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CHANGE POINT ESTIMATION USING
NONPARAMETRIC REGRESSION

BY CLIVE R. LOADER

Bell Laboratories

We consider a regression model in which the mean function may have
a discontinuity at an unknown point. We propose an estimate of the
location of the discontinuity based on one-side nonparametric regression
estimates of the mean function. The change point estimate is shown to

Ž y1 .converge in probability at rate O n and to have the same asymptotic
distribution as maximum likelihood estimates considered by other authors
under parametric regression models. Confidence regions for the location
and size of the change are also discussed.

Ž .1. Introduction. Let x s irn, 1, . . . , n, and Y s f x q « , where thei i i i
Ž .residuals are independent N 0, 1 and f is right continuous and left continu-

Ž .ous except at an unknown change point t g 0, 1 . A second quantity of
Ž . Ž .interest is the size of the change, which we measure by D s f t y f t .q y

If f is assumed to be constant except at the change point, this model
reduces to the mean shift model for a sequence of independent normal
random variables. The maximum likelihood estimate t of t was shown byˆ

Ž . Ž y1 .Hinkley 1970 to converge in probability at rate O n . Hinkley also
Ž .showed the limit distribution of n t y t related to the location of theˆ

maximum of a two-sided random walk. These results are extended to para-
Ž .metric regression models by Kim and Siegmund 1989 .

We make the weaker assumption that f varies smoothly away from the
change point. Specifically, we suppose there exists a constant b such that

< < < <1 f x y f y F b x y y whenever x y t y y t ) 0.Ž . Ž . Ž . Ž . Ž .

Ž . w .Let K u be a weight function defined on 0, ` satisfying the following
conditions:

Ž . Ž . Ž .1. K 0 ) 0, K u G 0 for 0 - u - 1 and K u s 0 for u G 1.
< Ž . Ž . < < <2. The exists z such that K u y K v - z u y v for all u, v G 0.

1 Ž .3. H K u du s 1.0

We choose a bandwidth h, with the requirements h ª 0 as n ª `, but
nhrlog n ª `.

For some i, 1 F i F n, we have x - t F x . However, the data cannot beiy1 i
used to distinguish possible changes in this interval. For definiteness, we
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suppose that t is an event time; t s x . Of course, this requires t to dependi
on n although we suppress this dependence.

Left and right local regressions are used to estimate the left and right
limits of f at event times. For t such that m s nt is an integer, assign

Ž Ž ..weights K jr nh to observations Y , j s 0, . . . , nh. Then, fit a localmq j

polynomial model of degree p by weighted least squares:

E Y s a q a j q ??? qa j p , j s 0, . . . , nh.Ž .mq j 0 1 p

ˆ ˆŽ . Ž .Define f t s a . An estimate f t is defined similarly, using Y ,ˆq 0 y myjy1
Ž .j s 0, . . . , nh. For local constant fitting p s 0 we have explicitly

Ýnh K jrnh YŽ .js0 myjy1
f̂ t s ,Ž .y nhÝ K jrnhŽ .js0

Ýnh K jrnh YŽ .js0 mqj
f̂ t s .Ž .q nhÝ K jrnhŽ .js0

2Ž .

ˆ ˆ ˆŽ . Ž .Define D s f t y f t . The estimate t of t is that value of t whichˆt q y
ˆ2maximizes D over the range h F t F 1 y h. One could also consider thet

ˆmaximizer of D if it is known D ) 0.t
The choice of order of local polynomial turns out to have little impact on

the asymptotic results for t derived below. In practice, for local constantˆ
ˆfitting D may be quite biased, and local linear fitting, although moret

variable, is usually preferable. This is related to the ‘‘boundary problem’’ in
Ž .nonparametric regression, discussed, for example, in Fan and Gijbels 1992 .
Ž .The estimate here is similar in principle to that studied by Muller 1992 ;¨

however, by imposing different conditions on K our estimate has dramati-
cally different properties. These differences and comparisons with other
estimates are explored further in Section 2.

Ž .THEOREM 1. Let . . . , « , « , « , . . . be independent N 0, 1 random vari-y1 0 1
ables. Then

lim P n t y t s l s P L s l ,Ž . Ž .Ž .ˆ D
nª`

where L is the location of the maximum of the processD

¡ 2D « q ??? q« y iD r2, i ) 0,Ž .1 i~3 Z sŽ . 0, i s 0,i
2¢ < <D « q ??? q« y i D r2, i - 0.Ž .i y1

Ž .In the simplest parametric change point model, one assumes f t s m q
Ž .D I t G t . The maximum likelihood estimate of t is then

2m n y m S y S SŽ . n m m
t s arg max y ,p̂ar ž /m n y m m0-t-1
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m Ž .where m s nt and S s Ý Y . Hinkley 1970 derived exactly the limitm is1 i
Ž .distribution in Theorem 1 for n t y t . The local regression estimates willp̂ar

require a larger n for the asymptotics to be applicable.
Confidence sets for parametric change point problems have been discussed

Ž .by several authors. Siegmund 1988 reviewed several methods. Kim and
Ž .Siegmund 1989 discussed confidence sets for change points in parametric

regression models. The following theorems adapt the likelihood ratio method
Ž . Ž .of Siegmund 1988 to find asymptotic confidence regions for t and t , D . To

Ž . Ž p.Tstate the results we need some notation. Let A u s 1 u ??? u , L sj
1 Ž . j Ž . Ž .TH K u A u A u du and0

y1M s 2 K 0 L ,Ž .1 1 1, 1

y1 y1M s 2 L L L .2 1 2 1 1, 1

w xThe notation ? denotes matrix subscripting.1, 1

THEOREM 2. Under the assumptions of Theorem 1,

nh
2 2ˆ ˆsup D y D ª Z .ž /t t LL LD2 M t1

Ž .Let c g , D denote the 1 y g quantile of Z and1 LD

nh
2 2ˆ ˆ ˆI s t : D y D - c g , D .Ž .ž /1 t t 1 tˆ½ 52 M1

Then

4 lim P t g I s 1 y g .Ž . Ž .1
nª`

For I to be an asymptotic 1 y g confidence set would require the conver-1
Ž .gence in 4 to be uniform in t , D and f. Clearly this cannot hold; however,

uniformity can easily be obtained by assuming these parameters lie in
suitable compact spaces.

THEOREM 3. Suppose the bandwidth satisfies nh3 ª 0 in addition to the
existing conditions. Let U be a x 2 random variable, independent of Z .1 LD

Define

nh nh2 2 2ˆ ˆ ˆl t , D s D y D q D y D .Ž . Ž . ž /t t tˆ2 M 2 M2 1

Then
1l t , D ª U q Z .Ž . LL L2 D

1Ž . Ž .Let c g , D be the 1 y g quantile of U q Z and define2 L2 D

I s t , D : l t , D - c g , D .� 4Ž . Ž . Ž .2 0 0 2 0
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Then

lim P t , D g I s 1 y g .Ž .Ž .2
nª`

3 ˆWe remark that the condition nh ª 0 ensures the bias of D is smallt

relative to its variance. With p G 1 and under appropriate smoothness
Ž .conditions on f t , t / t , this condition can be weakened.

Ž . Ž . wŽ .Approximations to c g , D and c g , D were given by Siegmund 1988 ,1 2
xequations 7 and 25 . In our notation, these are

2yc1P Z ) c f 1 y 1 y n D e ,Ž .Ž .Ž .L 1D

1 2 yc2P U q Z ) c f P x ) 2c q 4n D c e .Ž .Ž .Ž .L 2 1 2 22 D

Ž .These are asymptotic as c and c ª `. The quantity n D is defined by1 2
wŽ . x Ž . y0 .583DSiegmund 1988 , equation 4 ; the approximation n D f e suffices for

most purposes.
Asymptotics for change point estimates based on two-sided random walks

Ž .have been derived for a number of models; Dumbgen 1991 is a recent¨
Ž .reference. An important question studied by Ritov 1990 is efficiency: Can

one do better by aiming for functionals of the random walk other than the
maximizer? The answer depends on the loss function; a maximum likelihood
type estimate is appropriate for 0]1 loss. For a quadratic loss, Ritov’s results
suggest considering estimates of the form

ˆ2Ht exp nhD r2 M m dtŽ .Ž .t 1 n
t s ,˜ 2ˆH exp nhD r2 M m dtŽ .Ž .t 1 n

� < < 4where m denote counting measure on jrn: j y nt - i and i ª ` at aˆn 0 0
Ž .suitably slow rate; see 5 below. For detecting a change in the drift of

Brownian motion, the asymptotic efficiency of the maximum likelihood esti-
mate is about 73% under quadratic loss; see Ibragimov and Has’minskii
Ž .1981 .

2. Comparisons. Our change point estimate is illustrated in Figure 1.
Ž .The data in the top panel are convoluted with the split kernel middle panel

ˆ y1Ž .to obtain D in the bottom panel. The crucial condition leading to the O nt p
Ž . Žconvergence in Theorem 1 is K 0 ) 0. If t is increased from t i.e., the

.kernel in Figure 1 moved to the right postchange observations will switch
ˆ ˆ ˆŽ . Ž . Ž .abruptly from f t to f t , and f t responds rapidly to the change.q y y

ˆ Ž .Likewise, when t is decreased from t , f t responds rapidly to the change.q
ˆThis results in the sharp peak in D at t s t . Smoothness of the kernel att

points other than 0 is required to minimize spurious noise in the process.
Ž .An early related paper is McDonald and Owen 1986 , who estimated a

regression curve with possible discontinuities using weighted combinations of
left, right and central smooths at various bandwidths combined using a mean
squared error criterion. Change point estimates based on the difference of left

Ž .and right smooths were introduced by Muller 1992 and Hall and Tittering-¨
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Ž .FIG. 1. How the change point estimate works. A data set top is convoluted with a split kernel
ˆ ˆ ˆŽ . Ž . Ž . Ž .middle to produce D s f t y f t bottom . The estimate is that value of t which maxi-t q y

ˆmizes D .t

Ž .ton 1992 as part of a more complicated smoothing procedure. However, in
both these papers the weights used do not satisfy our conditions and the
resulting estimates have different asymptotic performance. The conditions
Ž . Ž . Ž . Ž .K4 and K2 in Muller 1992 jointly imply K 0 s 0; this leads to estimates¨
with an inferior rate of convergence.

Ž .Hall and Titterington 1992 derived their estimates from different princi-
ˆ ˆples, but in their examples f and f are our one-sided local linear estimatesl r

Ž . Ž .with the uniform weight function K u s I u . A result similar to Theo-w0, 1x
rem 1 still holds in this case, but observations around the discontinuities at
u s "1 contribute to the limit distribution with a fraction of 1r4. The « ini
Ž . Ž .23 now have variance 1 q 2 0.25 s 1.125. This slightly reduces the effi-
ciency of the estimate.
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Ž . Ž . Ž .FIG. 2. Comparison of our estimate left with that of Muller 1992 right for a change of size¨
Ž . Ž .D s 1. Plotted are the 50th percentile ( and 90th percentile q of the absolute deviation

< <n t y t , estimated by Monte Carlo simulation. Dashed lines are the asymptotic approximations toˆ
the quantiles.

We give a simulated example to more fully appreciate the difference
Ž . Ž .between our estimate and Muller’s. Consider the model f x s 4 sin 5x q¨

Ž .3 x q I x G 0.7 and n s 1000. This represents a challenging problem; the
change is nearly impossible to detect by eye and a long sequence is required

Ž .for any estimator to have much chance of detection with N 0, 1 residuals.
The left panel of Figure 2 displays results based on 10,001 simulations,

< <showing the median and 90th percentile of the distribution of n t y t . Localˆ
3 2Ž . Ž . Ž .linear regression with K u s 1 y u I 0 F u F 1 was used to construct2

ˆ ˆŽ . Ž .f t and f t . The estimate requires quite large bandwidths: nh G 60 toy q
reliably detect the change with probability 0.5 and nh G 130 to detect with
probability 0.9. The asymptotic MAD of 2 is achieved for nh G 100, while the
asymptotic 90th percentile is never quite achieved. Confidence sets for t were
computed using Theorem 2 with nh s 150 and 1 y g s 0.9; the actual cover-
age obtained was 91.1% with a median size of 11 observations. The joint
confidence region of Theorem 3 achieved an actual coverage of 92.0%, again
with a nominal 90% coverage.

Ž .The estimate of Muller 1992 is considered in the right panel of Figure 2,¨
Ž . Ž .Ž . Ž .using the boundary kernel K u s 12u 1 y u 3 y 5u I 0 F u F 1 . Simi-

larly large bandwidths are required to detect the change; however, the
minimum MAD achieved is 5. The estimate is more sensitive to the band-

ˆwidth, with bias sometimes dominating D for nh G 220. The asymptotict
Ž . Ž . wŽ .distribution in this case is n t y t ; N 0, 0.296nh given by Muller 1992 ,ˆ ¨

xCorollary 3.1 .
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ˆ3. Proofs. To prove Theorem 1, we consider the behavior of D in twot
< <parts. Lemma 1 considers the case t y t G i rn, where i ª ` as n ª `,0 0

with
y1'5 i s o min nhrlog n , h .Ž . Ž .Ž .0

< <Lemma 2 considers t y t - i rn.0

LEMMA 1. t is a consistent estimate of t :ˆ
< <P t y t ) i rn ª 0.ˆŽ .0

LEMMA 2. Let m s nt . As n ª `,

nh iD2
2 2ˆ ˆ6 D y D s yD « q ??? q« y q o 1 ,Ž . Ž . Ž .ž /tqi r n t m mqiy12 M 21

nh iD2
2 2ˆ ˆ7 D y D s D « q ??? q« y q o 1 .Ž . Ž . Ž .ž /tyi r n t myi my12 M 21

Ž .The o 1 term holds uniformly for 1 F i F i .0

Ž .For simplicity, proofs will be for local constant fitting p s 0 only; for
general p the results follow by considering the asymptotically equivalent

U Ž . Ž .w y1 Ž .xkernels K u s K u L A u . We first apply the results to prove Theo-1 1
X ˆ2 wrems 1, 2 and 3. Let t be the value of t that maximizes D over t y i rn,ˆ t 0

xt q i rn . Then by Lemma 2,0

P n t X y t s l ª P L s l .Ž . Ž .Ž .ˆ D

X < <Since t s t whenever n t y t - i ,ˆ ˆ ˆ 0

X < < XP n t y t s l y P n t y t ) i F P n t y t s l F P n t y t s lŽ . Ž . Ž .Ž . Ž . Ž .ˆ ˆ ˆ ˆŽ .0

and an application of Lemma 1 completes the proof of Theorem 1. The proof of
Theorem 2 is similar.

To prove Theorem 3 we need to show

ˆ'8 nh D y D ª N 0, MŽ . Ž .Ž .t LL 2

ˆ2 ˆ2 ˆŽ .and is asymptotically independent of nh D y D . Since D is normallyt t tˆ
Ž .distributed, to establish 8 it suffices to show convergence of moments. Using

the continuity of K and f ,
nh < <Ý K jrnh f t q jrn y f tŽ . Ž . Ž .Ž .js0 qˆ< <Ef t y f t FŽ . Ž .q q S nhŽ .

nh < <Ý jrnh K jrnhŽ .js0F hb
S nhŽ .

9Ž .

s O h ,Ž .
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Ž . nh Ž . Ž .y1 Ž . 1 Ž .where S nh s Ý K jrnh . Note nh S nh ª H K u du s 1. Treatingjs0 0
ˆ 3Ž .f t similarly and using the assumption nh ª 0,y

1r23ˆ'nh E D y D s O nh ª 0.Ž .Ž . ž /t

ˆ Ž .Evaluating the variance of D from 2 is straightforward.t
ˆ < <The asymptotic independence follows because D depends on Y , nt y j -t j

ˆ2 ˆ2 < <nh, while D y D depends only on Y in the negligible subinterval nt y j -t t jˆ
i .0

It remains to prove Lemmas 1 and 2. The following lemma is used
repeatedly.

Ž 2 .LEMMA 3. Let h , j s 1, . . . , n, n G 1, be a triangular array of N 0, sn, j n, j
< <random variables, not necessarily independent. Let M s sup h . Ifn 1F jF n n, j

sup s 2 log n ª 0 as n ª `, then M ª 0 with probability 1.1F jF n n, j n

PROOF. Fix d ) 0. If n is sufficiently large, then s 2 log n F d 2r5 for alln, j
Ž . Ž .j. Using Bonferroni’s inequality and the bound 1 y F c F f c rc,

n d
P M ) d F 2 1 y FŽ . Ýn ž /ž /sn , jjs1

'F 2n 1 y F 5 log nŽ .Ž .
2

F ,3r2 'n 10p log n

` Ž .Hence, Ý P M ) d - ` and by the Borel]Cantelli lemma, M ) d onlyns1 n n
finitely often. Since d is arbitrary, this implies M ª 0. In

PROOF OF LEMMA 1. We assume D ) 0; the case D - 0 is similar. Essen-
ˆŽ . Ž Ž ..tially following 9 and a similar bound for E f t ,y

ˆ< <sup ED s O h ª 0,Ž .t
tGtqh

M2 y1ˆvar D s q o nh .Ž .Ž .Ž .t nh

ˆ ˆ< <Applying Lemma 3 gives sup D y ED ª 0 with probability 1. Hence,t t t
ˆ ˆsup D ª 0 and D ª D. Therefore,t )tqh t t

1 1ˆ ˆ10 P t ) t q h F P D - D q P sup D ) D ª 0.Ž . Ž .ˆ Ž .t t2 2ž /
t)tqh
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Now,

P t q i rn F t F t q hŽ .ˆ0

nh
2 2ˆ ˆF P D G DÝ ž /tqi r n t

isi0

nh nh
ˆ ˆ ˆ ˆF P D y D ) 0 q P D q D - 0 .Ý Ýž / ž /tqi r n t tqi r n t

isi isi0 0

We show the first sum converges to 0; the second is easier. Since the terms
are normal tail probabilities, we need to approximate the mean and variance

ˆ ˆ ˆof D y D . From the definition of D ,tqi r n t t

nh j j q i jˆ ˆS nh E D y D s K f t q y f t qŽ . Ýž /tqi r n t ž / ž / ž /ž /nh n njs0

iy1 j i y 1 y j j q 1
y K f t q y f t yÝ ž / ž / ž /ž /nh n njs0

nh j i y 1 y j j q 1
q K f t q y f t y .Ý ž / ž / ž /ž /nh n njsi

Ž .By 1 , the difference of the f ’s can be bounded by "b irn in the first and
< Ž . <third sums, and by D " b irn in the second sum. Also, K u F z for all u.

Hence,
iy1 jˆ ˆS nh E D y D F yD K q 5hzb i .Ž . Ýž /tqi r n t ž /nhjs0

Ž .Since K 0 ) 0, there exists c ) 0 such that for n sufficiently large and all
i F nh,

ˆ ˆ11 S nh E D y D F yci .Ž . Ž . ž /tqi r n t

Similarly,
2nh j q i j2 ˆ ˆS nh var D y D s 2 K y KŽ . Ýž /tqi r n t ž / ž /ž /nh nhjs0

12Ž .
2iy1 i y j y 1 j

q K q KÝ ž / ž /ž /nh nhjs0

Ž . Ž .Combining 11 and 12 ,

nh nh 'c iˆ ˆP D y D ) 0 F 1 y FÝ Ýž /tqi r n t ž /'ž /8 zisi isi0 0

nh C
yl iF e ,Ý 'iisi0
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Ž . Ž .where C and l are positive constants, using the bound 1 y F x F f x rx.
The sum is asymptotic to

Ceyl i0

ª 0yli 1 y eŽ .' 0

Ž . Ž .since i ª `. Hence, P t q i rn - t - t q h ª 0. Combining with 10 givesˆ0 0
Ž .P t ) t q i rn ª 0. Treating the left tail similarly completes the proof ofˆ 0

Lemma 1. I

Ž . Ž .PROOF OF LEMMA 2. We prove only 6 ; a proof of 7 is similar. Along the
ˆ ˆŽ . < <lines of the proof of Lemma 1, D q D r2 ª D uniformly for t y t F i rnt t 0

and it therefore suffices to show
nh iDˆ ˆD y D s y « q ??? q« y q o 1 ,Ž . Ž .ž /tqi r n t m mqiq1M 21

where m s nt . We achieve this by showing

ˆ ˆS nh f t q irn y f tŽ . Ž . Ž .Ž .y y13Ž .
s iK 0 D q K 0 « q ??? q« q o 1 ,Ž . Ž . Ž . Ž .m mqiy1

ˆ ˆ14 S nh f t q irn y f t s yK 0 « q ??? q« q o 1 ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .q q m mqiy1

Ž . Ž .where o 1 holds uniformly in i - i . Note M s 2 K 0 for local constant0 1
fitting.

ˆ Ž .Using the definition of f t ,y

t q iˆ ˆS nh f y f tŽ . Ž .y yž /ž /n
nh nhj q i j

s K Y y K YÝ Ýmy jy1 myjy1ž / ž /nh nhjsyi js0

y1 j q i
s K f x q «Ž .Ž .Ý my jy1 myjy1ž /nhjsyi

15Ž .

nh j q i j
q K y K f x q « .Ž .Ž .Ý my jy1 myjy1ž / ž /ž /nh nhjs0

We treat this in four parts. Using the Lipschitz continuity of f and K,
y1 j q i

K f x y iK 0 f tŽ . Ž . Ž .Ý my jy1 qž /nhjsy1

y1 2< <K 0 b i f t zi zb iŽ . Ž .0 q 0 0F q qÝ 2ž /n nh n hjsyi

2 < < 2 3K 0 b i f t zi b ziŽ . Ž .0 q 0 0F q q .2n nh n h
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Ž .Applying 5 and a similar lower bound shows
y1 j q i

16 K f x s iK 0 f t q o 1 ,Ž . Ž . Ž . Ž . Ž .Ý my jy1 qž /nhjsyi

Ž .where o 1 holds uniformly in i, 1 F i F i . Similarly,0

nh j q i j
K y K f xŽ .Ý my jy1ž / ž /ž /nh nhjs0

nh j q i j
F f t K y KŽ . Ýy ž / ž /ž /nh nhjs017Ž .

nh j q i j
q b h K y KÝ ž / ž /nh nhjs0

s yiK 0 f t q o 1Ž . Ž . Ž .y

Ž y1 .using i s o h .0
Ž .Turning to the random components of 15 ,

2y1 y1j q i j q i
var K y K 0 « s K y K 0Ž . Ž .Ý Ýmy jy1ž / ž /ž / ž /nh nhjsyi jsyi

i3 z 2
0F ,2nhŽ .

and applying Lemma 3,
y1 j q i

18 K « s K 0 « q ??? q« q o 1Ž . Ž . Ž . Ž .Ý my jy1 m mqiy1ž /nhjsyi

uniformly in i - i . Similarly,0

nh 2 2j q i j i z0
var K y K « FÝ jž / ž /ž /nh nh nhjs0

and another application of Lemma 3 gives
nh j q i j

19 K y K « s o 1 .Ž . Ž .Ý jž / ž /ž /nh nhjs0

Ž . Ž . Ž . Ž . Ž . Ž .Substituting 16 , 17 , 18 and 19 into 15 establishes 13 . A similar
Ž .derivation of 14 completes the proof. I
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