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NONPARAMETRIC COMPARISON OF MEAN
DIRECTIONS OR MEAN AXES

By Rudolf Beran1 and Nicholas I. Fisher

University of California, Berkeley and CSIRO

Samples of directional or axial measurements arise in geophysical, bi-
ological and econometric contexts. We represent the rotational difference
between two mean directions (or two mean axes) as a direction (or axis).
We then construct nonparametric simultaneous confidence sets for all pair-
wise rotational differences among the mean directions or mean axes of s
samples. By specialization, this methodology yields nonparametric simul-
taneous tests for pairwise equality of directional means or axes.

1. Introduction. Geological data often contains directions or axes mea-
sured in three dimensions. Examples are directions of remanent magnetiza-
tion of lava cores, axes normal to geological folding planes, or positions on the
surface of the earth. Biological measurements may include directions or axes
in two dimensions. Instances are the directions in which birds or insects fly
after release and time-of-day viewed as a circular variable. In econometrics,
season or month-of-the-year are discrete circular variables that correspond to
angular portions of the earth’s orbit around the sun.

Formal statistical methods for analyzing samples of directional or axial
data often rely on two parametric models: the Langevin–Fisher–von Mises
distribution for directional data and the Bingham distribution for axial data
[cf. Mardia (1972), Watson (1983), Fisher, Lewis and Embleton (1993), Fisher
(1995)]. These two models are the simplest canonical exponential families for
directional and axial data, respectively, that are closed under rotations of the
coordinate system [Beran (1979)]. The cost of this mathematical simplicity
is rotational symmetry of the respective density about its mean direction or
mean axis. Semiparametric models studied in Watson (1983) share this sym-
metry. However, sets of directional or axial data in the fields of application
cited above may lack even approximate rotational symmetry. The only gener-
ally applicable methods available to date are based on the spherical median
direction or axis [Fisher (1985); Fisher, Lunn and Davies (1993)], and then
only for large samples.

Section 1.1 recalls the definitions of random direction or random axis and
of mean direction or mean axis. This paper develops nonparametric methods
for comparing all pairs of mean directions (or mean axes) of s independent
samples of directions (or axes). No shape assumptions are imposed upon the
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unknown distribution of the observations in each sample. In practice, a mean
direction or a mean axis summarizes a distribution most effectively when that
distribution is unimodal. Central to our methodology is the representation of
the rotational difference between two mean directions (or two mean axes) as a
direction (or axis). This representation has two important features: it enables
us to apply nonparametric methods for inference about one mean direction or
one mean axis, and it suggests plots for rotational differences in two or three
dimensions. Details of the representation are the subject of Section 1.2. Section
2 constructs confidence sets for the rotational difference between the mean
directions (or mean axes) of two samples. Simultaneous confidence sets for all
pairwise rotational differences among the mean directions (or mean axes) of s
samples are developed in Section 3. Section 4 illustrates our methodology on
data.

1.1. Random directions and axes. A direction in q-dimensions is a q × 1
unit vector d. It is naturally visualized as a point on the unit sphere Sq =
�u ∈ Rq� �u� = 1�, where � · � is Euclidean norm. A random direction x is then
a random element of the sphere Sq metrized by the norm � · �.

Suppose that x1� 	 	 	 � xn are iid random directions, each having distribution
P on Sq. Letm	P
 = Exi and assume that �m	P
� > 0. This condition excludes
certain highly symmetric distributions such as the uniform distribution on Sq.
The mean direction of xi (or of P) is defined to be the direction d = d	P
 that
minimizes E�xi − d�2. Equivalently, d	P
 = m	P
/�m	P
�. The sample mean
direction is then d̂n = m̂n/�m̂n�, where m̂n is the sample mean n−1∑n

i=1 xi. It
is readily seen that d̂n is the direction d minimizing

∑n
i=1 �xi − d�2.

An axis in q-dimensions is an unordered pair of directions �e�−e�, where
e ∈ Sq. We will write ±e in place of the pair and, by convention, will require
that the first nonzero component of e be positive. An axis is naturally visu-
alized as a pair of diametrically opposed points on the sphere Sq or as the
one of those points that lies on a selected hemisphere of Sq. The axis ±e may
equivalently be represented as the orthogonal projection ee′ whose rank is 1.
Given the value of ee′, we can recover ±e as the sign-ambiguous eigenvector
of ee′ associated with the eigenvalue 1. The other eigenvalues are 0. The set of
all axes in q dimensions may thus be identified with the set Tq of all orthogo-
nal projections of Rq into one-dimensional subspaces. The Euclidean norm of
a matrix B = �bij� 1 ≤ i� j ≤ q� is defined by ��B��2 = tr	B′B
. A random axis
±x corresponds to a random element xx′ of the set of projections Tq metrized
by the norm �� · ��.

Suppose that ±x1� 	 	 	 �±xn are iid random axes, each having distributionQ
on Tq. Let M	Q
 = Exix

′
i, the second moment matrix which does not depend

on the sign of xi, and assume that the largest eigenvalue of M	Q
 is unique.
This condition again excludes highly symmetric axial distributions. The mean
axis of ±xi (or of Q) is defined to be the axis ±e = ±e	Q
 that minimizes
E��xix′i − ee′��2. Equivalently, ±e	Q
 is the sign-ambiguous eigenvector associ-
ated with the largest eigenvalue of M	Q
. The sample mean axis is then ±ên,
the sign-ambiguous eigenvector associated with the largest eigenvalue of the
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sample moment matrix M̂n = n−1∑n
i=1 xix

′
i. It is easily seen that ±ên is the

axis ±e minimizing
∑n
i=1 ��xix′i − ee′��2.

For further discussion of mean directions or mean axes, see Kent (1992).

1.2. Rotations between directions or axes.
Two dimensions. Suppose first that d1 and d2 are two directions in R2.

Let θ ∈ �0�2π� denote the angle of the counterclockwise rotation that takes d1
into d2. Equivalent descriptions of this rotation are the angle θ or the direction
vector in S2 defined by

	1	1
 ρ2	θ
 = 	cos	θ
� sin	θ

′	
The latter coincides with the direction vector

	1	2
 r2	d1� d2
 = 	d1 · d2�det	d1� d2

′�
where · denotes the dot product or inner product of vector analysis. The or-
thogonal matrix that rotates d1 counterclockwise into d2 is

	1	3

(

d1 · d2 −det	d1� d2

det	d2� d2
 d1 · d2

)
	

This matrix representation of the rotation is equivalent to the vector repre-
sentations (1.2) or (1.1).

Suppose next that ±e1 and ±e2 are two axes in R2. Two counterclockwise
rotations take the first axis into the second axis. A counterclockwise rotation
through angle θ (say) takes e1 into e2 and −e1 into −e2. A counterclockwise
rotation through angle θ + π �mod 2π� then takes e1 into −e2 and −e1 into
e2. Since ρ2	θ + π
 = −ρ2	θ
, the pair of rotations bringing ±e1 into ±e2 can
be specified by the axis ±ρ2	θ
, where ρ2	θ
 = r2	e1� e2
, or by the unordered
pair �θ� θ+ π� �mod 2π�. We will denote this unordered pair by ψ2	θ
.

Three dimensions. Now suppose that d1 and d2 are two directions in R3.
Let ν ∈ S3 be the normal to the plane determined by d1 and d2 such that,
with thumb pointing in the direction ν, a right-hand-rule rotation through the
angle θ ∈ �0� π� takes d1 into d2. Equivalent descriptions of this rotation are
the angle-direction pair 	θ� ν
 or the direction vector in S4 defined by

	1	4
 ρ3	θ� ν
 = 	cos	θ
� sin	θ
ν′
′	
The latter coincides with the direction

	1	5
 r3	d1� d2
 = 	d1 · d2� 	d1 × d2
′
′�
where × denotes the cross-product of vector analysis. For the special cases
d1 = d2 or d1 = −d2, the direction r3	d1� d2
 becomes 	1�0�0�0
 or
	−1�0�0�0
, respectively. In the form (1.4), θ is then, respectively, 0 or π
and ν is arbitrary. The representation of rotation (1.5) as an orthogonal
matrix is

	1	6
 d1d
′
1 + 	ν × d1
	ν × d2
′ + νν′ where ν = 	d1 × d2
/�d1 × d2�	
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The Euler angles of the rotation can be recovered by matching this matrix
with its counterpart expressed in terms of those angles.

Unlike the unit vector r3	d1� d2
, the vector product d1 × d2 fails to give a
one-to-one representation of the rotation that takes d1 into d2. Indeed, d1×d2
equals 	0�0�0
′ whether d1 = d2 or d1 = −d2. Moreover, small perturbations
of d1 and d2 around the cases d1 = d2 and d1 = −d2 can reverse the direction
of the vector product. These properties make the vector product unsuitable as
a basis for confidence sets when the true rotation angle θ is near either 0 or π.

Finally, suppose that ±e1 and ±e2 are two axes in R3. In the plane deter-
mined by these axes, two right-hand-rule rotations bring the first axis onto
the second: the rotation 	θ� ν
 (say) that takes e1 into e2 and −e1 into −e2
and the rotation 	π − θ�−ν
 that takes e1 into −e2 and −e1 into e2. Since
ρ3	π − θ�−ν
 = −ρ3	θ� ν
, the pair of rotations bringing ±e1 to ±e2 can be
specified by the axis ±ρ3	θ� ν
, where ρ3	θ� ν
 = r3	e1� e2
, or by the unordered
pair �	θ� ν
� 	π − θ�−ν
�. We will denote this unordered pair by ψ3	θ� ν
.

2. One pairwise comparison. The first problem is to compare the mean
directions of two directional samples or the mean axes of two axial samples.
Using the language of Section 1, we will represent the rotation between two
mean directions as a direction and the pair of rotations between two mean
axes as an axis. Nonparametric confidence cones for these representations
then express our solution. Closely related to this solution are nonparametric
confidence cones for the mean direction or mean axis of a single sample. Be-
cause these one-sample confidence cones are implicit in our treatment of the
two-sample problem, we omit further details.

2.1. Comparing two mean directions. We consider two directional samples
in either two or three dimensions. Suppose that the directions xi�1� 	 	 	 � xi� ni
in sample i are iid with common unknown distribution Pi on Sq. The samples
are independent, with combined size n = n1+n2. Let P̂n� i denote the empirical
distribution of sample i and let P̂n = 	P̂n�1� P̂n�2
 be the associated estimator
of P = 	P1�P2
. In the asymptotic theory of Section 5, we will suppose that
neither n1 nor n2 is tiny relative to n. Let di denote the unknown mean
direction of Pi, assumed to exist, and let d̂n� i denote the ith sample mean
direction, as defined in Section 2.1. The sample rotation ρ̂n� q = rq	d̂n�1� d̂n�2

estimates the rotation ρq = rq	d1� d2
 that brings d1 into d2.

Two dimensions. Here ρ̂n�2 = ρ2	θ̂n
, where θ̂n is the counterclockwise angle
from d̂n�1 to d̂n�2. The angle θ̂n estimates the unknown counterclockwise angle
θ between the mean directions d1 and d2. The rotational difference ρ2	θ̂n
 may
be plotted as a direction in R2. By constructing a nonparametric confidence
cone for ρ2	θ
 about ρ̂n�2, we will obtain a confidence interval for θ.

Let

	2	1
 Hn�2	P
 = �
[
ρ̂n�2 · ρ2	θ
�P

]
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denote the sampling distribution of the dot product and let ĥn�2	α
 be the
smallest αth quantile of the estimated sampling distribution Hn�2	P̂n
. Nu-
merical approximation of this quantile by bootstrap resampling is discussed
in Section 2.3. Our nonparametric confidence set for θ is then

	2	2

Cn�2 = {

θ� ρ̂n�2 · ρ2	θ
 ≥ ĥn�2	α
� θ ∈ �0�2π�}
= {
θ� θ̂n − cos−1(ĥn�2	α
)≤ θ ≤ θ̂n + cos−1(ĥn�2	α
) �mod 2π�}	

The range of the inverse cosine is taken to be �0� π�. We will see in The-
orem 2.1 that the coverage probability of this confidence interval converges
asymptotically to 1 − α. If the confidence cone contains ρ2	θ
 = 	1�0
′, which
represents counterclockwise rotation θ = 0, then the two mean directions d1
and d2 are not significantly different. The implied test rejects the null hy-
pothesis d1 = d2 if and only if cos	θ̂n
 < ĥn�2	α
. It has asymptotic rejection
probability α under each model satisfying that null hypothesis.

Confidence interval (2.2) may be compared with a nonparametric confidence
interval for the smaller of θ and 2π − θ �mod 2π� that was devised by Lewis
and Fisher (1995). Because this quantity confounds the rotations θ and 2π−θ
unless θ = 0 or π, the asymptotic distribution of its estimator changes sharply
at those end points. This discontinuity in the asymptotics complicates the
control of coverage probability. Confidence interval Cn�2 avoids the difficulty,
as will be seen in the proofs, by distinguishing between θ and 2π − θ.

Three dimensions. Here ρ̂n�3 = ρ3	θ̂n� ν̂n
, where ν̂n = 	d̂n�1 × d̂n�2
/�d̂n�1 ×
d̂n�2� and θ̂n ∈ �0� π�. With thumb pointing in direction ν̂n, a right-hand-rule
rotation through angle θ̂n brings d̂n�1 into coincidence with d̂n�2. The rotation
	θ̂n� ν̂n
 estimates the rotation 	θ� ν
 that brings d1 into d2. The angle θ̂n may
be plotted as the direction 	cos	θ̂n
� sin	θ̂n

′ in the upper halfplane of R2. The
vector ν̂n may be plotted as a direction inR3. By constructing a nonparametric
confidence cone for ρ3	θ� ν
, we will obtain a joint confidence interval for the
rotation 	θ� ν
.

Let

	2	3
 Hn�3	P
 = �
[
ρ̂n�3 · ρ3	θ� ν
�P

]
and let ĥn�3	α
 denote the smallest αth quantile of the estimated sampling
distribution Hn�3	P̂n
. Our confidence set for 	θ� ν
 is then

	2	4
 Cn�3 = {	θ� ν
� ρ̂n�3 · ρ3	θ� ν
 ≥ ĥn�3	α
� θ ∈ �0� π�� ν ∈ S3
}
	

Numerical approximation of ĥn�3	α
 is discussed in Section 2.3. We will also
see there that the asymptotic coverage probability of Cn�3 is 1 − α.

Confidence set Cn�3 may be decomposed into slices, one slice for every ac-
ceptable value of θ. By acceptable value, we mean any θ ∈ �0� π� such that
	θ� ν
 lies in Cn�3 for at least one direction ν. The set of acceptable values is
just

	2	5
 An = {
θ� cos	θ̂n − θ
 ≥ ĥn�3	α
� θ ∈ �0� π�}	
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Indeed, if 	θ� ν
 ∈ Cn�3, then

	2	6

ĥn�3	α
 ≤ ρ̂n�3 · ρ3	θ� ν
 = cos	θ̂n
 cos	θ
 + sin	θ̂n
 sin	θ
ν̂n · ν

≤ cos	θ̂n− θ
	
Conversely, if cos	θ̂n − θ
 ≥ ĥn�3	α
, then 	θ� ν̂n
 ∈ Cn�3 because

	2	7
 ρ̂n�3 · ρ3	θ� ν̂n
 = cos	θ̂n − θ
 ≥ ĥn�3	α
	
For every θ ∈ An, let

	2	8
 Cn�3	θ
=
{
ν� ν · ν̂n≥ �ĥn�3	α
− cos	θ
 cos	θ̂n
�/�sin	θ
 sin	θ̂n
�� ν ∈S3

}
	

The confidence set Cn�3 consists of those rotations 	θ� ν
 such that θ ∈ An and
then ν ∈ Cn�3	θ
. Note that An contains θ = 0 if and only if the confidence
set Cn�3 contains ρ3	θ� ν
 = 	1�0�0�0
′. In this event, the directional means
d1 and d2 are not significantly different. The implied test rejects the null
hypothesis d1 = d2 if and only if cos	θ̂n
 < ĥn�3	α
. It too has asymptotic
rejection probability α under each model satisfying that null hypothesis.

2.2. Comparing two mean axes. Comparing mean axes differs from com-
paring mean directions because of the sign-ambiguity of an axis. Suppose that
the axes ±xi�1 · · ·±xi�ni in sample i are iid, each having unknown distribution
Qi on Tq. The samples are independent, with combined size n = n1 + n2. Let
Q̂n� i denote empirical distribution of sample i and let Q̂n = 	Q̂n�1� Q̂n�2
 be
the associated estimator of Q = 	Q1�Q2
. Let ±ei denote the unknown mean
axis of Qi, assumed to exist, and let ên� i denote the ith sample mean axis, as
defined in Section 2.1. The unordered pair of sample rotations ±ρ̂n� q, where
ρ̂n� q = rq	ên�1� ên�2
, estimates the unordered pair of rotations ±ρq, where
ρq = rq	e1� e2
, that bring ±e1 into ±e2.

Two dimensions. In this case, ρ̂n�2 = ρ2	θ̂n
, where θ̂n is the counterclock-
wise angle from ên�1 to ên�2. The unordered pair ψ2	θ̂n
 estimates the un-
known counterclockwise angles ψ2	θ
 that rotate mean axis ±e1 into ±e2. The
rotational differences ψ2	θ̂n
 may be plotted as the axis ±ρ2	θ̂n
 in R2 or, al-
ternatively, as the half of the axis that lies in the right halfplane of R2. By
constructing a nonparametric confidence double-cone for ρ2	θ
, we will obtain
a confidence interval for ψ2	θ
.

Let

	2	9
 Kn�2	Q
 = �
[∣∣ρ̂n�2 · ρ2	θ


∣∣ �Q]�
noting the absolute value operator around the dot product, and let k̂n�2	α
 be
the smallest αth quantile of the estimated sampling distribution Kn�2	Q̂n
.
Numerical approximation of this quantile by bootstrap resampling is discussed
in Section 2.3. Our nonparametric confidence set for ψ2	θ
 is then

	2	10

Dn�2 = {

θ� �ρ̂n�2 · ρ2	θ
� ≥ k̂n�2	α
� θ ∈ �0�2π�}
= {
ψ2	θ
� θ̂n − cos−1(k̂n�2	α
) ≤ θ ≤ θ̂n + cos−1(k̂n�2	α
)}	
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We will see in Theorem 2.1 that the coverage probability of this confidence in-
terval converges asymptotically to 1−α. If the confidence double-cone contains
ρ2	θ
 = ±	1�0
′, which represents the rotation pair �0� π�, then the mean axes
±e1 and ±e2 are not significantly different. The implied formal test rejects the
null hypothesis ±e1 = ±e2 if and only if � cos	θ̂n
� < k̂n�2	α
.

Three dimensions. Here ρ̂n�3 = ρ3	θ̂n� ν̂n
, where ν̂n = 	ên�1 × ên�2
/�ên�1 ×
ên�2� and θ̂n ∈ �0� π�. With thumb pointing in direction ν̂n, a right-hand-rule
rotation through angle θ̂n brings ên�1 into coincidence with ên�2. The unordered
pair ψ3	θ̂n� ν̂n
 estimates the pair of rotations ψ3	θ� ν
 that bring mean axis
±e1 into mean axis ±e2. We may plot the acute angle in the pair �θ̂n� π − θ̂n�
as the direction 	cos	θ̂n
� sin	θ̂n

′ in the upper right quadrant of R2 and may
plot the half of the axis ±ν̂n that is associated with this angle as a direction in
R3. By constructing a nonparametric confidence double-cone for ρ3	θ� ν
, we
will obtain a joint confidence interval for the rotation pair ψ3	θ� ν
.

Let

	2	11
 Kn�3	Q
 = �
[∣∣ρ̂n�3 · ρ3	θ� ν


∣∣ �Q]
and let k̂n�3	α
 denote the smallest αth quantile of the estimated sampling
distribution Kn�3	Q̂n
. Our confidence set for ψ3	θ� ν
 is then

	2	12

Dn�3 = {	θ� ν
� �ρ̂n�3 · ρ3	θ� ν
� ≥ k̂n�3	α
� θ ∈ �0� π�� ν ∈ S3

}
= {
ψ3	θ� ν
� ρ̂n�3 · ρ3	θ� ν
 ≥ k̂n�3	α
� θ ∈ �0� π�� ν ∈ S3

}
	

Numerical approximation of k̂n�3	α
 is discussed in Section 2.3. We will also
see there that the asymptotic coverage probability of Dn�3 is 1 − α.

Let

	2	13
 Bn = {
θ� cos	θ̂n − θ
 ≥ k̂n�3	α
� θ ∈ �0� π�}	

For every θ ∈ Bn, let

	2	14
 Dn�3	θ
=
{
ν� ν·ν̂n≥ �k̂n�3	α
− cos	θ
 cos	θ̂n
�/�sin	θ
 sin	θ̂n
�� ν ∈S3

}
	

The confidence set Dn�3 is the set of rotation pairs ψ3	θ� ν
 such that θ ∈
Bn and then ν ∈ Dn�3	θ
. Note that Bn contains θ = 0 if and only if Dn�3
contains ψ3	θ� ν
 = �	0� ν
� 	π� ν
�, or equivalently, ρ2	θ� ν
 = ±	1�0�0�0
′. In
that event, the mean axes ±e1 and ±e2 are not significantly different. The
implied test rejects the null hypothesis ±e1 = ±e2 if and only if � cos	θ̂n
� <
k̂n�3	α
.

2.3. Critical values and coverage probabilities. Consider two artificial in-
dependent samples of directions. The first artificial sample, x∗1�1� 	 	 	 � x

∗
1� n1

, is
drawn randomly, with replacement, from the first real sample of directions; the
second artificial sample, x∗2�1� 	 	 	 � x

∗
2� n2

is drawn randomly, with replacement,
from the second real sample of directions. In other words, the conditional dis-
tribution of the random variables in the ith artificial sample, given the data,
is P̂n� i and the artificial samples are conditionally independent.
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For q = 2 or 3, let ρ∗n�q denote the recomputation of ρ̂n� q = rq	d̂n�1� d̂n�2

when the two real samples are replaced by the respective artificial samples.
Then Hn�q	P̂n
 is just the conditional distribution of the dot product ρ∗n�q ·
ρ̂n� q given the data. This fact supports the following nonparametric bootstrap
algorithm for approximating the confidence sets Cn�q defined in Section 2.1.

1. Choose positive integers m and B such that m/	B + 1
 = α and B is as
large as feasible.

2. Replicate the construction of the two artificial samples B times, the repli-
cates being conditionally independent given the data.

3. For each of the B replicates, recompute the value of the dot product ρ∗n�q ·
ρ̂n� q.

4. Of the values found in step 3, take the mth smallest as the desired approx-
imation to the critical value ĥn� q	α
 for Cn�q.

In this approximation to Cn�q, the choice m/	B + 1
 = α avoids a Monte
Carlo bias in the coverage probability while a large value of B lessens the
randomness of the critical value obtained in step 4 [cf. Hall (1986)].

Numerical approximation of the axial confidence sets Dn�q in Section 2.2 is
very similar. We replace the estimated distribution vector P̂n with Q̂n and re-
place the directions xi�j, x

∗
i� j with the axes ±xi�j, ±x∗i� j. Let ρ∗n�q now denote

the recomputation of ρ̂n� q = rq	ên�1� ên�2
 when the two samples of axes are
replaced by the respective artificial samples. Then Kn�q	Q̂n
 is just the con-
ditional distribution of �ρ∗n�q · ρ̂n� q� given the data. The nonparametric boot-
strap algorithm for approximating the critical value k̂n� q	α
 of confidence set
Dn�q is as above, the dot product in step 3 being replaced by its absolute value.

Theorem 2.1. For i = 1�2, suppose that the mean direction of Pi and the
mean axis of Qi are well-defined and that neither distribution is a point mass.
Suppose that ni/n→ ci ∈ 	0�1
 as n→ ∞ and that α ∈ 	0�1
.
Then, for q = 2,

	2	15
 lim
n→∞ Pr

[
Cn�2 � θ�P] = lim

n→∞ Pr
[
Dn�2 � ψ2	θ
�Q

] = 1 − α

and, for q = 3,

	2	16
 lim
n→∞ Pr

[
Cn�3 � 	θ� ν
�P] = lim

n→∞ Pr
[
Dn�3 � ψ3	θ� ν
�Q

] = 1 − α	

This theorem is proved in Section 5. As the proof implicitly shows, direct
asymptotic approximations may be found for the critical values of the confi-
dence sets Cn�q and Dn�q. These asymptotic critical values are quantiles of
the distribution of a central Gaussian quadratic form whose coefficients are
estimated from the data. Such an analytical approach requires substantial
algebra and offers no advantage in coverage accuracy over the simple boot-
strap critical values just described. Moreover, the bootstrap approach extends
easily to the confidence sets for multiple comparisons developed in the next
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section while the analytical approach does not. Second-order improvements to
the critical values are discussed at the end of Section 3.3.

3. Multiple pairwise comparisons. The question now is how to com-
pare all pairs of directional means (or directional axes) for s ≥ 3 samples. Our
solution is a collection of confidence cones, in which confidence set 	i� j
 esti-
mates the rotation that takes mean direction i into mean direction j (or the
pair of rotations that take mean axis i into mean axis j). Critical values for
these confidence sets are devised with two goals in mind. First, the probability
that these pairwise confidence sets are simultaneously true should be 1 − α.
Second, the probability that confidence set 	i� j
 is true should be the same
for every pair 	i� j
. The second goal ensures that confidence set 	i� j
 reflects
fairly the information present in the data concerning that pairwise compari-
son. In the normal linear model, Tukey’s method for pairwise comparison of
means achieves both goals exactly. In our nonparametric directional and axial
models, these goals will be achieved asymptotically in the sample sizes.

3.1. Comparing several mean directions. The notation of Section 2.1 is re-
tained for the directions in the s independent samples and for the respective
mean directions or sample mean directions. Other notation is modified as fol-
lows. The combined size of the samples is now n =∑s

i=1 ni. The plug-in estima-
tor of P = 	P1�P2� 	 	 	 �Ps
 based on the empirical distributions of the s sam-
ples is P̂n = 	P̂n�1� P̂n�2� 	 	 	 � P̂n� s
. The superscript i� j will identify statistics
or parameters used in comparing samples i and j. Thus, ρ̂i� jn� q = rq	d̂n� i� d̂n� j

estimates the rotation ρ

i� j
q = rq	di� dj
 that brings mean direction di into

mean direction dj.
Critical values to be used in the simultaneous confidence sets are defined

as follows. Let

	3	1
 Hi�j
n� q	P
 = �

[
ρ̂i� jn� q · ρi� jq �P]

and denote the cdf of this distribution by Hi�j
n� q	·�P
. Let

	3	2
 Hn�q	P
 = �
[

min
1≤i<j≤s

Hi�j
n� q

(
ρ̂i� jn� q · ρi� jq �P

)�P]	
This distribution is supported on the unit interval. Let β̂n� q be the smallest αth
quantile of the estimated sampling distribution Hn�q	P̂n
 and let ĥi� jn� q be the
smallest β̂n� qth quantile of the estimated distribution Hi�j

n� q	P̂n
. Numerical
approximation of the critical values ĥi� jn� q is discussed in Section 3.3

Two dimensions. Here ρ̂i� jn�2 = ρ2	θ̂i� jn 
, where θ̂i� jn is the counterclockwise
angle from d̂n� i to d̂n� j. The angle θ̂i� jn estimates the unknown counterclock-
wise angle θi� j between the mean directions di and dj. The simultaneous
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nonparametric confidence set for these angles is

	3	3
 Cn�2 =
s∏
i<j

C
i� j
n�2�

the direct product of the sets

	3	4

C
i�j
n�2 =

{
θi� j� θ̂i� jn − cos−1(ĥi� jn�2	α
) ≤ θi� j
≤ θ̂i� jn + cos−1(ĥi� jn�2	α
) �mod 2π�

}
	

In other words, Cn�2 is the simultaneous assertion of the confidence sets Ci�jn�2
for every pairwise comparison of mean directions.

We will see in Theorem 3.1 that the simultaneous coverage probability of
Cn�2 for the rotation angles �θi� j� 1 ≤ i < j ≤ s� converges asymptotically to
1 − α, while the coverage probability of Ci�jn�2 for θi� j converges to a common
value that does not depend on the pair i� j. In this way, Cn�2 meets the two
design goals stated at the beginning of this section.

Three dimensions. Here ρ̂i�jn�3 =ρ3	θ̂i�jn � ν̂i�jn 
, where ν̂i�jn =	d̂n�i× d̂n�j
/�d̂n�i×
d̂n� j� and θ̂i� jn ∈ �0� π� identify the right-hand-rule rotation that brings d̂n� i
into coincidence with d̂n� j. The simultaneous confidence set for the rotations
�	θi� j� νi� j
� is

	3	5
 Cn�3 =
s∏
i<j

C
i� j
n�3�

where

	3	6

C
i�j
n�3 =

{(
θi� j� νi� j

)� ρ̂i� jn�3 · ρ3
(
θi� j� νi� j

) ≥ ĥi� jn�3	α
�
θi� j ∈ �0� π�� νi� j ∈ S3

}
	

As in the two-dimensional case, the coverage probabilities of Cn�3 and Ci�jn�3
achieve asymptotically our two design goals. Decomposition of Ci�jn�3 into slices
may be done as in the last paragraph of Section 2.1.

By analogy with the two sample case, simultaneous confidence sets for all
pairwise rotational differences among the mean directions of s samples yield
simultaneous tests for pairwise equality of those mean directions. The test for
pair 	i� j
 rejects equality if and only if cos	θ̂i� jn 
 < ĥi� jn� q	α
.

3.2. Comparing several mean axes. We retain the notation of Section 2.2,
adding the superscript i� j as needed to identify quantities used in comparing
the mean axes of samples i and j. The joint distribution of the s samples is∏s
i=1Q

ni
i . The plug-in estimator of Q = 	Q1�Q2� 	 	 	 �Qs
 based on the empiri-

cal distributions of the samples is Q̂n = 	Q̂n�1� Q̂n�2� 	 	 	 � Q̂n� s
.
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Critical values for the simultaneous confidence sets are defined as follows.
Let

	3	7
 Ki�j
n� q	Q
 = �

[∣∣ρ̂i� jn� q · ρi� jq ∣∣ �Q]�
denoting the cdf of this distribution by Ki�j

n� q	·�Q
. Let

	3	8
 Kn�q	Q
 = �
[

min
1≤i<j≤s

Ki�j
n� q

(∣∣ρ̂i� jn� q · ρi� jq ∣∣�Q)�Q]	
Let γ̂n� q be the smallest αth quantile of the estimated sampling distribution

Kn�q	Q̂n
 and let k̂i� jn� q be the smallest γ̂n� qth quantile of Ki�j
n� q	Q̂n
. Numerical

approximation of these critical values is taken up in Section 3.3.
Two dimensions. In this case, ρ̂i� jn� q = ρ2	θ̂i� jn 
, where θ̂i� jn is the counter-

clockwise angle from ên� i to ên� j. The unordered pair ψ2	θ̂i� jn 
 estimates the
unknown counterclockwise angles ψ2	θi� j
 that rotate mean axis ±ei into ±ej.
The simultaneous confidence set for these pairs of rotation angles is

	3	9
 Dn�2 =
s∏
i<j

D
i�j
n�2�

where

	3	10
 D
i�j
n�2 =

{
ψ2	θi� j
� θ̂i� jn − cos−1	k̂i� jn�2	α

≤ θi� j≤ θ̂i� jn + cos−1	k̂i� jn�2	α



}
	

We will see in Theorem 3.1 that the simultaneous coverage probability of
Dn�2 for the rotation angle pairs �ψ2	θi� j
� converges asymptotically to 1−α,
while the coverage probability of Di�j

n�2 for the pair ψ2	θi� j
 converges to a
common value that does not depend on i� j.

Three dimensions. In this case, ρ̂i� jn�3 = ρ3	θ̂i� jn � ν̂
i� j
n 
, where ν̂i� jn = 	ên� i ×

ên�j
/�ên� i × ên� j� and θ̂i� jn ∈ �0� π� identify the right-hand-rule rotation that
take ên�1 into coincidence with ên�2. The unordered pair ψ3	θ̂i� jn � ν̂

i� j
n 
 estimates

the pair of rotations ψ3	θi� j� νi� j
 that bring mean axis ±ei into mean axis ±ej.
The simultaneous confidence set for these pairs of rotations is

	3	11
 Dn�3 =
s∏
i<j

D
i�j
n�3�

where

	3	12

D
i�j
n�3 =

{
ψ3
(
θi� j� νi� j

)� ρ̂i� jn�3 · ρ3
(
θi� j� νi� j

) ≥ k̂i� jn�3	α
�
θi� j ∈ �0� π�� νi� j ∈ S3

}
	

As in the two-dimensional case, the coverage probabilities of Dn�3 and Di�j
n�3

achieve asymptotically our two design goals. Decomposition of Di�j
n�3 into slices

may be done as in the last paragraph of Section 2.2.
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By analogy with the two sample case, simultaneous confidence sets for all
pairwise rotational differences among the mean axes of s samples yield simul-
taneous tests for pairwise equality of those mean axes. The test for pair 	i� j

rejects equality if and only if � cos	θ̂i� jn 
� < k̂i� jn� q	α
.

3.3. Simultaneous critical values and coverage probabilities. Construct
s artificial independent samples as in Section 2.5. The ith artificial sam-
ple, x∗i�1� 	 	 	 � x

∗
i� n1

, is drawn randomly, with replacement, from the ith real
sample of directions. The conditional distribution of the random variables
in the ith artificial sample, given the data, is P̂n� i and the artificial sam-
ples are conditionally independent. Let ρi� j∗n�q denote the recomputation of
ρ̂
i� j
n� q = rq	d̂n� i� d̂n� j
 when the real samples i and j are replaced by the re-

spective artificial samples. Then Hi�j
n� q	P̂n
 is just the conditional distribution

of the dot product ρi� j∗n�q · ρ̂i� jn� q given the data, while Hn�q	P̂n
 is the condi-
tional distribution of min1≤i<j≤s H

i�j
n� q	ρi� j∗n�q · ρ̂i� jn� q� P̂n
. These identifications

support the following nonparametric bootstrap algorithm for approximating
the confidence set Cn�q defined in Section 3.1.

1. Choose positive integers m and B such that m/	B + 1
 = α and B is as
large as feasible.

2. Replicate the construction of the s artificial samples B times, the replicates
being conditionally independent given the data.

3. Fix i < j. For each of the B replicates, recompute the value of the dot
product ρi� j∗n�q · ρ̂i� jn� q.

4. For 1 ≤ k ≤ B, find the rank Ri�jn�k of the kth recomputation of the dot
product among the B recomputations performed in step 3. Do not break
ties.

5. Repeat steps 3 and 4 for every pair 1 ≤ i < j ≤ s. Then compute Rn�k =
min1≤i<j≤s R

i� j
n� k for 1 ≤ k ≤ B. Let b be the mth smallest value among the

�Rn�k� 1 ≤ k ≤ B�.
6. Fix i < j. Of the B recomputations of the dot product in step 3, take the
bth smallest as the desired approximation to the critical value ĥi� jn� q	α
 for
C
i�j
n� q.

7. Repeat step 6 for every pair 1 ≤ i < j ≤ s.
Numerical approximation of the simultaneous axial confidence sets Di�j

n� q

in Section 3.2 is very similar. We replace the estimated joint distribution P̂n
with Q̂n and replace the directions xi�j, x

∗
i� j with the axes ±xi�j, ±x∗i� j. Let

ρ
i� j∗
n�q now denote the recomputation of ρ̂i� jn� q = rq	ên� i� ên� j
 when the samples
i and j are replaced by the respective artificial samples. The algorithm for
approximating the critical value k̂i� jn� q	α
 of confidence set Di�j

n� q is as above,
the dot product in steps 3, 4 and 6 being replaced by its absolute value.

Theorem 3.1. For 1 ≤ i ≤ s and s ≥ 3, suppose that the mean direction of
Pi and the mean axis ofQi are well defined and that none of these distributions
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is a point mass. Suppose that ni/n→ ci ∈ 	0�1
 as n→ ∞ and that α ∈ 	0�1
.
Then there exist constants βq	α
 and γq	α
 such that the following hold.

When q = 2,

	3	13
 lim
n→∞ Pr

[
C
i�j
n�2 � θi� j�P] = β2	α
 lim

n→∞ Pr
[
D
i�j
n�2 � ψ2	θi� j
�Q

] = γ2	α

for every 1 ≤ i < j ≤ s. The coverage probabilities of the simultaneous confi-
dence sets Cn�2 and Dn�2 converge to 1 − α as n→ ∞.

When q = 3,

	3	14

lim
n→∞ Pr

[
C
i�j
n�3 � 	θi� j� νi� j
�P]

= β3	α
 lim
n→∞ Pr

[
D
i�j
n�3 � ψ3	θi� j� νi� j
�Q

] = γ3	α

for every 1 ≤ i < j ≤ s. The coverage probabilities of the simultaneous confi-
dence sets Cn�3 and Dn�3 converge to 1 − α as n→ ∞.

This theorem is proved in Section 5. The rates at which the marginal and
overall coverage probabilities converge in (3.13) and (3.14), or in (2.15) and
(2.16), can be increased by suitable double bootstrap refinements to the criti-
cal values of the simultaneous confidence sets. In the present problem, double-
bootstrapping achieves the order of accuracy of two-term asymptotic expan-
sions for the sampling distributions Hi�j

n� q	P
 and Hn�q	P
 or Ki�j
n� q	Q
 and

Kn�q	Q
. Single bootstrapping achieves only the order of accuracy of the limit
distributions. The methodology and principles are described in Beran (1990)
and Hall (1992). A detailed development lies beyond the scope of this paper.

4. Data analyses. We study two examples, for each of which the assump-
tion of rotational symmetry of the data sets is clearly not reasonable.

Example 1. Figure 1 shows plots of two random samples of unit vectors
arising from a sociological study of the attitudes of 48 individuals to 26 dif-
ferent occupations [see Fisher, Lewis and Embleton (1993), page 194, Exam-
ple 7.1 for a full description; the data are listed in Appendix B20, Sets C and
D]. It is of interest to estimate the difference (if any) between the “preferred”
occupational judgements of the two groups. Rotated versions of the raw data
plots [Fisher, Lewis and Embleton (1993), page 202] indicate that neither sam-
ple exhibits rotational symmetry. Sample estimates of the two mean directions
are

d̂n�1 = 	88	7◦�31	6◦
� d̂n�2 = 	96	6◦�60	7◦

and the estimated rotational difference is given by

θ̂n = 30	1◦� ν̂n = 	−0	1602�0	2174�0	9628
	
A 95% bootstrap confidence region for 	θ� ν
 based on 200 bootstrap sam-

ples is shown in Figure 2. For each vertical pair, the upper figure shows the
extent of the confidence interval for θ and a few points equally spaced along
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Fig. 1. Forty-eight spherical measurements of (a) rewards and (b) social usefulness. For each set,
the data are plotted in polar coordinates using an equal-area projection, with the lower hemisphere
shown in reverse on the right of the upper hemisphere.

Fig. 2. Confidence region for rotational difference between mean directions. For each vertical pair,
the upper figure shows the extent of the confidence interval for θ and a few points equally spaced
along a subset of the interval; and the lower figure shows, for each of these points, the associated
confidence cone for ν.
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a sub–set of the interval; and the lower figure shows, for each of these points,
the associated confidence cone for ν. (Ideally, one explores the joint confidence
region for 	θ� ν
 interactively on a computer by selecting a point or small sub-
set of the θ region and seeing the corresponding cone or subset of cones for the
ν regions highlighted.) The confidence regions provide evidence of difference
between the two mean directions and hence between the preferred occupa-
tional judgements of the two groups. The direction ν is near the north pole in
the coordinate system.

Example 2. Consider comparing the mean axes of the two data sets shown
in Figure 3. The data are samples of L1

0 axes (intersections between cleavage
and bedding planes of F1 folds) in Ordovician turbidites [Powell, Cole and
Cudahy (1985)]. The sample mean axes are, in their original (plunge, plunge
azimuth) coordinates,

ên�1 = 	1	6◦�41	3◦
� ên�2 = 	−15	2◦�76	6◦
�

Fig. 3. Two samples of L1
0 axes (intersections between cleavage and bedding planes of F1 folds) in

Ordovician turbidites. The data are plotted in equal-area projection using the original coordinates
(plunge, plunge azimuth). (a) 20 observations (b) 50 observations.
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Fig. 4. Confidence region for rotational difference between mean axes. For each vertical pair, the
upper figure shows the extent of the confidence interval for θ and π − θ and a few points equally
spaced along a subset of the interval; and the lower figure shows, for each of these points, the
associated confidence cone for ±ν.

where plunge = colatitude + 90◦ and plunge azimuth = 360◦ longitude. The
estimated rotational difference is given by

θ̂n = 38	8◦� ν̂n = 	−0	3177�−0	3244�−0	8910
	
A 95% bootstrap confidence region for 	θ� ν
 based on 200 bootstrap samples

is shown in Figure 4. There is clear evidence that the mean axes differ. The
axis ±ν is near the axis joining north pole and south pole in the coordinate
system.

5. Proofs. In the directional case, suppose that xn�1� xn�2� 	 	 	 � xn�n are
iid random directions with distribution Pn on Sq. The distributions �Pn� con-
verge weakly to a distribution P. Define the sample mean vector m̂n and the
distribution mean vector m	Pn
 as in Section 2.1. Let z	P
 be a random vec-
tor on Rq whose distribution is normal with mean zero and covariance matrix
,	P
 = limn→∞ Cov	xn�1
.

In the axial case, suppose that ±xn�1�±xn�2 · · · ± xn�n are iid random axes
with distribution Qn on Tq. The distributions �Qn� converge weakly to a
distribution Q. Define the sample moment matrix M̂n and the distribution
moment matrix M	Qn
 as in Section 2.1. For any q×q matrix A = �ai� j�, let
uvec	A
 denote the q	q+1
/2×1 column vector ��ai� j� 1 ≤ i ≤ j��1 ≤ j ≤ q�
formed from the elements in the upper triangular half of A, including the
diagonal elements. LetW	Q
 = �wi�j	Q
� be a symmetric q×q random matrix
such that � �uvec	W	Q

� is normal with mean zero and covariance matrix
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0	Q
. The components of 0	Q
 are determined by the condition

	5	1
 Cov�wi�j	Q
�wh�k	Q
� = lim
n→∞ Cov

(
xn�1� ixn�1� j� xn�1� hxn�1� k

)
�

where xn�1� i is the ith component of xn�1.

Lemma 5.1. Suppose that �Pn� is any sequence of distributions on Sq such
that Pn ⇒ P as n→ ∞. Then

	5	2
 �
[
n1/2	m̂n −m	Pn



]⇒ � �z	P
�	

Suppose that �Qn� is any sequence of distributions on Tq such that Qn ⇒ Q
and n→ ∞. Then

	5	3
 �
[
n1/2	M̂n −M	Qn



]⇒ � �W	Q
�	

Proof. To prove the axial case, let Wn�i = xn� ix′n� i −M	Qn
 and observe
that

	5	4
 n1/2	M̂n −M	Qn

 = n−1/2
n∑
i=1

Wn�i	

Let a be any constant vector of dimension q	q+1
/2. By the Lindeberg central
limit theorem for a triangular array,

	5	5
 �

[
a′uvec

(
n−1/2

n∑
i=1

Wn�i

)]
⇒N	0� a′0	Q
a
 = � �a′uvec	W	Q

�

provided

	5	6
 lim
n→∞ E�a′uvec	Wn�1
�2 = a′0	Q
a <∞

and

	5	7
 lim
n→∞ E

{�a′uvec	Wn�1
�2I��a′uvec	Wn�1
� > n1/2δ
} = 0

for every positive δ.
Let Gn be the cdf of a′uvec	Wn�1
 and let G be the cdf of a′uvec	W	Q

.

By the hypotheses of the lemma, Gn → G. Since the supports of the �Gn� lie
within a common compact subset,

	5	8
 lim
n→∞

∫
y2 dGn	y
 =

∫
y2 dG	y
 = a′0	Q
a	

Properties (5.6) and (5.7) follow immediately. Hence � �n−1/2∑n
i=1Wn�i� ⇒

� �W	Q
�, proving (5.3).
The argument for (5.2) is analogous.
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Proof of Theorem 2.1. We retain the notation of Sections 1 and 2, with
some extensions indicated below.

Directional case. Consider the following triangular array. Each random di-
rection in sample i has distribution Pn� i, where Pn� i ⇒ Pi. The joint distri-
bution of the two samples is Pn�n = Pn1

n�1 ×Pn2
n�2. Let d	Pi
 =m	Pi
/�m	Pi
�.

Then d̂n� i = d	P̂n� i
 is the mean direction of sample i while dn� i = d	Pn� i
 is
the mean direction of Pn� i. Define Pn = 	Pn�1�Pn�2
 in addition to the earlier
notations P = 	P1�P2
 and P̂ = 	P̂n�1� P̂n�2
.

Let

	5	9
 H̃n�q	Pn
 = �
[
n�ρ̂n� q − ρn�q�2�Pn

]
�

where ρn�q = rq	dn�1� dn�2
 and ρ̂n� q = rq	d̂n�1� d̂n�2
 for rq defined in (1.2) and
(1.5). Let h̃n� q	α
 be the largest 	1−α
th quantile of the bootstrap distribution
H̃n�q	P̂n
. Let di = d	Pi
 and ρq = rq	d1� d2
. Since �ρ̂n� q−ρq�2 = 2−2ρ̂n� q ·ρq,
the confidence set Cn�q may be rewritten in the form

	5	10
 Cn�q =
{
ρq� n�ρ̂n� q − ρq�2 ≤ h̃n� q	α
� �ρq� = 1

}
	

Under Pn,

	5	11

d̂n� i − dn� i = 	I− dn� id′

n� i
d̂n� i − 2−1�d̂n� i − dn� i�2dn� i
= 	I− dn� id′

n� i
d̂n� i +Op	n−1
i 


= �m̂n� i�−1	I− dn� id′
n� i
	m̂n� i −m	Pn� i

 +Op	n−1

i 
	
The first line is an algebraic identity. To verify the second line, observe that
Lemma 5.1 and the differentiability of d	P
 as a function of m	P
 imply that
n1/2	d̂n� i−dn� i
 has a normal limit distribution. The third line uses the projec-
tion property dn� id

′
n� im	Pn� i
 = m	Pn� i
. Equation (5.11), the convergences

m	Pn� i
 →m	Pi
, and Lemma 5.1 thus imply

	5	12
 �
[
n

1/2
i 	d̂n� i − dn� i
�Pn

]
⇒ �

[�m	Pi
�−1	I− did′
i
z	Pi


] = � �u	Pi
�� say.

The distribution of u	Pi
 is Gaussian with mean zero, not a point mass, in
the subspace orthogonal to di.

Viewing rq	d1� d2
 as a function on Rq × Rq, let ∇irq	d1� d2
 denote its
partial derivative matrix with respect to di. In this q × q derivative matrix,
row k gives the partial derivatives of the kth component of rq	d1� d2
 with
respect to the components of di. These partial derivatives may be computed
explicitly from (1.2) and (1.5). Since ∇irq	d1� d2
 is continuous in its arguments
and dn� i → di = d	Pi
, it follows from (5.12) and the assumption ni/n → ci
that

	5	13
 n1/2	ρ̂n� q − ρn�q
 ⇒
2∑
i=1

c
−1/2
i ∇irq	d1� d2
u	Pi
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under Pn. The limit distribution is Gaussian with mean zero and is not a
point mass because the derivative matrices ∇irq	d1� d2
 are nonsingular. Con-
sequently,

	5	14
 H̃n�q	Pn
 ⇒ �

[∣∣∣∣
2∑
i=1

c
−1/2
i ∇irq	d1� d2
u	Pi


∣∣∣∣
2]

= H̃q	P
� say	

Since P̂n� i ⇒ Pi w.p.1 under Pnii , the bootstrap distribution H̃n�q	P̂n
 ⇒
H̃q	P
 w.p.1. This limit distribution is continuous, the distribution of a non-
degenerate central Gaussian quadratic form. It follows that

	5	15
 lim
n→∞ Pr

[
n�ρ̂n� q − ρq�2 ≤ h̃n� q	α
�P

] = 1 − α

[cf. Theorem 1 in Beran (1984)]. In view of (5.10), this proves the directional
portion of (2.15) and (2.16).

Axial case. Consider the following triangular array. Each random axis in
sample i has distribution Qn� i, where Qn� i ⇒ Qi. The joint distribution of the
two samples is Qn1

n�1 ×Qn2
n�2. Let e	Qi
 denote the eigenvector associated with

the unique (by assumption) largest eigenvalue of M	Qi
. The sign of e	Qi
 is
such that the first nonzero component of e	Qi
 is positive. Then ên� i = e	Q̂n� i

identifies the mean axis of sample i while en� i = e	Qn� i
 identifies the mean
axis of distribution Qn� i. Define Qn = 	Qn�1�Qn�2
 in addition to the earlier
notations Q = 	Q1�Q2
 and Q̂n = 	Q̂n�1� Q̂n�2
.

Let

	5	16
 K̃n�q	Qn
 = �
[
n��ρ̂n� qρ̂′n�q − ρn�qρ′n�q��2�Qn

]
�

where now ρn�q = rq	en�1� en�2
 and ρ̂n� q = rq	ên�1� ên�2
 for rq defined in
(1.2) and (1.5). Let k̃n� q	α
 be the largest 	1 − α
th quantile of the bootstrap
distribution K̃n�q	Q̂n
. Let ei = e	Qi
 and ρq = rq	e1� e2
. Because ��ρ̂n� qρ̂′n�q−
ρqρ

′
q��2 = 2−2	ρ̂n� qρq
2, the confidence set Dn�q may be rewritten in the form

	5	17
 Dn�q =
{±ρq� n��ρ̂n� qρ̂′n�q − ρqρ′q��2 ≤ k̃n� q	α
� �ρq� = 1

}
	

For the rest of the proof, we will adjust the sign of ên� i so that ê′n� ien� i ≥ 0.
This sign convention entails no loss of generality because the quadratic statis-
tic defining Dn�q is invariant under changes in the signs of either en� i or ên� i.
The eigenprojection e	Q
e′	Q
 is differentiable as a function of M	Q
 when
the largest eigenvalue of M	Q
 is unique [cf. Kato (1982)]. This property and
Lemma 5.1 imply that n1/2

i 	ên� iê′n� i− en� ie′n� i
 has a normal limit distribution,
say � 	V	Qi

, under Qn.

By simple algebra,

	5	18
 ên� i − en� i = 	e′n� iên� i − 1
en� i + 	ên� iê′n� i − en� ie′n� i
ên� i	
By the above asymptotic normality,

	5	19
 �e′n� iên� i�2 = 1 − 2−1tr�ên� iê′n� i − en� ie′n� i�2 = 1 +Op	n−1
i 
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Since e′n� iên� i = �e′n� iên� i�, the first term on the right-hand side of (5.18) is
Op	n−1

i 
. To analyze the second term in (5.18), note that

	5	20
 �	ên� iê′n� i − en� ie′n� i
	ên� i − en� i
� ≤ ��ên� iê′n� i − en� ie′n� i�� �ên� i − en� i�	
The first factor on the right-hand side of (5.20) is Op	n−1/2

i 
 as above. The
second factor is also Op	n−1/2

i 
 by applying (5.19) and the sign convention on
ên� i to the identity �ên� i − en� i�2 = 2	1 − e′n� iên� i
.

These approximations and (5.18) establish

	5	21
 ên� i − en� i = 	ên� iê′n� i − en� ie′n� i
en� i +Op	n−1
i 
	

Thus, since en� i → ei = e	Qi
,
	5	22
 �

[
n

1/2
i 	ên� i − en� i


]⇒ � �V	Qi
ei��
where V	Qi
ei has a Gaussian distribution with mean zero, not a point mass,
in the subspace orthogonal to ei.

Arguing as in the directional case shows

	5	23
 n1/2	ρ̂n� q − ρn�q
 ⇒
2∑
i=1

c
−1/2
i ∇irq	e1� e2
V	Qi
ei = u	Q
� say	

The right-hand side is normally distributed with mean zero and is not a point
mass. Because rn�q → ρq, it follows now that

	5	24

K̃n�q	Qn
 ⇒ �

[��u	Q
ρ′q + ρqu′	Q
��2]
= �

[
2u′	Q
	I+ ρqρ′q
u	Q
] = K̃q	Q
� say	

Since Q̂n� i ⇒ Qi w.p.1 under Qni
i , the bootstrap distribution K̃n�q	Q̂n
 ⇒

K̃q	Q
 w.p.1. This limit distribution is continuous, the distribution of a non-
degenerate central Gaussian quadratic form. Hence,

	5	25
 lim
n→∞ Pr

[
n��ρ̂n� qρ̂′n�q − ρqρ′q��2 ≤ k̃n� q	α
�Q

] = 1 − α	
[cf. Theorem 1 in Beran (1984)]. Because of (5.17), this proves the axial portion
of (2.15) and (2.16).

Proof of Theorem 3.1. We augment the notation of the preceding proof
with the superscript i� j to identify quantities used in comparing samples i
and j.

Directional case. The triangular array now extends to the s samples, with
Pn = 	Pn�1�Pn�2� 	 	 	 �Pn� s
, P = 	P1�P2� 	 	 	 �Ps
, and Pn� i ⇒ Pi for each i.
The empirical distribution vector is P̂n = 	P̂n�1� P̂n�2� 	 	 	 � P̂n� s
. Let

	5	26
 Ti�jn 	ρi� jq 
 = n∣∣ρ̂i� jn� q − ρi� jq ∣∣2�
let

	5	27
 H̃i� j
n� q	Pn
 = �

[
Ti�jn 	ρi� jn� q
�Pn

]
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and let

	5	28
 H̃n�q	Pn
 = �
[

max
i≤j

H̃i� j
n� q

(
Ti�jn 	ρi�jn� q
�Pn

)]
�

where H̃i� j
n� q	·�Pn
 is the left continuous cdf of the distribution defined in (5.27).

Similarly, let H̃n�q	·�Pn
 denote the left continuous cdf of the distribution in
(5.28).

For any left continuous cdf F on the real line, the largest vth quantile is
F−1	v
 = sup�x� F	x
 ≤ v�. Note that F	u
 ≤ v if and only if u ≤ F−1	v
.
By reasoning like that for (5.10), confidence set Ci�jn� q may be rewritten in the
form

	5	29

C
i�j
n� q =

{
ρi� jq � Ti�jn 	ρi� jq 
 ≤ H̃i�j−1

n�q

[
H̃−1
n�q	1 − α� P̂n
� P̂n

]}
= {
ρi� jq � H̃i� j

n� q

(
Ti�jn 	ρi� jq 
� P̂n

) ≤ H̃−1
n�q	1 − α� P̂n


}
	

Confidence set Cn�q is the simultaneous assertion of the �Ci�jn� q� 1 ≤ i < j ≤ s�.
By extension of the argument for Theorem 2.1, the random vector

�Ti�jn 	ρi� jq 
� converges weakly, under Pn, to a random vector �Ti�jq �. The
marginal distribution of Ti�jq is H

i�j
q 	P
� the continuous distribution of

a Gaussian quadratic form. The corresponding marginal cdf ’s therefore
converge uniformly on the real line and

	5	30
 H̃i� j
n� q	Ti�jn 	ρi� jq 
�Pn
 ⇒ H̃i� j

q 	Ti�jq �P
 jointly in i < j	

The marginal distribution of each random variable on the right-hand side of
(5.30) is uniform on 	0�1
. In view of (5.28) and (5.30),

	5	31
 H̃n�q	Pn
 ⇒ �
[

max
i<j

H̃i� j
q 	Ti�jq �P


]
=Hq	P
� say	

This limit distribution is continuous and has full support on 	0�1
.
The triangular array convergences (5.30) and (5.31) imply the following

bootstrap convergences under P:

	5	32
 �
[
H̃i� j
n� q	Ti�jn 	ρi� jq 
� P̂n


]⇒ uniform	0�1
 w.p.1

and

	5	33
 H̃−1
n�q	1 − α� P̂n
 → H̃−1

q 	1 − α�P
 w.p.1	

Combining (5.32) and (5.33) with the second line, inf (5.29) yields

	5	34
 lim
n→∞ Pr

[
Ci�jn� q � ρi� jq �P] = H̃q	1 − α�P
	

This establishes the first line in (3.13) and in (3.14).
The simultaneous confidence set Cn�q is true if and only if ρi� jq ∈ Ci�jn� q for

every i < j, which is equivalent to the inequality

	5	35
 max
i<j

H̃i� j
n� q

(
Ti�jn 	ρi� jq 
� P̂n

) ≤ H̃−1
n�q	1 − α� P̂n
	



COMPARISON MEAN DIRECTIONS OR AXES 493

By (5.30) and the weak convergence of the �Ti�jn 	ρi� jq �, the left-hand
side of (5.35) converges weakly w.p.1, under P, to the random variable
maxi<j H̃

i� j
q 	Ti�jq �P
, whose distribution is H̃q	P
. In view of (5.33), the

coverage probability of the simultaneous confidence set Cn�q converges to
1 − α under P.

Axial case. The argument for this is completely analogous, building on the
axial part of the proof of Theorem 2.1.
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