) for (£ + 1). Consequently, for & = n, we get

0 a, - a,
Qa)= |0 0 0

4. Conclusion. Here up to affinities we summarize the only operators @
which yield a symmetric nondegenerate function V(m) = am ® m + B(m)
satisfying the relation of symmetry (1.4)(ii). The last property of positive-
definiteness is now used to exclude some cases. Thus we get the following.

Case 1. Q(a) = diag(ay,..., ay) leads to V(m)=am ® m + diag(m,,
...,my), which is the variance function of a multinomial or negative-
multinomial family.

Case 2.
@
a
Q(a) = *
0 ap,y Qq
0 0 0
0 0
leads to V(m) = am ® m + diag(m,...,m,,0,m;, ,..., m,, ), which is the

variance function of a (NM-ga), family (with 0 <k <d — 1.
Case 3.

@
0
Q) = a, s
0 Ap—1 ay
- -
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leads to
my
0
V(m) =am ® m + Mmg_,
0 Mg, Ty
Mg mg_ 1
which is the V; of a hyperbolic family.
Case 4.
a,
0
Q(a) = Qg3
(a) 0
Qg aq
O _ad _ad_l
leads to
m,
0
V(m) =am ® m + Ma-3 0
Mg Ty
0 _md md71

Here the principal minors

Visa2 Viza1 nd Visas2 Vasua

Vict,a-2 Va-1,4-1 Via-o Vi,

have opposite signs and V is not positive-definite. This case has to be
excluded.

Case 5.
ay
0
ap

Ty A1

Q(a) = TQpig T Oy
0 ap.y g
0 . . .
0 0 0
0 0 0
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leads to
V(m)=am®m

my

my

+ My My
Mg Mmpi1

mp,g

Mpis

As for Case 4, V is not positive-definite and this case has also to be excluded.
This concludes the proof of Proposition 3.2. O

Up to Lemma 3.1, the classification of the simple quadratic variance-
functions given in Theorem 2.1 is therefore complete.

APPENDIX A

This Appendix is devoted to the proof of Lemma 3.1. Let F' be a simple
quadratic NEF on E. Let m0 be in My. Then V,(m,) is positive-definite from
E* to E and hence VF(mO)* defines a Euclidean structure on E with scalar
product (x, y) = (Vz(m,) 'x, y). The variance function of F, written as a
symmetric operator of E, becomes Vie(m)Ve(my) ™t VF(m) and satisfies
Vp(m,) = id . We still denote by Vi(m) the extension of V, to E. Since F is
simple quadratic, Vo(m) =am ® m + B(m) + C. We now define V(m) =
aVe((m + my)/a) =m ® m + B(m) + id, with B(m)=B(m) + m ® m, +
m, ® m. Note that V is not necessarily a variance function on some open
subset of E. However, Lemma 3.1 can be reformulated in terms of V as
follows.

LEMMA A. Let E be a Euclidean space with dimension d. Let ¢ be a real
number and let B: E — Z(E) be a linear operator such that

(i) B(u)v = B(v)u,
(i) [B(u),B(v)] =c{u®v —v ®u}.

If V: E > Z(E) is defined by V(m) =m ® m + B(m) + cidy and then if
d > 1, there exists m, in E such that V(m,) = 0.

(A.1)

(Of course, ¢ = 1 gives the function V built from the previous Vj.) The
hard part of Lemma A is the following lemma.

LEMMA B. Let E be a Euclidean space with dimension d > 2 and let
B: E - Z(E) be a linear operator satisfying (A.1). Then there exists a nonnull
vector u which is a eigenvector of B(w).
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Let us accept Lemma B for a while.

Proor OoF LEMMA A. We proceed by induction on the dimension of E.

Step 1. Suppose that d = 2 and ¢ # 0 (if ¢ = 0, m, = 0 is a solution). From
Lemma B, there exists u such that u is a eigenvector of B(u). Then put
e; = u/llull and e, such that e = (eq, e,) is an orthonormal basis of E. From
(A.1) and the symmetry of B(e,), we can write

[B(el)]e=(‘z; 2) [B(ez)]e=(2 o

Moreover, from (A.1)(i), [ B(e,), B(e,)] = —ce, implies that 5% — a,b + ¢ = 0.
Since ¢ #+ 0, we have also b # 0 and B(e;) = (a; — ble; ® e; + bidy. We
then easily check that V(—(c/b)e;) = 0.

Step 2. Suppose now Lemma A proved for any E of dimension %2 with
2 <k <d. We will prove it for an E of dimension d + 1. Let us introduce
e, = u/llull, where u satisfies the conclusion of Lemma B and let us complete
e, in an orthonormal basis e = (e;)?_, of E which diagonalizes B(e,). We
write [ B(ey)], = diag(ay, b4, ..., b;). Then, from (A.1), we have successively,
for i,j > 1, [B(ey), B(e)le, = —ce; and [B(e,), B(e;)]e, = 0, which imply,
respectively,

(A.2) b —a;b;+c=0 forix>1,
(A:3) (b; — b;)B(e;)e; =0 fori,j=1.

Hence, if b, =b for any i > 1, then B(e,) = (a; — ble, ® e, + bidy and
V(—(c/b)ey) = 0 comes from (A.2). If the b, are not all equal, up to a

permutation of e, ..., e;, we can write

a, 0
(A4) [B(eo)]. = bl

0 (ay = b)I;

with a; — b # b and |a; — b| < |b|. Let E, be the vector space generated by
ey,...,e,, let m, be the orthogonal projection onto E, and, for m in E,,
define B(m) = 7, B(m)m,. It is easy to verify that for (x, y) in E2, B(x)y =
B(x)y — b{x, y)e,, so that

B(x)y =B(y)x
[E(x),é(y)] =f{x®y—y®x} withé=c— b2

Now, for m in E,, let us write m, = —be, + . Then from (A.2) and (A.3) we
get V(mgle, = V(m)e, = (m ® m + B(m) + éidg Je;. Therefore, [V(m,)], is
reduced to a nonnull £ X k£ diagonal block,

0 0 0
[V(mo)]e= 0 V(’h) 0].
0 0 0
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If k=1, the equation V(i7) = m? + a,m + é = 0 admits a real root 7,
since ¢ = b((a; — b) — b) < 0 from (A.4). Hence there exists m, = —be, + m,
such that V(m,) = 0. If £ > 1, we use the induction hypothesis and we
conclude as before. O

We now prove Lemma B.

Proor oF LEMMA B. Under (A.1) axioms, we first prove the equivalence
between the following two properties.

(i) There exists a nonnull vector © which is an eigenvector
of B(u).

(i) There exist two nonnull orthogonal vectors u,v such
that v is an eigenvector of B(w).

(A.5)

We will prove (A.5)(ii) later.

The implication (i) = (ii) is trivial, since B(u), as a symmetric operator, is
diagonalizable in a orthonormal basis of E. For the converse implication
(ii) = (i), let us consider u as given in (A.5)(ii) and note E = & ker(B(u) —
Aid), the orthogonal decomposition of E into the eigenspaces Ker(B(u) — Aid)
of B(uw).

Note first that if Ker(B(u) — Aid) N u* # {0}, then Ker(B(u) — Aid) Ccu*t.
Indeed, if (v, w) € Ker(B(uw) — Aid))? and if v € u*, then [ B(w), B(v)]lw =
B(uw)B(v)w — AB(v)w = B(uw)B(w)v — AB(w)v = [B(u), B(w)]v. Using
(A.1)G1) and {u,v) = 0, we get {u,w) = 0.

Let now E; and E, denote the sums of the eigenspaces of B(x) which are,
respectively, not orthogonal to u and orthogonal to u. Under the hypothesis
(A.5)(i1), we have E, # {0}. Moreover, E; and E, are stable under the B(x),
x € E,. Indeed, for w in Ker(B(u) — Aid) CE, and for x in E;, using
(A.1)(1i), we have 0 = [ B(u), B(x)lw = (B(u) — Aid)B(x)w so that B(x)w €
Ker(B(u) — Aid) € E,. From the symmetry of B(x), E; is also invariant.

Now, from (A.1)(i1), the restriction to E, of the B(x), x € E;, commute.
Consequently, there exists an eigenvector v in E, which is common to all
B(x), x € E|, and a vector a in E; such that

(A.6) VxekE, B(x)v ={a, x)v.

Now, since B(x)x € E;, the relation [B(x), B(v)]x = —c{x, x)v given by
(A.1)(1) yields {a, x)? — {a, B(x)x) + ¢{x, x) = 0 and this is equivalent to

(A.6") (¢ ® a — B(a) + cid)|g, = 0.

Applying (A.6") to x = a, we finally get B(a)a = ({a, a) + c¢)a. Thus (i) = @)
is demonstrated.

We now prove the statement (A.5)(i1). Let us fix any unitary vector e; of E
and choose (e, ..., e;) an orthonormal basis of e~ which diagonalizes the
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restriction of B(e;) to e; . In such a basis e = (e;)?_,, we write

a; ¢y Cq

cy by 0
(A7) [Ben)], = | - _

c‘d 0 ‘ b,

If one ¢, is 0, then B(e;)e; = b,e;: this is (A.5)(ii) with u = e; and v =e,. If
one b; is 0, then B(e;)e; = c;e;, which is (A.5)(ii), again with u =e; and
v = e,. If there exist i, j such that i # j and b, = b;, then we still get (A.5)(ii)
with u = e; and v = c;e; — c;e;. We now suppose that

(A.8) Cyye--sCq # 0, by,...,b,#0 andfori#j, b, #b.

13 J*

Let us introduce P(A) = det(B(e;) — Aidy), the characteristic polynomial of
B(e;) and D()), the matrix of cofactors of B(e;) — Aid; in the basis e. We
shall prove that there exists u = ¢ ,u;e; such that

(i) B(e;) —u,idg isinvertible.

(A.9) (i) (B(ey) — uyid g)u = ce,.

In this case, we will have V(—u)e; = (v ® u — B(u) + cidg)e; = 0 and
from (A.1), for : > 2,

(A10) (B(ey) —u,idgp)V(—u)e; = (B(e;) — u;idg)V(-u)e, = 0,

so that V(—u)e; = 0 from (A.9)(). Consequently, for any v, V(—u)v = 0, and
this gives (A.5)(d), since B(w)u = u,u) + c)u, as well as (A.5)3ii), since
B(u)v = cv for any v orthogonal to u.

To get (A.9), consider the equation (B(e;) — u;idz)u = ce; and apply the
matrix D(u,) to each of its members. We get

P(uy)u =cD(u,)e;.
Taking the coordinate with respect to e; yields
—P(uy)u; + c{D(u;)e;, e;) = 0.

From (A.7), it is easy to see that

d
1) (D(Ney,ey) = Ll:l2(bi —A),

d

d
(A11) (i) P(A)=(a1—A)Q(bi—A)— Y I1(b,—2)

i=2 k#i
d C?

d
=l:[2(bi—)\)'a1—)t—2 -

o b= A
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Hence, u, is a root of the following polynomial of degree d + 2:

d
Q(A) = —AP()) +cg(bi - A

which can also be written

d

d d
(A.12) Q(/\)=l:[2(bi—)\) M —aA+c— ) ct— _Z

i=2

It is now easy to prove that under the hypothesis (A.8) the rational function
Ao A2 —ad+c— X% ,¢2 — T4 ,(c?h,) /(A — b;) has real roots in R\
{b,,...,b,}. Let u; be such a root. Then u; is not an eigenvalue of B(e,). If
not, @(u,) = P(u;) = 0 and from (A.12), u; € {b,, ..., b;}, which is impossible
from (A.11). Hence, B(e;) — u;idy is invertible and u = c(B(e;) —
u,idz) 'e,, which is well defined, satisfies (A.9). This concludes the proof of
Lemma B. O

APPENDIX B

Let E* be a real linear space with dimension d, with dual space E and let
Q: E* -» Z(E*) be a linear operator such that

Q(a)p=Q(B)a
Q(a)Q(B) =Q(B)Q(a)

We denote by E, E* and @: (E*) - Z(E*), respectively, the complexified
vector spaces of E, E* and the complexified operator of @. Then the set
Q = {Q(a); a € E*) generates a nilpotent subalgebra of A(E*). By Theorem
II, page 380 of Dynkin (1950), we can decompose E* into a direct sum of
subspaces (F %) invariant under the Q(a) and such that @(«) has only one
(complex) eigenvalue on each Fk Since Q is linear in «, there exist vectors
d’ and w; , of E and a suitable basis of E* such that, in thls basis, @(a) has
the matrix

(B.1)

Qy(a) 0
[@(a)] = B
0 Q.(a)
with
(a,d’) (a,wsj,t>
Qj(a) = .

0 ‘ (a,d?)
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Since Q(a) is the complexified operator of @(«), it is known that if «, d kY is
a real number, F), is the complexified characteristic subspace of Fj. In that
case, the restriction of @(«) to F) can be written

(a,d) (a,wy,)

0 " (a,d)

with d,w,, in E as given in (3.7). o
If {a, d*) is not real, the conjugate number {«, d*)= (a,d") for a in E*
is still an eigenvalue of Q(a), say {a,d’). The corresponding characteristic

subspaces Fk and F] are conjugate, too, and hence have the same dimension.

It is then possible to choose the basis f, = ( frs)s and f; = (f;), of F, and F
to get conjugate submatrices @,(a) and Q (a). Choosing e,, = 5(f,, + fjs)
and e;, = (1/2i)f, .fjs) yields a basis (?k1’ €i1,€h2, €0, - - eks‘,ejs) of the
real subspace F, & F; in which the restriction of @(«) can be written

D w,,

0 D
for which there exists a, b, u,,,v,, in E such that

[ (a,a)  (a,b) | Kayuy) (a,vy
D=l —dam <a,a>) and W“‘(—<a,vst> (o,

as given in (3.8). O
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