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The problem of nonparametric function estimation in the Gaussian
white noise model is considered. It is assumed that the unknown function
belongs to one of the Sobolev classes, with an unknown regularity parame-
ter. Asymptotically exact adaptive estimators of functions are proposed on
the scale of Sobolev classes, with respect to pointwise and sup-norm risks.
It is shown that, unlike the case of Ly-risk, a loss of efficiency under
adaptation is inevitable here. Bounds on the value of the loss of efficiency
are obtained.

1. Introduction. The problem of minimax adaptive estimation of a non-
parametric function f from noisy data has been studied in a number of
papers [see, for example, Efroimovich and Pinsker (1984), Lepski (1990),
Golubev and Nussbaum (1992), Donoho, Johnstone, Kerkyacharian and Pi-
card (1995), Hardle, Kerkyacharian, Picard and Tsybakov (1998) and the
references cited therein]. These papers deal with adaptation to unknown
smoothness of f. It is assumed that f belongs to a smoothness class 7,
(usually, Holder, Sobolev or Besov classes) where 8 is the unknown smooth-
ness, that is, the number of derivatives of f that are bounded in a certain
sense. The aim is to find an estimator f* of f, independent of 8 and such that
f* attains asymptotically optimal behavior (in a minimax sense) on all the
classes .7, for B € B, where B is a given set.

Several questions arise in this context. For the first approximation, the
asymptotically optimal behavior can be considered in terms of rates of
convergence. In most of the cases it is well known that, for a fixed B, there
exists an estimator, depending on 8 and achieving optimal (minimax) rate of
convergence on .7, [Ibragimov and Hasminskii (1981), Stone (1980, 1982)].
The question is whether one can find an estimator f*, independent of 8 and
attaining this rate uniformly over 8 € B. Such an estimator is called optimal
rate adaptive. In typical cases of Holder, Sobolev or Besov scales or classes
{7, B € B} and the L, risks, the answer to this question is positive [Lepski
(1991, 1992a, b), Donoho, Johnstone, Kerkyacharian and Picard (1995), Lep-
ski, Mammen and Spokoiny (1997), Goldenshluger and Nemirovskii (1997),
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Juditsky (1997)]. As shown in these papers, optimal rate adaptive estimators
can be constructed starting from kernel, spline, piecewise-polynomial and
wavelet estimators.

If optimal rate adaptive estimators exist, the next question is how much
one loses in the asymptotic constant when using an adaptive estimator. In
other words, what is the loss of efficiency under adaptation? One can define
the loss of efficiency under adaptation as the maximal (over 8 € B) ratio of
the risk of the best adaptive estimator to the minimax (nonadaptive) risk. In
their pioneering paper, Efroimovich and Pinsker (1984) show that there is no
loss of efficiency in the “Pinsker case,” where {7} is the scale of L,-Sobolev
classes and the risk is measured in L, as well. This means that the above
ratio is asymptotically 1. On the other hand, if {%} is the scale of Hoélder
classes with smoothness 0 < 8 < 1 and the risk is measured in sup-norm (the
“Korostelev case”), Lepski (1992b) shows that, in general, the loss of efficiency
does exist; that is, the above ratio is asymptotically strictly greater than 1.

Except for these two cases, the exact asymptotics of the loss of efficiency is
not investigated. The problem is very difficult, since one should dispose of the
exact asymptotics of both, minimax and “minimax adaptive” risks. However,
even the exact asymptotics of minimax risk is known only in special cases
[Pinsker (1980), Korostelev (1993)].

The study of the loss of efficiency makes sense only in situations where
optimal rate adaptive estimators exist. However, this is not always the case.
As shown by Lepski (1990) and Brown and Low (1996), there are no optimal
rate adaptive estimators on the scale of Holder classes {%} when the point-
wise risk is used. They prove that in this situation the best adaptive estima-
tors can only achieve the rate that is slower than the optimal one in a
logarithmic factor. The “adaptive,” logarithmically slower rates are inherent
for this problem. The estimators f* independent of B8 and achieving these
new rates are called simply rate adaptive (to make a distinction from optimal
rate adaptive ones). The next natural step is to find the best among all rate
adaptive estimators in the sense of exact risk asymptotics. For the scale of
Hélder classes {#;} and under the pointwise risk this was done by Lepski and
Spokoiny (1997).

The purpose of the present paper is to analyze the exact asymptotics of
minimax adaptive risks on the scale of L, Sobolev classes in the following
two cases:

(1) Estimation under the sup-norm risk.
(2) Pointwise estimation.

The results are obtained in the Gaussian white noise model.

In case (1) optimal rate adaptive estimators exist. We find the best among
them in the sense of exact “adaptive” risk asymptotics. By comparing to the
asymptotics of usual minimax risk, we show that for this model the loss of
efficiency under adaptation does occur. We give upper and lower bounds on
the loss of efficiency. The exact asymptotics of this quantity, however, re-
mains unknown, since it is related to the unknown exact asymptotics of usual
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minimax risks over Sobolev classes in sup-norm. To bound the loss of effi-
ciency we find the asymptotics of minimax sup-norm risks for linear estima-
tors. However, the question of whether the exact asymptotics of general
minimax risk is attained on linear estimators remains open.

For case (2) we first prove that optimal rate adaptive estimators do not
exist and find the adaptive rate of convergence. This result is analogous to
Lepski (1990) and Brown and Low (1996), but we consider the Sobolev (rather
than Holder) scale of classes. Next, we find the best (in the sense of exact
asymptotics) among rate adaptive estimators on the Sobolev scale of classes.
This is a Sobolev scale counterpart of the Holder scale result by Lepski and
Spokoiny (1997). Their adaptation procedure works in the range of smooth-
ness 0 < B <2 and can be written explicitly in the range 0 < 8 < 1. This
limitation is related to a nonnestedness property of Holder classes and to the
fact that the explicit solution to optimal recovery problems for Holder classes,
in general, is not known [cf. Donoho (1994)]. For the Sobolev classes consid-
ered here, the situation turns out to be more favorable. As shown below, the
explicit construction of asymptotically exact adaptive estimators for the
Sobolev scale is possible in a wide range of values 3, which is not the case for
the Holder scale.

2. The model and definitions. Consider the stochastic process Y(¢#) on
[0, 1] satisfying the stochastic differential equation

(2.1) dY(t) = f(t) dt + £ dAW(¢),

where W(¢) is the standard Wiener process, f(¢) is an unknown function in
L,[0,1], and 0 < ¢ < 1 is a small number. The problem is to estimate the
function f, given a sample path of the process {Y(¢), 0 < # < 1}. The model
(2.1) is called the Gaussian white noise model [Ibragimov and Hasminskii
(1981)].

Assume that f is a smooth function belonging to a Sobolev class on [0, 1].
The degree of smoothness is characterized by a positive parameter 8. If 8 is
an integer, the Sobolev class is usually defined as the set of all B times
differentiable functions f on [0, 1] such that

(2.2) [ (r®) de < 12,
0

where L > 0 and f#) is the Bth derivative of f. This definition is extended
in a standard way to noninteger values B, at the expense of imposing the
periodicity constraint on f and its derivatives of order less than B. Under
such a constraint, the definition of the Sobolev class is given in terms of
Fourier coefficients of f. It is introduced below and used throughout the
paper.

Let {¢,(¢), £ = 0,1, ...} be the orthonormal trigonometric basis on [0, 1],

@o(t) =1, ®g-1(t) = \/Qsin(27rlt),
©y,(t) = V2 cos(2wit), 1 =1,2,....
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Define the Fourier coefficients of f,

0, = folf(t)cpk(t) dt

and introduce the following class of functions on [0, 1]:
W, = {f(x) = 2 Ope(x): X ai(B)O; < Qy,
E=0 E=0

where Q, = L*/w*F, B> 1/2 and
(k+1)°, for k odd,

k=1,2,....
ke for k even,

(2.3) ag(B) =0, a(B)= {
The functions f € W, satisfy (2.2) and the periodicity constraints mentioned
above. In the sequel the name Sobolev class will be used for Wj. It is assumed
everywhere that 8 > 1/2. This condition guarantees that the functions f € W,
are continuous.

Let T, be an estimator of f based on the observations {Y(¢), 0 < ¢ < 1}.
The estimation error of T, is defined by its maximal risk

R p(Tos ) = sup E: (47 (£)d?(T,, 1)),
& Wp

where p > 0 is a fixed number, E, denotes the expectation with respect to
the distribution P, of observations satisfying (2.1), d(-,-) is a given distance
and ¢,(s), 0 < &£ < 1, is a normalizing factor, depending on ¢ and B, such
that (&) > 0 and ¢;(s) — 0, as & — 0, for every .

If the smoothness B is known, then, for various distances d, it is possible
to construct estimators f (dependlng on ) that achieve the optimal rate of
convergence (ORC) in the’ followmg sense: there exists y;;"(¢) (called ORC on
W, for the distance d), such that

(24)  c<liminfinf7, o(T,, ;) < lim s;;p%;,ﬁ(;i,ﬁ, yi)<cC

with positive constants ¢ and C [Ibragimov and Hasminskii (1981, 1984),
Stone (1980, 1982), Birgé (1983), Nemirovskii (1985)]. Here and later inf,
denotes the infimum over all estimators. The ORC is not uniquely deﬁned
and we denote {¢;;"(:)} the set of all ORC y;"(-) for fixed B.

A harder problem is to find an estimator f, ; which satisfies the exact
asymptotic equality
(2.5) lim inf2, (T, 45 ) = liné:%’g’ﬁ(f;’ﬁ, vy
The estimator f;*, satisfying (2.5) is called asymptotically efficient on Wy for
the distance d. Asymptotically efficient estimators on W, are known only for
the situation where d is the L,-distance [Pinsker (1980)]. [The result of
Pinsker (1980) covers the case p = 2; for its extension to all p > 0 see
Tsybakov (1997).]
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If B is unknown, the following adaptive set-up can be used. Assume that,
instead of B, the statistician knows only a set of possible smoothness values
B c (1/2,»), such that 8 € B. Then it is desirable to find an estimator f*
which is independent of 8 and attains the ORC for any B8 € B.

The estimator f* is called optimal rate adaptive on the scale of classes {Wj,
B € B} for the distance d, if for Wy(&) = (&), one has

(2.6) lims;lp Zug%g’ﬁ(fj"lfﬁ) <C,

where y;°(¢) is any ORC on W, for the distance d, and C > 0 is a constant.
As compared to (2.4), the uniformity over 8 € B is required here.

Optimal rate adaptive estimates on the Sobolev scale {W;} are known for
different L, distances d [Efroimovich and Pinsker (1984), Lepski (1991),
Kneip (1994), Donoho and Johnstone (1995), Lepski, Mammen and Spokoiny
(1997), Goldenshluger and Nemirovskii (1997), Juditsky (1997)]. Using the
methods of these papers, it is easy to construct optimal rate adaptive esti-
mates on {Wj;, B € B} for the sup-norm distance

d(f,g) =If—gl.= sup |f(x)—g(x)l],

x€[0,1]

under rather general assumptions on B. An ORC on W, for the sup-norm
distance is ¢ (g) = C(B)e? log(1/£)*P~D/*# where C(B) is a positive
constant depending on .

In this paper we propose asymptotically the best estimator among the
variety of optimal rate adaptive ones, that is, the estimator that guarantees
the smallest value of the constant C in (2.6). This property is expressed by
the condition

(2.7) lim inf sup%Z, ,(7T,,¥;) = lim sup %, 4(f,¥;).
e~0 T, geB £~0 geB

DEFINITION 1. An optimal rate adaptive estimator f* is called asymptoti-
cally exact adaptive (AEA) on the scale of classes {Wj, B € B} for the distance
d if it satisfies (2.7) where ¢;,(&) € {¥; (")} for every fixed B.

If d is the L,[0, 1]-distance, the AEA estimators on the Sobolev scale {W;,
B € B} are known [Efroimovich and Pinsker (1984), Golubev (1990), Golubev
and Nussbaum (1992)]. For other distances d this problem is not solved. In
this paper we give its solution for the case where d = d_, (the sup-norm
distance). We also evaluate the loss of efficiency under adaptation defined as
follows.

For an arbitrary estimator 7., denote

Q..p(T.) = sup [E/(IT, - FI2)]"".
few

B
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DEFINITION 2. The value

Q. (1)
LEF(e, p) = inf sup ——————~—,
( ) ¥ pep infy Q. 5(T,)

where inf,. and inf; denote the infimum over all estimators is called loss
of efficiency under adaptation on the scale of classes {W;, B € B}, for the dis-
tance d,.

The denominator in Definition 2 is the usual minimax risk for fixed 8, and
inf, is also the infimum over all estimators. But since in the denominator g
is fixed, T, can depend on B, while f* cannot. The value LEF(¢, p) measures
the relative loss of efficiency when using the “best adaptive” estimator f*
instead of the best estimator with known B. Under the assumptions used
below, the value LEF(¢&, p) is well defined for & small enough. The bounds on
LEF(e, p) are given in Section 3.

The second problem considered in this paper is adaptive estimation at a
fixed point x, € (0, 1); we take d = d,, where d, is the pointwise distance

do(f,8) =[f(x,) —&(x)].

If B is fixed, the ORC on W; for the pointwise distance d, is );'(¢) =
£@F=D/28 [Donoho and Low (1992)]. However, as shown below, in the case
d =d,, the condition (2.6) cannot be satisfied with W;(¢) = (e) =
g@P~V/2B  and thus optimal rate adaptive estimators do not exist. Further-
more, if d = d,, the relation (2.6) holds with the rate W;(¢) =
(£ log(1/£)®F~V/*F > yF(¢). Our aim is to study the exact asymptotics of
the risk in the spirit of Definition 1, with W,(£) = (&? log(1/2))*F~1V/4F,
However, first we have to answer the question whether the rate ‘I’B(s) =
(2 log(1/£))?F~ /48 gives a proper normalization (i.e., whether it cannot be
improved). This question is more delicate than for the case d = d..: in fact, for
d = d, the rate W,(2) = (£* log(1/£))*#~1/*# is no longer an ORC. At first
glance, to show the optimality of this rate, it suffices to complete (2.6) by the
analogous lower bound

(2.8) liminf inf sup %, 4(T,,¥,) = c,
e=0 T, geB

where ¢ > 0. However, it turns out that this is not enough, since (2.6) and
(2.8) can be simultaneously satisfied with quite different normalizing factors
\I’B(e). In fact, consider the following example. Let d = d,, and let B contain
only two values: B = {B’, 8"} such that 8’ < B”. Consider the normalizing
factors W, (&) = £®P'"V/2F ¥ B e B and ¥y, (&) = (2 log(1/))@F '~ 1/,
Wy () = e@F"~1V/2F" Note that ¥, (£) is the ORC for the worst smooth-
ness B'. It is easy to show that there exists an estimator f* (for example, a
kernel estimator with bandwidth ~ £/#"), such that

limsup %, g (fF, Vs 1) <.

e—>0
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This implies, using the inclusion W; > W, and the equality ¥, ; = V. 4,
that
limsup %, g (f¥, Vg 1) <.
e—>0

Hence, (2.6) holds with W, = W, ,. Next, as ¥, ; is an ORC on W, we get
lim inf inf supgi’g’ﬁ(Tg,‘lfﬁ’l) > ligigfigfﬁa’ﬁ,(Ts,WB,’l) >c¢>0.

e—0 TF BE
We conclude that both (2.6) and (2.8) are satisfied with W, = W, ;. On the
other hand, as follows from the proof of Theorem 4 below, (2. 6) and (2 8) hold
with ¥, = V¥, , as well. The nonuniqueness effect present in this example
suggests that (2 6) and (2.8) are not sufficient to define the correct normaliz-
ing factor ¥,;. One should rather use the following definition [Lepski (1996)].

DEFINITION 3. The normalizing factor W,;(s) is called adaptive rate of
convergence (ARC) on the scale of classes {W,, B € B} for the distance d if:

1°. condition (2.6) holds for some estimator f*;
2°. the rate of convergence SB(s) > 0 satisfies for some estimator f** the
analog of (2.6):

(2.9) lim S(l)lp ;uge%g’ﬁ(fa**,sﬁ) <C,

and the condition

(2.10) AB' ' €B:S;(e)/Vy(e) >0 ase—0,
then there exists B” € B such that
(2.11) [Sp (&) /¥ (£)][Spr (&) /¥ (&)] » = ase—0.

The estimator f; satisfying (2.6), where W,(&) is the ARC, is called rate
adaptive.

Definition 3 allows ruling out the effect described in the above example. In
words, Definition 3 states that the ARC W,(«) is such that any improvement
of this rate at a point B8’ € B is possible only at the expense of much greater
loss at another point 8” € B. In fact, relation (2.11) states that not only does
Sp.(e)/ ¥, (&) converge to =, as & — 0, but it also converges to  faster than
S5 (e)/ ¥, (&) goes to 0.

REMARK 1. Similarly to ORC, the ARC is not unique. It is defined up to a
bounded positive factor: if W;(&) is an ARC, then a, ;¥;(s) is also an ARC,
for any a, , such that ¢’ <a, ;<c", Ve, B, where 0 <c¢' <c¢" <.

REMARK 2. If optimal rate adaptive estimators exist, they are also rate
adaptive, and the ARC W,(s) coincides with an ORC ¢;;(¢). In fact, in this
case it is not possible to find S, satisfying (2.9) and (2.10) simultaneously,
and only condition 1° of Definition 3 is active.
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In Theorem 4 we find the ARC on {Wﬁ, B € B} for the pointwise distance
d, under certain assumptions on B. Except for the largest value 8 in B, the
ARC has the form W,(s) ~ (£? log(1/2))*#~V/*# (up to a factor depending on
B). Using this W;(s) in the definition of the risk, we construct the AEA
estimator for the pointwise distance in the sense defined in Section 4.

REMARK 3. The fact that {WB’ B € B} is the Sobolev scale of classes is not
crucial for the definitions given above. One can use them in the general
situation meaning that {W;, B € B} is an arbitrary scale of classes.

REMARK 4. The presentation here is restricted to the periodic Sobolev
classes. This is done to simplify the technicalities. The results of the paper
can be extended, under appropriate assumptions, to the general Sobolev
classes. In this case the trigonometric basis should be replaced by a special
orthonormal basis {¢,} guaranteeing the equivalence of (2.2) to the ellipsoid
W, where the coefficients a,(8) satisfy (2.3) only asymptotically, as k& — =
[see, e.g., Oudshoorn (1996)].

REMARK 5. We work with the Gaussian white noise model (2.1) but the
results of the paper can be extended to other statistical models as well. An
extension to nonparametric regression with regular deterministic design can
be obtained along the same lines. An extension to nonparametric density
estimation is given by Butucea (1998). Simulation study in Butucea (1998)
shows that, for density estimation, the exact adaptive procedure analogous to
the one proposed below works well on the data.

To finish this section, we make some remarks on the construction of
adaptive estimators. The largest group of adaptive methods proposed in the
literature is based on the empirical L,-risks estimators [the idea goes back to
Mallows’ C,, and Akaike’s criteria or Stein’s unbiased risk estimator, and in a
general form it was recently developed by Kneip (1994), Birgé and Massart
(1997), Barron, Birgé and Massart (1995), where one can find other refer-
ences]. The wavelet thresholding adaptation procedure of Donoho and John-
stone (1995) and Donoho, Johnstone, Kerkyachacharian and Picard (1995)
may be also interpreted along these lines. A different idea of adaptive
estimation, unrelated to the L, structure and based on implicit bias-variance
comparison schemes, is due to Lepski (1990, 1991, 1992a, b). This idea is used
below. We show that, both for the sup-norm and pointwise distance, the AEA
estimators can be constructed as spline-type estimators, “adaptively” modi-
fied following the scheme of Lepski.

3. Exact adaptation in sup-norm and loss of efficiency effect. In
this section we present the AEA estimators for the sup-norm and evaluate
the loss of efficiency under adaptation.

First, introduce the assumptions on the set B. Let B; > 1/2 and B* be
the real numbers such that B; is fixed and B > B; depends on . In this
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paper, B is the discrete set

'B = {Bl’BZ""aBs}

where 1/2 < 3, < -+ < B, = B and s > 1 is an integer. In general, s and
B;, i > 1, can depend on &, but we skip this dependence in the notation.
Assume that B,,; — B, >A,i=1,...,5s — 1, where A = A_ > 0. The value A,
can be either finite and bounded away from 0 (for example, an interesting
caseis B; =i, A, =1DorA, - 0,as ¢ > 0.

Assume the following conditions on B and A,:

lim B = oo, limsup A, < o,
£=0 -0
(3.1) A, log(1/¢)
v, —>® ase—0.

~ (B*)loglog(1/¢)

The assumption limsup,_,A, < » is introduced for notational conve-
nience only. Moreover, we assume in the proofs that A, < 1. This is done
without loss of generality, since A, is a lower bound on the differences
,8i+1 - Bi-

Define the positive numbers b, and v, by

bz—lw e d—lgy1 28) 11— (28) "

Py ey T 2P (28) 1 (26) ),
1 o 1

2 _ _ -1 _ -1

UB_W/;) (1+t2B)2dt ZWB%F((ZB) 2 - (28)7Y),

where %(x, y) denotes the beta-function and 8 > 1/2.

Let j be an index taking the values 0, 1 and «. The values j = 0 and j = «
correspond to estimation in d, and d, distances, respectively. The value
J = 1 will appear in the context of linear minimax risks. Define

2, ifj=1,
a,={p, if j =0,
p+2, ifj=oo,

a 1/28
8. (L2B(2B -1 ) ’

(23*1)/4[3
[1 2B.
/ 5

2a;
— b.(2B)2PT1/48 J
5(26) TR
1\/28

he,; = Kﬁ,j(82 log;)

o
~
>
~.
~
|

if B+ BF orj + 0; hﬁj’0=.91/35;

=
<
|

b

1\@B-1/48
= ¢ ,8,]')(82 log—)
&

1 1)\Y?
rB’j=Uggzh[;,1j; nj(ﬁ) = (rﬁjajElOg;) 5 _]'=O’]_,oo.
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Introduce the estimator

A

N

_ k
(3.2) O

where >0, 8>1/2, N=N,—> », as ¢ - 0, and (5k are the empirical
Fourier coefficients

ék=j;)1¢k(t)dY(t)=6k+8§k7 k=0,1,...,

28 ¢k(x)’

where ¢, are ii.d. standard normal random variables.

Assume everywhere in the following that N is the minimal even number
satisfying
(3.3) N > g 2/min(,5:1-1/2)

If B is an integer, B > 2, the estimator (3.2) approximates, as N — o, the
usual spline estimator of degree B8, with the smoothing parameter A; = h2k.
For example, if 8 = 2, one obtains the cubic spline.

Denote f, z ; the estimator (3.2) with h = h, ;, respectively, (j = 0, 1, ).
Clearly, f, 4 ; is a linear estimator w.r.t. {6,}.

£

Consider the adaptive version of the estimator (3.2) constructed following
the scheme of Lepski. Namely, set

(34) ;jj(x) =f€,[§j,j(x)7 j=0’oc’

where

B = max{ B € B: ax di(fe,p,50 Fe o)/ M(B') < 1}, J =0,
B'<p
In words, we use the estimator (3.2) with A = hg s B= BAOC, for estimation in

the sup-norm distance and with A = hy o, B = ,éo, for estimation at a fixed
point x, € (0,1). The estimator (3.4) is nonlinear.

THEOREM 1. Assume (3.1). Then the estimator [}, defined by (3.4) with
J == is AEA on the scale of Sobolev classes {W;, B € B} for the sup-norm
distance d... Moreover, the normalizing factor y, ., is such that

lim inf sup sup Ef(lpB”;IITg — f||£) = lim sup sup Ef(‘ﬂﬁ’i”fg*m _ f||£) =1,
¢20 T, geB feW, ' ¢>0 geB feW, ' '

for any p > 0.

To prove Theorem 1 we show the upper bound on the risk

(3.5) lim sup sup sup Ef(lﬁﬁ_,’icﬂf;im - f||£) <1
>0 BEB feWy

(Section 6), and the corresponding lower bound

(3.6) lim inf inf sup sup E; (¢, 2T, — flIZ) = 1
e—0 Ts BEB fEWB

(Section 7).
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Note that the normalizing factor ¢j; ., in Theorem 1 corresponds to ¥, in
terms of Definition 1. It is interesting that j; ., depends on p (in fact,
a,, = p + 2). The dependence is such that a loss of efficiency under adaptation
does occur. To explain this, we study asymptotics of the loss of efficiency
LEF(e, p) as & —» 0. Consider first the asymptotics of the minimax risk
infy Q, 4(T,).

THEOREM 2. Assume (3.1), and let p > 0. Then for any 0 < & <1 there
exists 8, > 0, such that lim, , , 6, = 0, and

(87)  supE/(lIf, g1 —fIE) < (1 +8)°(1+6,)y?, VBEB,
feWg

(3.8) inf sup E(IT, - flI2) = (1 - 8)"(1 = 8,)(%../2)", VBeB.
s feWg

Proofs of (3.7) and (3.8) are given in Sections 6 and 7, respectively.
Theorem 2 implies that, for fixed B, the linear estimator f, ; ; is “to within a
factor 1/2” asymptotically efficient w.r.t. the risk @, ,(*).

Using (3.8), one can bound LEF(&, p) as follows:

LEF(g,p) < 2(1 _ 3) 1(1 _ 88) 1/p sup M
BEB (:[’/3,1
(39) < 2(1 _ 5)_1(1 . 58)—1/13
1/ lpﬁ,oo
X sup (‘%E,B(f;ooa lpﬁ’w)) i sup ——
peB BEB ¢ﬁ,1
if & is small enough to have 56 < 1. Now
U, p + 2\@p- /b p o+ 2\ V218
(3.10)  sup 2% = sup( ) _ ( ) |
BEB l»[/[;,l BeB 2 2

Applying (3.9), (3.10), Theorem 1 and the fact that § > 0 can be chosen
arbitrarily small, one gets

(3.11) limsup LEF( ¢, p) < [2(p + 2)]"%

e—=0

On the other hand, (3.7) entails

Qg B(fe*)
LEF(&, p) > inf sup —————
( ) ) peB Qs,B(fS,B,l)
(3.12) >(1+8) '(1+35) "
_ vp [ ¥p.
X inf sup (Z, (¥, ¥ ( )
Ao (Zen (1000 Ty,
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Clearly,

. + 9 @2B-1)/4B + 92 1/2-1/4B,
B e

W51 2 2

Using this, (3.12), (3.6) and the fact that § > 0 can be chosen arbitrarily
small, we find

p + 2 )1/21/451

(3.13) liminf LEF(¢, p) = | —
e—=0

THEOREM 3. Assume (3.1) and let p > 0. Then

p + 2 1/2-1/4B,
(3.14) ( ) +0(1) < LEF(s,p) < [2(p + 2)]Y? + 0(1),
as ¢ = 0. If, in addition,
(3.15) max{B€B: B<tB¥}) 5o VO<t<l,

then
(3.16) [(p +2)/2]"% + o(1) < LEF(&,p) < [2(p + 2)]"* + 0(1),
as € — 0.

For the proof of Theorem 3 note that (3.14) is an immediate consequence of
(3.11) and (3.13). The left-hand inequality in (3.16) follows from (3.12) if we
show that

(317) liminfinf sup (2, (T 0 ) (s o/ 5.1)7 | = [+ 2) /21772,
g = BEB
Proof of (3.17) under assumption (3.15) is given in Section 7. Note that (3.15)
is not a restrictive assumption. It claims that the sets B were not too sparse.
For example, (3.15) rules out the case B = { 8, B}.
With the squared risk (p = 2), (3.16) yields
V2 + 0(1) < LEF(&,2) < 2V2 + o(1).
Remark that, for any p > 0,
liminf LEF(e, p) > 1.
e—>0
In other words, the loss of efficiency under adaptation in sup-norm does occur.
The right-hand inequality in (3.14) and (3.16) gives an upper bound on this
loss. The question about the exact asymptotics of LEF(&, p) remains open. It

would be answered if one knew the exact asymptotics of the minimax risk
infr @, (T)).

4. Exact pointwise adaptation. In this section we show that the ARC
for the pointwise distance on the Sobolev classes is worse than the ORC by a
logarithmic factor, and we find the AEA estimator in this setup.

Denote B_= {3 € B: B < B*}.
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THEOREM 4. Assume (3.1) and let p > 0. Then optimal rate adaptive
estimators on the scale of Sobolev classes {W;, B € B} for the pointwise
distance d, do not exist. An ARC on this scale of classes for the distance d is

‘7[’/3,0’ ifBEB—y

Ys(e) = g@BI-V/2B5 if B g

Theorem 4 shows that the value 8 = B is an outlier in terms of the ARC.
The ARC for B = B is faster than for B € B_: it does not contain a
logarithmic factor and equals ORC. This is a kind of boundary effect. To
define the pointwise AEA estimator, we exclude from consideration the
boundary value B = B* (i.e., consider the set B_ in the place of B). The next
theorem shows that the estimator £, has the AEA property on this smaller
set.

THEOREM 5. Assume (3.1) and (3.15). Then the estimator f}, defined by
(8.4) with j = 0 is rate adaptive on the scale of Sobolev classes {W;, B € B} for
the distance d, at a fixed point x, € (0,1). Moreover, the normalizing factor
Y, is such that

lim inf sup sup Ef(¢g,‘6|T€(xo) —f(x0)|p)
>0 T, geB_feW,

= lim sup sup Ef(¢/§,%|f:io(xo) _f(xO)lp) =1
-0 BEB_ feW,

for any p > 0.

Note that, similarly to the sup-norm case, the exact normalizing factor ¢ ,
depends on the power p of the loss function.

Proofs of Theorems 4 and 5 are organized as follows. In Section 6 we prove
that under the assumption (3.1) the following upper bounds are valid:

(4.1) lim sup sup sup Ef(tp,;ﬂfg’o( x0) — f( x0)|p) <1
>0 BEB feW,

and

(4.2) limsup sup E(e P@F-D/28
e—>0  feWgs

fEo(x0) = (x0)[") < o=.

Section 7 contains the proof of the following lower bound (under the
assumptions of Theorem 5):

(4.3) liminf inf sup sup Ef(d/g"(’)|T£(x0) —f(x0)|p) > 1.
e—>0 T, BEB_ feW,

The relations (4.1)-(4.3) and Theorem 4 entail Theorem 5. Proof of Theo-
rem 4 is given in Section 7.
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5. Lemmas. In the following, ¢;, I = 1,2,..., are positive constants, that
depend only on p, L and B;. Introduce the notation
h* = mJathj,j, Ronin, s = mjinhBl,j,

bJ( B) :Lbﬁhﬁﬁ,;'l/Z’ .] = 0’1700’
N &éy,
Lo

ZB,J' sup |ZB’j(t)|,j =1,o, ZB,O =|ZB’0(x0)
te[0,1]

ZB,J(t) = 28 on(t)’

b

~ B, if ' > /2, . B
’ ) = ’ . ’ ’ s ’ ' < .
BOBB) =\ (B +1/2)/2, itp <pra, “PBPEBR <P
Note that B’ < B(B,B") < B, and B(B, B') < 2B’
In the following, it is supposed w.l.o.g. that 0 <A_ <1 and &> 0 is so
small that

(5.1) log(1/¢) = B¥ = e,
and
(5.2) Poin o N, = 1.
Denote

. Alog(1/¢)

Vg = ﬁ .

(BS)
The definition of B and A, yields that 8*/A_ > 1. This and (3.1), (5.1) imply
1 1

—log— > >y logBf>1y >> ase—0.
&

B*
LEMMA 1. There exist positive constants K., Kmax> @maxs Pmaxs Vmax> @Rd
U, depending only on L and B4, such that

max kf % < « maxkg ; < K

peB ©’ max? BEB ’ e
aneigKB’j > Kpin, J = 0,1,%,
I;E‘;‘QB < @uaxs glggbﬁ < bax
Igl:lé(vﬁ < Upax s 211612 Ug = Upin -
Moreover,
(5.3) by = (28— 1) v,

Proof of this lemma is an easy consequence of the properties of the
beta-function.
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Without loss of generality, suppose everywhere in the following that £ > 0
is small enough to satisfy

1 1
(54) Kmax(l + l/Kmin)eXp(_Va/z) =< 17 17.9 = B_loglog_
1 &
and
2max{ k.., 1} 1 1
(5.5) b= e g los | < 1/2.

LEMMA 2. As ¢ — 0,

1 1\* 1 1 1\"* 1
. —log— —log—| ———
(5 6) ( Ogg) — o, (/38* ogg) 10g(1/A8) — ©

1\ A/(BY?
(5.7) (32 1og—) <exp(—17,).
&

The proof follows easily from (3.1) and (5.1).

LEMMA 3. Forj = 0,1,% and any B € B, except for the combination j = 0,
B = BF, we have

(58) W, =b(B)+ m(B) =Lbhf;* +

J

1 1 1/2
rﬁ,ja‘glog;) ,

(59) m(B)=b(B)2B~1) =L(28 ~ 1) v,hf /2.

The proof is given by direct calculations using the definitions from Section
3 and (5.3).

LEMMA 4. Let B' < B and B', B € B. Then, for ¢ > 0 small enough,
(5.10) hB’s]/th] SCl eXp(—fJE/Z) < 1, j= 0,1,00’

and

1 1
R < max{ k., 1} exp( - ﬁlog—)
- &

(5.11)

< max{ k., 1} exp(— Ea) <1
In particular,
(5.12) hg j<hg ;<h}i<1, j=0,1,c0.

The proof is straightforward, in view of Lemma 1, (5.4) and (5.7).
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The following five lemmas are proved in the Appendix. Lemma 5 yields an
evaluation of the bias terms. Lemmas 6 and 7 provide bounds for the
stochastic terms of estimation error in sup-norm and at a fixed point. Lemma
8 shows that it is very improbable that the “estimated smoothness” B; is
strictly smaller than the “true smoothness” 8. Lemma 9 gives uniform over 8
bounds on the risk of the linear estimator f, , ...

LEMMA 5. Let B', B B. If B’ < B, then
(5.13) sup | E/(f.,p;) = f. < cahf7}7,
feWB

where B = B(B, B'), and if B’ = B then

sup ”Ef(fs,ﬂ,j) - f”oc <b,(B)

1 1
1+03exp(— log—)),
&

(5.14) ey 4p*

j=0,1,.

LEMMA 6. There exists ¢, > 0 such that

P(Z > u) < o exp( v (1-8 ))
B ZU) < - — 8,0 |
’ hg, ; 2rg,;
E(V’ Iz, . > )< €4 ps2 v 1—5
B.J { ﬁ,j—u} < hB)jrﬁ,j exp rﬁ,j( 0) |

for j=1,°, and any u >0, p >0, B € B, where I{:} denotes the indicator
function.

LEMMA 7. There exists cs > 0 such that for any x, € (0,1),

: (1 - 650))’

. u
P(Zlg,0 > u) < ¢4 exp(— T
B,

2

E(Zg,oI{ZByO > u}) < 05,-;’62 exp(— 22; O

(1 - 850))
Yu>0p>0,8<B.

LEMMA 8. Let vy, B € B, y < B. There exists cg > 0 such that

sup P(B=v) <co( BE/A) e/, j=0,.
EWB

LEMMA 9. For any 6 > 0 there exists ¢, > 0 that depends only on 8, such
that

p 1
sup PAys LIlf, 5. —Ffl.=1+8} <c exp(— log—),
par f{ B, B, } 7 435* o

0<e<eg, BEB.
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Also

sup sup sup E (¢ 72lf. 5. —fIF) <cg(p) Vp>O0.
e<eg BEB feW,

6. Proofs of the upper bounds. This section is devoted to the proof of
(3.5), (8.7), (4.1) and (4.2). It is assumed throughout that &> 0 is small
enough to satisfy the conditions (5.1), (5.2), (5.4), (5.5), (5.10). It is also
assumed w.l.o.g. that 0 < A_ < 1, so that (5.6) makes sense.

In the following %;, [ = 1,2,... are positive constants that depend only on
p, L and B;. Denote

Rfﬁf=ymEA%waﬁyf» Jj=0,%

Clearly,
R, ;<R , +R]

&, B,J°
where

Ry, = sup Ef(lpﬁpdp( 5 DI B < B)),

Rl, ;= SupE(‘/fgpdp(gj,f)I{éJ»zB}), Jj=0,00.

Hence, to prove (3.5) and (4.1) it suffices to show

(6.1) limsup supR_ ; ;= 0, Jj=10,2
e—>0 BeEB

and

(6.2) limsup supR; ;, ;<1, j=0,%.
>0 BeEB

ProOF OF (6.1). For any y € B, such that y < 8, denote

( 1 1 1/2
pl=-2=
Yy B
Using (5.13), the fact that h, ; < 1 (see Lemma 4) and the inequality y <

B( B, v), we get for any y € B, such that vy < 8,
dj(fs,v,J’ <||E 871 _f” +Z,
<chPVP4Z i <c,h1 VP47

where 8 = B(B, v). This and the deﬁn1t10n of R_ ; ; entail

R, ;< Y. sup Ef((/j[;,l;df(fg,y,jaf)I{BAj = 7}) < p1,;t P2
(6.3) veB, 1SV

1 1
_ 12
7i(y) = ry,/J + (a —p); log; R

1 1 1/4
—5log— ) )

j=0,.

j= 0’w7
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where
A B _ p
p1,;=p1;(B) = Y. sup Pf(Bj = ‘)’)‘lfﬁf}(czh;,jl/z + Tj(Y)) ,
yEB, fEW,
Y<B
~ p ~
P2, = Ps,;(B) = ) ‘/fﬁ_ﬁE((%hz,_jlﬂ + Z‘y,j) I{ v, = Tj(')’)})-
€B,
<
To prove (6.1) it suffices to show the relations
(6.4) supp, ;=o0(l) ase—0,l=1,2,j=0,x.

BEB

PROOF OF (6.4) FOR [ = 1. Using the inequalities a; > p, j = 0,%, y < B,
we get, for y < B,

1 ~1/4
(6.5) 7(v)/n;(v) S2+p‘1/z(§log;) <2+p V2
It follows from (5.9) that
-1
(6.6) hY 2 /m(y) < [L(2By = 1) v

Next, (5.8) and Lemma 1 imply

() < () _ (/3 Uyzhﬁ,j
‘/fg,j B nj(lB)

1/2

1/2
< (Ba* ) vmax(hﬁ,j)
Bl Unin h’y,j

1/2p-1/2
Sklﬁg*a/ﬁ /v’

v v2h,
(6.7) 7R
1)1/4B1/4y

<k, ,Bj‘(s2 log—
&

for any v, B € B, such that y < 8, except for the combination j = 0, 8 = B*.
It is easy to see that for j = 0, B = B the result of (6.7) remains valid.
Now, Lemma 8, (6.5)—(6.7) and (5.6) yield

p1,; < kg card(B)(BF)" 1A e /2P < 2ky( BF)"TEA %P /7P

(6.8) < 2k, exp

1 1 1
(p + 2)log B* + 210g(A_£) _pZB;" 10g;)

=0(l) ase—0,
for j = 0, . This completes the proof of (6.4) for [ = 1. O

PROOF OF (6.4) FOR [ = 2 AND j = . It follows from Lemma 6 and (6.6)
that

ps. <ky Y lpﬁ-j;(mp(y)P(z'y,m > 1(y)) + E(Z2 . 1{Z, . = Tw(y)}))

YEB,
Y<B

<kges X dph(nf(y) +rP2)h; L exp( -
v€B,
Y<B

(6.9)

2r, . Tsoz(Y)(l - 880))-

Y
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Now,
1 ~-1/2
(6.10) r)/? < ( ,B*log ) n(y) <a;V(y), =0,

and Al < kyie '/7, since, by (5.1), £ is supposed to satisfy log(1/£) >

B¥ > e. This and (6.7) imply
(6.11) /e (nx (y) + rp/z)h,y})C <ky( BE*)pSP/2B*(p+2)/2y‘
On the other hand,

Tsoz(Y)(l — 8,9)

27"%oc
p+2 p 1 1 1/2
(6.12) > 9y 28 g + = 5 — log— (1-6,)
p+2 p 1 1({1 1\ 1
+ 5| 5! - log—.
o 23} og— 5108, k50,0 log—

Note that §,, log(1/¢) = 0(1), as & — 0, in view of (3.1) and the definition of
3,,- Using this and substituting (6.11) and (6.12) into (6.9), one obtains

11 1|V
. < kgcard(B)( B*)" exp(——(Elog ) )
1/ 1 1/2
< 2ky( BX)" AL 1exp(——(F og— ) )=o(1) as ¢ = 0,
where (5.6) was applied. This completes the proof of (6.4) for [ = 2 and j = .

PROOF OF (6.4) FOR [ = 2 AND j = 0. Using Lemma 7 and (6.6), we obtain,
as in (6.9),

(6.13)  py o <kgcs X dph(nf(v) + '"yp,éz)exp(— 75 (v)(1 - 580))-

YEB,

Y<B
Now, (6.7) and (6.10) imply
(6.14) (B (y) +rPe") < ke (BE) eP/2EmR I,
and, as in (6.12), one gets
B0 = 00) = [ = Folowy + 3 ilogl)w
(6.15) 2ry o 2y 28 B

1
— k56, log—.
&
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Combining (6.13)—(6.15), observing that §,, log(1/£) = 0o(1) as ¢ - 0 and
using (5.6), one comes to

1/ 1 1/2
(6.16) py o < kg(BF)PTTA; 1exp(——(ﬁ og— ) )=0(1) as e — 0. O
&

PROOF OF (6.2) FOR j = ». Fix a number & > 0. Consider the random event

U(B,7) = {wtlfe . — fll =1+ 8}
Then
Ri,.<sup ¥ Eu2lf. .~ FIZI{B. = v})

fEWﬁ 'yEB,
Y=B

<(1+ 8)p sup Pf{ém > B}
feWg

+ B (y2llf, . — FIZH{A, (B, y) N {B. =
(6.17) VEZBJS'EUVI% f(%, foryo = 1 { F(B,y) N {B v}})
v=p

< (1+8)”

+ ) (sup (Ef(¢ﬁ ||fg~,ao—f|| )) Suppf/z(ﬁ 7))
yEB, \ fe Wy feWws
v=B
where p(B,7) = PAALB,y) N {A. = v}.
Note that if B, = y > 3, then, by definition of B,,

(6.18) 1oy = Fo gl <M B).
Thus
(619) ||fg,'y’oc - f”w < TLO( B) + ”fg,B,oc - f”oc,

and, in view of Lemma 9, for 0 < ¢ < &,

_ _ 2
E (0522, — FI27) < 222 (0 B) /W )" + es(2P))
< 22,711 + ¢4(2p)).
Substitution of this inequality into (6.17) gives

(6.20) Rjﬁx_(1+5) + kg Y, supp}”(ﬁ,y).
yEB,fEWB
vzB

It remains to estimate p;( 8, y). By Lemma 9,

p ) 1
apr BL )

0<e<egy, BEB.

(621) DR oi(BB) = sup B (B, B) < exp| -

B
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Consider now p,(B,7v), ¥ > B. Since E/(f, , .(t)) is a continuous function
of ¢, there exists a (nonrandom) point ¢* € [0, 1], such that

(6:22) [E/(f,,(t1) = Ey(f., 5. = Es(£..,.-) = Ep(fp.)].

(clearly, ¢* depends on f, &, v, B).
If B, = v > B, then, in view of (6.18) and (6.22),

|E/(F...) = Bp(fo )L = mB) + 167,
where ¢* =Z; (¢t*) — Z, (t*). Therefore, if B.=v>B,

1 foryo = £l <N Br(Fy) = Bi(Fop o) + 2y + | Bp(frp,0) = £

1 1
1+ cqexp| — 15 log;

+1E+Z, .,

A

<n(B) +1&+2Z, . +b(B)

IA

1
lbe , 0 log

4B

1+cq exp(

where (5.14) of Lemma 5 and (5.8) of Lemma 3 were used. This entails that, if
Y> B,

1 1
pr( B, 7)<Pf{l/j (|§*|+Z )>5—c3exp(—4’8*log;)}

sp(z"w > %) - P,,.(|g*| > 6"[’5’“ )
if ¢ is so small that ¢, exp(—(1/4B*)log(1/¢)) < §/3. By Lemma 6,
(6.24) P(Z, .= 80 ./3) < cyhy L exp(—(82/18) ¢ .ry L(1 — 8,)).
By (5.8), (5.10) and the fact that §,, < 1/2,

nZ2(B)ryt rg.p+21 1

(6.23)

2 -1 '
Yoty 1 = 8,0) = 2 T 2 Elog_
> ( Umin )2 pr2|hy. )llogl >k exp( ﬂg)llogl
“ vy 2 hs.. | B 10 218 &
On the other hand, 4", L e /8 since ¢ is supposed to satisfy log(1/¢)

> e. This and (6. 24) 1mply

. 8. . 1 8? v,
P(Zy,ocz 3 )sknexp Bog -k (1 )xp(g)

1
2 g — log— exp(—g)) =o0(1)as ¢ > 0.

(6.25)

<k —kq,
=Rp exp( - 2
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Now, the random variable ¢* is Gaussian with mean 0 and with the
variance Var(¢*), satisfying

Var(¢*) < 2[Var(ZB’m(t*)) + Var(Z%m(t*))] =2(r(0,hy ) + (0, h, .))
<2rg.+r,)(1+8,) <kjze’hsl,

where we used Lemma 1, (A.13) and the inequalities §,, < 1/2, hg.<h, .,
B < v (see Lemma 4). Hence, for £ small enough,

8y .. ..
IyOS*Iz lﬁ’) sl?@é*lz 77;B))

8%\ m2(B) 11
(6.26) < 2exp( ( 13 ) Var(£%) < 2exp(—k14Elog;)
1 1
< 2exp(—k14—*log—) =0(1) ase—0.
X e

It follows from (6.23), (6.25) and (6.26) that

1 1
Suppf(B,'y)gkwexp( —— log— ) y> B,y € B.
few, k15 B,

This and (6.20), (6.21) yield

1
Rp.<(1+ 8)" + kg card(B)eXp( ——log— )
k16 B

=(1+8)"+0(1) ase—0.

Since 6 > 0 can be chosen arbitrarily small, this completes the proof of (6.2)
with j = . O

PROOF OF (6.2) FOR j = 0. Note first that

Rigeo= sup By{tdolfloxo) = f(o)'I{By = B7))

€ W
=o(1)R},as ¢ >0,

where R} is defined in the proof of (4.2) below. Since R} = O(1), as ¢ - 0
[see the proof of (4.2)], we have RS’ Br0 = = 0(1), and it sufﬁces to prove a
weaker version of (6.2) where supg . p is replaced by sup; . p . Therefore, in
the rest of the proof we assume g € B_.

If B, = v = B, then, by definition of S,

|f€0(x0) sBO(x0)| foy0(x0) — aBO(xO)|<n0(B)




2442 A. B. TSYBAKOV

and thus, for éo > B and f € Wy, using (5.14), we get

|fa*,o(xo) —f(x0)] S|fs,ﬁ,0(‘x0) —f(x0)| + no( B)

1

<me(B) +bo(B) 10g;

1+cq exp( —
4B

< (¥p.0 + Zg0)(1 + 0(1)),
where 0o(1) — 0 as & — 0 uniformly in 8 € B. Hence, for any 8 € B_,
R} 0= ViR E((Y.0 + Zp0) ) (1 + 0(1))
<[00 + 70(BY)” + BB (a0 + Zao) T{Zpo = 70 B)})]
X(1+0(1))
= [(1 + (7o( B)/%,o))p

+2770ey(1+ (rd2/4s,0) Jexp( — (73( B) /275,0)(1 = 8,0))]
X(1+0(1)),

(6.27)

where Lemma 7 was used. Now, for any 8 € B_,

ra2 rp2 11\
< A | ,
b = () =P (B* % )
(6.28) s i
To( B) rl/ (il og— ) i L <p1/2(i10g1)
Y50 B g0 = B
and
2
(Tgr(,ﬁ))(l_aso)
B,0
(6:29) 11 1 % 11 1\v2
——(gog ) (1—96,) = (B* gg)

The substitution of (6.28) and (6.29) into (6.27) gives, for any 8 € B_,

R 1 1/2 ! 1 1 ’
< +p —log—
5, 8,0 P B 08~

&

1{1 1\
+k17exp( —(E og— )

}(1 +0(1)).
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This entails (6.2) for j = 0. O

ProorF orF (3.7). Using (5.14) with j = 1, we get, for any B € B, § > 0,
p
Sup Ef(” fe g _f”x)
feWs

- ffv%Ef((ZB’l 12 (Frp) = 71L))
< fseuvI;BEf((ZB’l —|—||Ef(fg’ﬁ 1) f" ) { s < (1+ 5)”’71(3)})
. +fs;1£BEf(( A H B (Fpn) = 1) T Zs = (1 + 5)mi(8)))

<(1+ 6)1)(771(3) +b1(B))p 1+c3exp(_ 1 log%))

4B

yopr-1 E(z I{ 1>(1+8)m(l3)})

1
4B

1\\" .
+bP( B) 1+03exp(— log;)) P{Zﬁylz(1+8)nl(ﬂ)}).

By Lemma 6,

(631) P(Zy, = (1+8)mn(B)) < %exp(—(l +8)(1-8,0)— logl)

and

E(zg;ll{z]g,1 > (1 +8)m( B)})

Cy
<
(6.32) hg 4

1
r[f,/f exp(—(1+ 8)2(1 8.0) = log )

2 o, ) 11
Sn{’(B)(B* og;) hﬁlexp(—(1+3) (1—580)Elog;)-

Now, in view of Lemma 1, hg ; > Kp;,(&? log(l/g))l/w, and thus

min

Cy 9 1
exp| — (1 + 8)*(1 — 8,0) - 1og
hB,1

11
(6.33) <c, kb exp( [(1+8)%(1 - 8,9) — 1] F7log
o &

1
_ 1 1 —
2p* & Ogs)

&
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for all B € B and & small enough. Combining (6.30)-(6.33) and using (5.8)
and the fact that 5., = 0,(1/8*)log(1/¢) — =, one obtains (3.7). O

PrOOF OF (4.2). Now let g = B, j = 0. We have

(6.34) fS‘;VP E (&7 P@Pm D262 £ (x0) = f(x0)[') <R, + R/,
€ Wpx

where

- —-p@2BX-1)/2BF
R;= sup Ef(g PEBF-1)/2p

*o(x0) = F(x0) ['I{ By € B-}),

€ Wgs
Ri= sup Ef(gfp(ZBs**l)/ZBg* £ o( o) —f(x0)|pI{ B, = ,88*}).
fe Wy
As in (6.3),
R-< & P@BI-D/265 Y gup Ef(|fg,%0(x0) —f(x0)|pl{ éo = y})

yeB_ fe Wﬁj

< €_p(253_1)/235¢3%,0( p1,0( BS) + pa o BX))
1 )p(ZB;:< 1)/4BF

SC'p( Bf,O)(log; (Pl,o( .83*) +P2,0( Ba*))'

This, together with the definition of ¢( 8,0) and (6.8), (6.16), (5.6) implies
(6.35) limsupR_ = 0.

e—=0

Next, if éo = B} and f € W, using (5.14) we get
|f;fo(xo) _f(xo)l = fs,ﬁj,o(xo) —f(x0)|

11
4g* B¢

< Lb,,, e®F D28 (1 + o(1)) + Zgs .

(6.36) <by(BF)|1 +cy exp( -

+Zgs 4

Furthermore, using Lemma 7 with u = (£2hg'()"/?, one obtains

E(Z}. o) < (25 )""

1
(6.37) + c5ré}/7% eXp( - 2 82h5€*170(1 - 530))
< gP@PI-V/2B [1 + CSUrﬁax] :
It follows from (6.36) and (6.37) that

limsupR} < .

e—0

Combining this result with (6.34) and (6.35) one gets (4.2). O
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7. Proofs of the lower bounds. This section is devoted to the proofs of
the lower bounds (3.6), (3.8), (4.3), (3.17) and Theorem 4. Let us start with
some auxiliary facts.

Define the Fourier transform of a function f(x) € L,(—o,) as

. 1 - By
flo) = 5[ F(x)e " dx,
and denote f(#) the Weyl derivative of order 8 > 1/2 of a function f, that is,
FO) = [ fo)(io) e do,

if the last integral exists.
Denote, for every g8 > 1/2,

w  ell* = cos(tx)

Note that the Fourier transform of K, ; is KA'O’ﬁ(w) =1/(1 +|wl|*®). By
Plancherel’s formula, the L,-norm of KO s equals

1/2
(7.1) 1Ko l, = 277[ |t|25) —————dt| =2mu,.
Similarly, the L,-norm of the Weyl derivative K{#} equals
25 1/2
(7.2) |&S8 ), = 277/ d ————dt| =2wb,.
’ = (1 +[¢2#)

Define the function
Kﬁ(x) = SIKO,B(SZx)’
where s; = Qmv,) (2B — DV*, s, = (2B — D2 For j=0,1,, B €B,
denote

_ a; 12 = _ 9 1/28
Kg j = (L—2B) , hg ;=K (% log(1/e)) .

LEMMA 10. We have
(7.3) |Kgl, =1, ||KP|, =1, K (0) =2B(2B - 1) @p Dy

Furthermore, for any & €(0,1), 6 €(0,1) and B € B, there exist a number
D = D(s, B,8) > 0 and a function K(-) such that:

@) suppK = (—-D, D),

(i) |K (0) <1 - 5/2)|K (w)l, Yo € (=, 0);
(iii) IIK le <1-68/2;

Giv) K (0) > K (0)(1 — 8);

) sup(D(e B B)hﬁ )=o) as € = 0, Jj=0,1,c0,
3GB

where I?B(w) and Ifﬁ(w) are the Fourier transforms of KB and K respec-
tively.
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Proof of Lemma 10 is given in the Appendix.
For j = 0,1,, B € B, denote
G, j(x) = Lhf'?K (x/Tzﬁ j)
where K satisfies the conditions (i) to (iv) of Lemma 10 for a § € (0,1/2). In
partlcular supp G ; = (— DhB J,DhB P2

PROOF OF (3.6). Assume that 0 < 6 < min{1,2p}/(p + 2). Set M, =
[1/(2Dhg )] — 1, where D = D(¢, 8,8), and let &> 0 be so small that

My;>1 (cf. (v) of Lemma 10) Then the interval [0, 1] contains M, disjoint

subintervals of length 2Dh
Define the family of functlons Ty =Af1s(), k= ..., Mg} on [0,1],
where

fo;;(x)zo’ fkﬁ(x) =GB,°C(x_xk,w)7
with x;, . = 2k — 1)D7zﬁ,w, k=1,..., M;. Using Lemma 10, it is easy to see
that

supp fyp = ((2k — 2) Dk, ., 2kDh, ) € (0,1),
for £ small enough, and
A 8\ .-
frp(@)] < (1 - E)th,;lﬂmﬁ(whﬁ,w)l,

k=1,...,Mz, Vo € (—»,x),

(7.4)

(7.5) =
| fiolls = L2R28| K

<(1-8/2)%(a./B)e?log(1/e), k=1,..., M.

It follows from Proposition 4 in the Appendix that f,, € Wy, £ =0,1,..., M,
for £ small enough, and thus .7; ¢ W,.

Fix B’ €B, B' # B*. Consider the binary vectors ¥, = (814,-.., Sy,
k=0, 1,...,M, where M = M,., and §,, is the Kronecker delta. For an
arbitrary estimator 7,

i) ~ flﬁ(xloo)| = GB’,OC(O)d(é’ﬁi)/(l - 9)
where & = (51,...,1§M), ﬁi =T(x;.)/Gy 0),i=1,..., M, and the distance
d(u,v) =(1-296) max |u; — vl

1<i<M

T —fisll.> max
” ¢ le ” 1<i<M

for any two M-vectors u = (uq,...,uy), v =(vq,...,vy). Taking this into
account and denoting E; = E, , one obtains

sup sup E¢(¢, 2T, — fIIY)
BEB feWg

(7.6) > max{EO[dfgj’ijITgﬂf], max E,[yzPIT, = fp IIOC]}

1<i<M

> max{EO[(qd(ﬁ,ﬁo)) ], max E. [d”(é,ﬂi)]},

1<i<M
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where
= Gy 0) Y+ ./ (1 = ),
and the following consequence of Lemma 10 was used:
(7.7) GB J(O) —LhB 12K (0) >(1- 8)Lh5 12K (O) =(1- 8)%,1'

(valid for all B € B, j = 0,1, «, except for the combination j = 0, 8 = B*). To
estimate from below the last expression in (7.6), use Theorem 6 from the
Appendix. Let us check the conditions (A.1) and (A.2) of Theorem 6 with
0 = {9y, Vq,..., 9y} and d{-,-) defined above, w(v) = u?, a = § and 7= &7,
where y=1[p — 8(p + 2)/2]/28’. It suffices to check (A.2), since (A.1) is
straightforward in view of the definition of ¥, and d(:, - ). For the rest of the
proof, P, = wa,. Clearly,

dp,
(7.8) Q(—>7) M! Zpl,

i=1

where p, = P(M 'Y¥ (dP,/dP,) < 1/7). Fix i and estimate p; from below.
Standard results on the absolute continuity of Gaussian measures [see, e.g.,
Ibragimov and Hasminskii (1981), Appendix 2] imply that under P;,

dp,

d—PO=eXp(a_10'§k+,uk8 0?/2), k=1,...,M,

where ¢, are ii.d..#(0,1) random variables, o? = IIfiB,Ilg and
_ 1, ifk=i,
Pe =\ =1, ifk=#i.

Hence, using the independence of ¢; and {{,, k # i}, one obtains

M
D = P(M1 Y. exp(&e ol + we 0?/2) < 1/7)

(7.9) _p

M1 Z exp(s log, — & 0'2/2) < 1/27)
h=1
k#i

XP(M_ exp(f;_lo{i + 8_20'2/2) < 1/27’).
By Chebyshev’s inequality,

M
PlM1 Y exp((s'*lo' r— & 02/2) < 1/27‘)
h
7.10 M-1
( ) >1-—27 E(exp(sila'{k - & 02/2))
—1-27——— =1+0(1) ase— 0,
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since 7 — 0, as & — 0. It follows from (7.5) and the definition of M = M, that

5\° 1
(1——) (p+2)—e log—
(7.11) .
log M = —,log—(1+o(1)), e— 0.
B e

(to get the last equality, use (3.1) and the definition of D(e, 8, §) in the proof
of Lemma 10; here o(1) - 0 uniformly in 8’ € B).
Now,

P(M "exp(s ', + £ %0%/2) < 1/27)
(7.12) =P(—¢ = (g/0)[log(27) —log M + & %0%/2])
=1-2(1),

where ®(-) is the standard normal c.d.f., and, in view of (7.11),

1 1 e %2
)\a=(8/0)[(—7—?)log;(lﬁLO(l))+ 5 l

(o

<(2)|-50- 3]+ g oty

5 1 12 1/2
—Z (p+2)F} (log;) (1+O(1))

Choose B’ = B;. Then, A, > —x, as & — 0. This, together with (7.12) implies
P(M exp(a o, + & 0'2/2) < 1/27) >1-6/2

for ¢ small enough. Combining this inequality with (7.9) and (7.10), one
obtains that p, > 1 — & for ¢ small enough, uniformly over i, which, together
with (7.8) entails (A.2) for a« = 8. Therefore, for £ small enough, it is possible
to apply (A.3). It follows from (A.3) and (7.6) that

» (1-8)r(1-258)"(g8)"
(7.13) 1nf21611; }fellwgﬁE F(Y 2T, = FII2) = (1-268)" + (¢8)°r

for £ small enough. It follows from (7.7) and from the definitions of 7 and ¢
that 7q” = £7q? > &"(Yp, ../ Y+ )7 = =, as & > 0. To get (3.6), it suffices to
take the lower limits of both 51des of (7. 13) as ¢ — 0, and to note that § > 0
can be chosen arbitrarily small. O

ProoF oF (4.3). Let B’ € B_ and B” € B_ be such that 8” > B’. Con-
sider the functions fy(x) =0 and f(x)= Gy (x — x)1 — B'/B")V2
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Clearly, supp f; = (x, — DTLBW, Xo + DTzB,,O) c (0,1) for & small enough, and

~ 6\ _ | . _
o)l = (1= 5 | ERE SRy ()] o & (=),
2 5\* 1 1 , 1
(7.14) Ifillz < (1— 5) a, F — —|&* log—
) 5\2 (1 1 . 1
(i3] el - )

[cf. (7.4) and (7.5)]. Following the lines of Proposition 4 in the Appendix it is
easy to show that f; € W, for £ small enough.

Let © = {8,, 9}, where 9, = 0, ¥; = 1. For an arbitrary estimator 7, and
1 =0,1, we have

B \V2d(9, 9,
| T.(x0) — fi(xo)| = GB’,O(O)(l - F) %’

where & = (T(x0)/Gy oONA — B'/B")"'/?, and d(u,v) = (1 - &)lu — vl,
u,v €R.

Denoting E; = E; and using (7.7) with g = ', j = 0, we get

sup sup By 5| T.(x) — £(,)[")

BEB_ feW,
(7.15) = max{E0[¢/;,f0|Tg(x0)|p], E1[¢§",U0|Tg( x9) = f1( xo)lp]>
B/ p/2 R » R
> (1 - 7) max{EO[(qd(ﬁ,ﬁo)) | El[dp(a,al)]},
where
Gy (0) g5 r\V?
g == ’i(_);p’g = = wﬁr,o%rr{o(l - %) :

The last expression in (7.15) is estimated from below by use of (A.3) of

Theorem 6 in the Appendix with w(w) = u?, M = 1 and O = {9,, J;} defined

above. To apply (A.3), it suffices to check (A.2) with a =6, r=¢&", y' =

p(1—-6/21/2)X1/B8' —1/B"), @ = P; (in the rest of the proof, P, = P,-’

i=0,1). '
We have

P ﬁ>1' =P
Wap, =

e %2
exp| e o — >7

-P

(> é[logT-l- i l) =1-®(1,),
g



2450 A. B. TSYBAKOV

where ¢ ~#(0,1), @2 = ||f,l13, and, in view of (7.14),

IA

S 1 1)\ 1\1/2
=il ) )

Choose B’ = B;, B” =max{B € B: B < B*/2}. Then B" — =, A, > —x, as
& = 0, and thus P,(dP,/dP; > 7) > 1 — 8 for ¢ small enough. Therefore, by
Theorem 6 from the Appendix, for ¢ small enough, one can use (A.3) to
evaluate the last expression in (7.15). This results in

. . oy (1= 8)7(1—28)"(¢d)"
lﬁf;;lé)_ }iuVIV)BEf(wB,%ITa(xo) ~f(xo)f) = (1-25)" + (43)""

for £ small enough. Here 7q” = &7'q” > &7 () /P o)?(1 + 0(1)) — =, as
g — 0. We finish as in the proof of (3.6). O

Proor oF (3.8). Use Theorem 6(ii) from the Appendix. Fix 0 < § < 1/2
and B € B. Set M =[1/(2Dh; ;)] — 1 where D = D(¢, 3, 5), and let &> 0
be so small that M > 1. Define the functions on [0, 1] as follows

I;()B(x)EO’ fkﬁ(x):GB,l(x_xk,l)>

with x, ; = 2k — 1)Dh, |, k = 1,..., M. Similarly to (7.4), (7.5) and to the
argument after these inequalities, one gets that f,, € W;, £ =0,1,..., M,
and

(7.16)  NIfislls < (1 - 6/2)*(2/B)e% log(1/e), k=1,...,M,

and that for an arbitrary estimator 7.,

(7.17) IT, ~ figlle = Gy 1(0)d(,9,)/(1 — 5),

where 9, and d(.,-) are as in the proof of (3.6), and d = (51,...,1‘;‘M),
%, = T,(x, 1)/G; 1(0), k =1,..., M. Now, in view of (7.17) and (7.7),

(7.18) ?;V;;BEf(wgﬁlng —flZ) = OgligwEi[dp(@, 9)].

Here and later E; and P,, respectively, are used as a brief notation for E, and
P; in case f = f;;.

To apply Theorem 6@i) from the Appendix, it is enough to show that (A.4)
holds with 7= g17%/2/8 4 = §/2. (in fact, (A.1) is obvious). We have

P Py P -1 oot k=1,....M
—_— > = j— > = e
k de =T eXp & ng 2 =T, ) ) )
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where ¢, ~.#(0,1) and o? = Ilfkﬁllg. This and (7.16) entail
dP, )
Pk(d—Pk > T) >1- (D()\s),

where ®(-) is the standard normal c.d.f,, and, for any 8 € B,

. £ 5y1 1 1 5\ 1
OO B L
o 2B e B 2 &
1 172 1 1]v2
= —5|:8—B10g;:| < _BI:SBF* 10g;} — —© ase— 0.

Hence, P,(dP,/dP, > 7) > 1 — ®(—38[(1/8B)og(1/£)]1/?), which yields
(A.4). Moreover, there exist constants ¢ > 0, ¢ > 0, independent of 3, such
that for all B8 € B,

1\ 1/2k
TM208(15/2)/B(82 log—) D(a,B,S)_l
£
- 5311 1 1 log] 1 B 0
> —log— — - - 0
= Eexp| —~log— 25 oglog— el as e¢—

[here we use (3.1) and the expression for D(e, 8, §) given in the proof of

Lemma 10]. Thus, one can apply (A.5) which takes the form
5 1 , 112 ™
8BF o8 e

1-
1+M

inf max E»[d”(f} 19)] > (ﬂ)p
§ O<i<M A 2

1-36\" -
(e
where 58 > 0 does not depend on B and 58 — 0, as & = 0. To complete the
proof of (3.8) it remains to combine this inequality with (7.18). O

ProoOF OF (3.17). We act as in the proof of (3.6), with some modifications.
The definitions and notation of the proof of (3.6) are used as well. For an
arbitrary estimator 7., and for any B' € B, B’ # B, we get

sup sup E,«(l!f;{i”ﬂ - f||5)(l!fﬁ,m/¢fg,1)p
BEB feW,

= (‘/’B’,w/%’,l)p maX{Eo[(a%}{m“TEHu)p] ,

(7.19)
max E[ 42T, — £,,17] )
> (/) max{E[(a'd(9, )], mas & [a#(5. )]},
where

a= (g 1/ =) (bgr =/ V3 1), @' =aq,
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and ¢’ is defined in the proof of (3.6). Put
B’ =max{ B B: B<8BF/2}.
Condition (3.15) ensures that B’ — », as & — 0. Let us first show that

(7.20) liiriiglfmax{Eo[(q’d(f;‘,ﬁo))p], l?i%Ei[dp(é,ﬁi)]} > 1.

To show (7.20) it suffices to check the relations [cf. the proof of (3.6)]

s 112, 1\/2
(7-21) Z (p + Q)F} (log;) — 0,

(7.22) T=¢Y=0(1) wherey=[p—8(p+2)/2]/28,
(7.23) () >

as ¢ — 0. Note that (7.21) and (7.22) are straightforward in view of the
definition of B’ and of the relation (1/8)log(1/¢) — «. In view of (7.7) we
get q >y /Y .. Also, a=((p+ 2)/2)V/ B =1/8/4 > 1 and 1(q")? =
e¥(aq)? = e'a? (Y ./ Pp» ..)*. Thus, to show (7.23) it suffices to prove

p
& (Y / Yz ) =
Using Lemma 1, it is easy to show that

liminfe( B,©)BY%2 >0,  limsupc(B,»)BY?% < .
B B— e

As B’ — w and B} — w, we conclude that, for £ small enough,
[e(B.=) /e( B, =)]"
where ¢’ > 0 is an absolute constant. It follows that for £ small enough

| Ve, p_ <(B',2) ( : l)l’(l/ﬁf—l/ﬁ’)ﬂ
° Ygs C(B , ) ¢ Ogs

1 1 1
=c exp(Flog— — —loglog ) o,
as ¢ » 0. Here we used the inequalities 1/2 < B’ < 8% /2. Thus, (7.23)
follows, and consequently (7.20) is satisfied. Finally, as B’ — «», we get
W /W )P = (p + 2)/2)P1/ 2714 — ((p + 2)/2)?/?, as & — 0. This, to-
gether with (7.19) and (7.20), gives (3.17). O
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PrOOF OF THEOREM 4. Since 1° of Definition 3 with the rate

lpﬁ,O’ lfB EB—’
V(o) = g@BI-V/2B] if g = g

follows from (4.1) and (4.2), we need only to prove 2° of Definition 3 with this
V.(e).
B
Let S;(&) be such that for some estimator f;* we have (2.9) and (2.10).
First, note that 8’ in (2.10) must satisfy B’ # B (or, equivalently, 8 € B_),
since V;.(&) coincides with the ORC and hence cannot be improved. Let
B* = BF for brevity. Then, in view of (2.9),

hmsupmax{ sup Ef(S P(e)dy(fF*, f))
-0 fe

(7.24)
sup B/(Sy?(£)dg(f7*. 1)) < €

feWg.

and, since B’ # 8%, (2.10) reads as

Sy() 1\ -1/48
(7.25) C(BB—',O)(EZ log;) -0 ase—0.

Note first that using Theorem 6(ii) from the Appendix, with M = 2, it is
straightforward to prove the lower bound for fixed 8 = g/,

liminf inf sup E, (e P®P V2P dp(T,,f)) >0
e>0 T, fews,

[in fact, £@?F' ~1/2F" is the optimal pointwise rate of convergence on W, cf.
Donoho and Low (1992)]. This and (7.24) entail that there exists a constant
¢ > 0 such that

(7.26) Sy () = Ee@p - 1/28

for £ small enough. Set

r=1-28/9p'
where 0 < 8 < 1. There are two possibilities:
(1) lilgrrliglfSB*(a)/ar =
or
(ii) 3C >0 suchthat hfil(?fs (g)/e" < C,

If (i) holds, then in view of (7.26),
Sp(e) Sp-(e)
\I’B,( £) \I’B*( €)

£~ 8/9B'+1/2B% _ o

: S, 1)A-260/48"
> p(e) (log—)
c(B’,0) & &
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as ¢ — 0, which yields (2.11), with 8" = B*, and thus the theorem follows. To
end the proof we show that (ii) is not possible if (2.9) and (2.10) hold. We will
come to a contradiction with (7.24). In fact, if (i) is true, there is a sequence
&, — 0 such that

(7.27) limsupSg, (&,)/&; < C.

n— o

It follows from (7.24) and (7.27) that

C > limsup infmax{an sup E(y570(&,)dE(T.,, f)),

n—x Ts,, fEWB’

(8’;,,,/5)13 sup Ef(sn"pdg(Tgn,f))}

fEWﬁj
(7.28) :
> limsupmin{an,(a,f'_’/(_T)p}infmax{ sup Ef(L/fﬁ_y‘f’O(en)d{’)’(T‘8 ,f)),
n—o» T., feWg "

sup Eg(s,” Pdf(T,,, f))},

fE Wﬁfn

where a, = yf o(&,)/5;7(s,), Uy o(e,) = c(B', 00} log(1/e,))F =D/,
and r' =1 — §/8B". Clearly, r' — r < 0. This and (7.25) yield

(7.29) min{a,, (&5 7/C)"} == asn - .
Acting as in (7.15) and using the same notation as there, with " = B, we
find

max{ sup Ef(¢1[;r{)0(8n)dg(T8",f)), sup Ef(g;r’pdg(Tsn,f))}

fEWﬁr fEWB;k”

(7.30) 5 /2
A P A

> (1 - ,3_*) max{EO[(Qd(ﬁ,ﬁo)) ], El[dp(ﬁ,ﬁl)]},

where g = 3. o(&,)/ &, ". The right-hand side of (7.30) can be bounded from
below as in the proof of (4.3). The modification is that we replace & there by
&,, ¢ by @ and put y' = p(1 — 5/2X1/28" — 1/2B). Then
P2 —1)/4p"
7(71’=8,Z'(ip2(c(ﬁ’,0))p(log—) £, °P/8F" > o asn — .
&

Consequently, as in the proof of (4.3), we find
liminfmax{EO[(cjd(é,00))p]’ El[dp(ﬁ,ﬁl)]} > 0.

This inequality together with (7.28)—(7.30) yields a contradiction and proves
the theorem. O



SHARP ADAPTIVE ESTIMATION 2455
APPENDIX

Al. A theorem on lower bounds. Let w: [0,%) — [0, <) be a monotone
nondecreasing function. Let (0, %) be a measurable space of parameters
equipped with a pseudo-distance d(-, ) (i.e., d(, - ) satisfies the definition of a
distance, except, perhaps, the condition d(3,9') = 0 = 4 = ¢'). For an inte-
ger M > 1, consider M + 1 elements of O: 9,,,..., 9, and a family of
probability measures {P,, ¥ € @} on a measurable space (2,.%). Denote for
brevity P, = Py, k = 0,1,..., M, and let E, denote the expectation w.r.t. P,.

THEOREM 6. Let the numbers ¢ >0, 7>0, 0<6<1/2, 0 <a<1 be
fixed, and let

(A1) d(9;,9,) =1-3, i,k=0,1,...,M,i +Fk.
@) If, in addition, P, < Q and
dP,
(A.2) Q(%Z’T)Zl—a,

where @ = M~ 'YM | P,, then

irgfmax{Eo[w(qd(ﬁ,ﬂo))], lrgr}eanMEk[w(d(é,ﬁk))]}
(1—-a)rw(l—-2686)w(gd)
w(l—28) +7w(qd) ’
whenever w(1 — 28) > 0, w(q8) > 0, where infy denotes the infimum over all

measurable functions O: 2 — {9y, 94, ..., 9y}
(i) If, in addition to (A1), Py < P,, k=1,..., M, and

(A.3)

dP,
(A4) Pk(d—PkZT)Z].—a, k=1,...,M,
then
] A 1-6\(1—-a)™M
(A.5) 1r§f0£r}aanMEk[w(d(0,ﬁk))] > w( B ) Y
ProoOF. Prove (A.3) first. By monotonicity of w(-),
~ def A A
R = max{Eo[w(qd(ﬁ, 190))], 1151}eastEk[w(d(19, ﬁk))]}

> max{w(qé)PO{d(q‘A},ﬁo) 26},w(1—28)érzzlstPk{d(ﬁ,f}k) 21—28}},

In view of (A.1), if d(§, 9,) < 8, then d(§,9,) = 1 — 28, k = 1,..., M. There-

fore,

R > max{w(qS)PO{Q}, w(l—26) max Pk{f_l}}

(A.6) 1<k<M
> max{w(q8)PO{Q}, w(l - 28)Q{§}},
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where ) is the random event () = {d(ﬁ, ¥,) = 8} and Q denotes the comple-
ment of . Introduce the random event A = {dP,/d® > 7}. Then, by (A.2),

dp,
(A7) Py(Q) = %1(9) dQ = (O NA) = 7(Q(Q) — a).

Substitution of (A.7) into (A.6) gives

R > max{w(q8)7(Q(Q) — a), w(1 - 25)(1 - Q(2)))
> m'glmax{w(qé)r(t —a),w(l—-28)(1-1)}

o<t
(= a)Tw(l —258)w(qd)
 w(1-28) + Tw(gd)

This yields (A.3),
Now, prove (A.5). By monotonicity of w(-),

(A.8) Orsr}ixMEk[w(d(é,ﬁk))] > w(?)max{Po(Qo), lg}eagXMPk(Qk)}’

where Q, = {d(9, %) >0 —-68)/2}, k=0,1,..., M, are random events. Note

that Q, N Q, = &, i # k, in view of (A.1). Hence, denoting A, = {dP,/dP, >
7} and using (A.4), one gets

M M
PO(QO)ZPO{ Uﬁk} = ZPO(ﬁk)
k=1 k=1
M P, ._ M _
- ¥ [Slna,)dp, = "L P30 4,)

M
> T(kglPk(Qk) - Ma) > TM(l - 1g}eagXMPk(Qk) - a).

Together with (A.8) this yields

Jmax B [w(d(d,,))]

v

1-6
w(T)OrSntiillmax{TM(l —t—a),t}

w(l—ﬁ)(l—a)er'

2 1+M
A2. Proofs of Lemmas 5-10.

PROPOSITION 1. Let g(x) =x%(1 + x%)"2, where q,>q, >0, g, > 1.
Then, for every h > 0,

Y. g(mh)h < f:g(x) dx + 2h.

m=1
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The proof of Proposition 1 is easy, using the fact that g(x) has two
monotone pieces and max ., g(x) < 1.

ProOF OF LEMMA 5. Let us prove that for any & > 0 the estimator (3.2)
satisfies

sup | E/(f,. p) = f|. < LhP~Y2(C + 2h1/?)
(A.9) /< We
(Quar/( B — 1/2)) 77 &2,
where C = b, if B’ =B, and C =[7 (1 + (2B, — D™ H]"/? otherwise. This
entails (5. 13) and (5.14). In fact, B(B,B) =B, and B’ < B(B,B) < 2B
Therefore, since £2 log(1/¢) < 1, we have
i i , 1\ A28’ . 1 a; B/2p’ \ 1
h[f’,j = KBBf’j(é‘ log;) > KBB j€ log— (m) & log;

1
> min{l, aj(2LB€*)72}82 log— > cye’,.

except for the case j=0, B=8' == B, where the proof of the similar
inequality is stralghtforward (Here and later in this proof we write
for brevity 8 = B(B, 8"). By Lemma 4, hy% < (R)'V? < max({1, k/2}
exp(—(1/4B)og(1/¢)). These remarks, together Wlth (A.9) and the fact that
v, = o, yield (5.13) and (5.14).

It remains to prove (A.9). Since Ef(Gk) = 0, and ||l¢, .. = 272,

o0

(A.10) |B(fp) ~ Il < ACBY + 22 % oy,
k=N+1
where
= ai(B)(mh)*F
A(B) = t)|.
B = s T+ ai gy (e &)

By the Cauchy—Schwarz inequality, and in view of the definition of N,

o

o 1/2 N1-28 172

> |9k|<QW( > a;Q(B)) <@y —
E=N+1 E=N+1 2B, -1
1/2

L Y
(31_1/2)

Again, the Cauchy-Schwarz inequality and the fact that a3(B’) =
a,(Ba, (2B’ — B), entail

(A.11)

) " ) 1/2
ACBY) < (wh>6-1/2(kz az(mez) AV (),
=0
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where

o) 2 23/ _ B h 2(2[3’7[37)
M) = sup X sieb(t), = o )(7h)

——mh.
tel0,1] k=1 (1+a§(3')(77h)23)

As B < B, we find T;_, a}( )67 < Q. Thus,

(A12) A(B') < QY*(wh)P V2 AY*(h).

Now, a,_,(B) = a,(B) = k#, for k even and any B € B. Therefore,
(2mhm)*®F =P

Som-1= Sam = — 7h, m=1,2,....
(1 + (2mhm)*?")

This and the equality ¢2, (¢) + ¢2, () =2,V ¢t <€[0,1], m = 1,2,..., yield

ZSkQD}?(t)=2 Zs2m= Zg(mh)h VtE[O,l],

k=1 m=1 m=1
where i = 27h, and g(x) = x22# =8 /(1 + x2F")?. Note that this function g
satisfies the conditions of Proposition 1. In fact, 28’ > 22B’ — B), since
B=>pB', and 2B’ > 1 since B’ € B. Also, 2B’ — B8 > 0. The application of
Proposition 1 gives

Y s,0p(t) < Ay(B',B) +4mh,
k=1

where A,(B',B) = [¢ x22F' "B /(1 + x2B)2 dx. If B’ = B, then =B, and
Ay(B, B) = wb[?. Hence, in view of (A.12) and the definition of A,(h), one gets

1/2 1/2
) )

A(B) < QY*(mh)P V*(wb} + 4mh
< Lh#=?(by + 2h?).

= Lh#~/?(b; + 4h

This, together with (A.10), and (A.11), proves the Lemma for the case 8’ = 8.
If B'<B, then Ay(B,B) <1+ [ft 2 dt=1+@2B-D <1+ 2,
— 17!, and

ACBY) < QY2 (nh)P (1 + (28, - 1) ' + amh)””

< LhP-12(C + 2hV?). O

PROPOSITION 2. Let Z(t) be a stationary Gaussian random process with
mean 0 and correlation function r(¢), such that A, = —r"(0) is finite. Then

P(tes[%},)u|Z(t)| > u) < (%(Az/r(O))l/Z + el/Z)exp(_ 2:6(20) )’

for every u > 0.
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ProorF. The result is a simple corollary of the Rice formula [Leadbetter,
Rootzen, Lindgren (1986) Theorem 7.3.2] which states that

Ay 172 u?
E(N,) = (ZW)I(W) exp(— 57(0) )

where N, is the number of upcrossings of the level u by the process Z(¢) on
[0,1]. O

PrOOF OF LEMMA 6. The process Z; j(t) is a stationary Gaussian process
on R, with mean 0 and correlation function r(¢) = r(¢, hy ;), where

N/2 9 cos(2mmt
r(t,h) =&2[1+ ) ( )2 VteR, h>0.
m=1 (1 + (27mh)**)
In particular,
r(0,h) =e%(1+ T, +1y),
where
> 2
1_‘1 = Z 2512
m=1 (1 + (2mmh) )
and
Tyl < i #<(7h)71]&o t’4Bdt<L<1
2= m=N/2+1 (27Tmh)4ﬁ B N/2 B Whmin,sN B
Vhiz=hg,,-

Here we used the assumption (5.2). It is easy to see that, for any A > 0,
h'vf —1<Ty <h 'ug.

Hence, |r(0, ) — £*h~'v}| < 2£”, for any h > h This entails

r(0,hg ;) 2% 2n*
(A.13) — B < <2<, j=0,1,%
rBJ rB,j Umin

by virtue of (5.11) and of the definition (5.5) of §,,. Simple calculations yield
the following estimate of the second derivative of the correlation function

(2mm)’
1(1+ (27mhy )")

(A14) Ay =|r"(0)] < cpe? ) 5 < cllszhgi.

The first inequality of the lemma follows immediately from Proposition 2 and
(A.13), (A.14). The second inequality follows from the first one. In fact, it
suffices to use the relation

E(Zp,1{Z, ;2 u)) =p[ t"'P(Z, ;= t) dt,
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and to note that, for any ¢ > 0, p > 0,
(A.15) fxtp exp(—t?/2) dt < C(p)exp(—a®/2),
where C(p) > 0 depends only on p. O

Proor oF LEMMA 7. Note that Z; ((x,) is a normal random variable with
mean 0 and variance r(0, A4 ). It follows from (A.13) that

r(0,hg0) <750(1 + 8,9) <715,0/(1 = 8,)-
Now, to prove the lemma it suffices to use (A.15). O

PrOOF OF LEMMA 8. By definition of [§ :

sup Pf('éj = 7) Y. suppi(B,y) < cfjll"d(B)malX sup p;(B',7),
feWs B'€B, fEW, €B rew,
B'<vy B <y
where

pi(B,y) =Pdi(fey o fepr;) > m(B)),  J=0,,

v’ = y'(y) is the element of B: y' = y'(y) = min{ 8 € B: B > vy} closest from
above to y and card(B) < B*/A, + 1. Hence, to prove the Lemma it is
sufficient to show the relation

(A.16) sup p;( B',y) < cpe?/?,  j=0,%.

feWwg

First, prove the following auxiliary result.

PROPOSITION 3. Let v,B,B' €B, B’ <y<B, B=B(B,B), v' =7'(y)
and y = B(B,v"). Then

h;?’jjl/z/nj( :8,) = 881’ hz:}/z/”’]j( :8,) = 881’ .] = O,oc’

where 8, = cq5 exp(—7,/8).

PROOF OF PROPOSITION 3. Since 3 > ' and since, by Lemma 4, h, ; < Ay ;
VB € B, j = 0,x, one obtains

hB 1/2 (hB* ,)Bfﬁrhlf,';l/z.

Here, by (5.11) and Lemma 1,

&

- , ~ , ]_ _ 1
hpo k< max{l, kf? }exp TR (B~ B')log~

IA

1 - 1
max{l, KB* .1/2}exp(— TR (B- ,B’)log;)

IA

1 - 1
max{1, Kmax}exp(— TR (B- B/)log;).
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Hence,

1 . 1 -
s (B B o, |12
Now, B> B’ + A since B is a discrete set with the step at least A, and
B’ < B. This, the inequality A < 1 and the definition of B8 yield
B> B +min{( B, +1/2)/2,A)} > B’ + min{1/2,A} > B’ + A/2.

Hence,

hlg?jl/z = max{l, Kmax}exp -

1 | 1 . A . 1 A ) 1 8
— — 3" > - > — =10
2p7 08, (P = B) = qpzloer > grogloer = 0./8,
and
(A.17) hf 1% < max(1, k. exp(—1,/8)hf 512,

Similarly, considering in turn the cases y' < 8 and v = B(=y=v' = B)
we find

(A.18) hY~ /% < max{1, k,,, exp(—17,/8)}hY M2
It follows from (A.17) and (5.9) that
M1y BY) = max(L, ) exp( —7,/8) /[ L(2B’ — 1)"0, ]

< (max{l, Kmax) /| L(2B; — 1)1/2vmm])eXP( ~1,/8).

This shows the first inequality of Proposition 3.
Next, in view of (5.10) and of the fact that 8’ < vy,

1/2 1/2
2 2
N I T U

y' vih ) h

1/2

v, min v,

(A.19)

< vmaxcl/2exp _E .
B Umin ' 4
Finally, (5.9), (A.18) and (A.19) entail [excluding the special case with
j=0and y= vy’ = B* where (5.9) does not applyl:

R Y2/ (B < |1+ Kinas exp(—f)]/[uzw - 1)”%])

8

"b’(?”)
T/j( :3,)

< 1+ Kmax Unax c%/zexp(— E),
L(2IBI - 1)1/2Umin Unin 4
which shows the second inequality of Proposition 3 (it is easy to see that in

the case j = 0, ¥ = y' = B the last inequalities also hold, but with different
constants). O
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ProOF OF (A.16). Recall that d.(f, g) =IIf — gll. and d,(f, g) =1f(x,) —
g(xy)l. In view of Lemma 5 and Proposition 3,

di(fory i feoprs) <|B (L) = £+ B (o) = 1

+Z, +Z,
B', ,
(4.20) B—]1/2 ' ]~—1/2 7 7
< cy(hf 12 + hi7 ] ) +Zg i+ 2,
<2¢,8,m(B)+Zy ;+Z,,;, j=0,=
Hence,
(A21) p](Blay) SIjl,j_‘_l)ZJ‘; j:():oo’
where

b1, = P{ZB’,j = ”’Ij( B (1 - 302‘11)}: P2 ;= P{Zy ,j = C2 81”'7J( B’ )>

Let us evaluate separately p, ; and p, ;.

Evaluation of p, , and p, ... By Lemma 6

(A.22) p, . <cshg' exp

~ gy, (BN~ 3e28:)°(1 - %)),

and by Lemma 7

1

(A.23) P19 =¢C5 exp( "9 ng( B)(1 - 302531)2(1 - 830))-
B',0

Here

(1 -3¢, 381)2(1 8,0) =1 —6¢y8,, —8,0=1—cyexp(—7/8),

and
, 2
9 7712( IB )(1 - 302881) (1 - 3‘s‘O)
g
1 | 1 1 . 1 - 8
> —_— RN p—
YT a; log— Y 5g7 @Culog— exp( —7,/8)
1 1 1 v,
> —a; log — €150,9, j =0, where 8, , = log—exp| — —
2B’ ’ e

Substitute this expression with j = « into (A.22) and note that o, =p + 2.
This gives

Py = h[;'loogl/ﬁ/“/'p/w, exp(€158,5) < CyKpiy exp(cy58,5) P/ 2P
(A.24)

p/2vy p/27
=< C4 Kmin exp(CIS 82)8 = Ci6€

where the last inequality is due to the relation 8, = 0(1), as ¢ — 0, that
follows directly from (3.1).
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Similarly, if j = 0 (¢, = p), then
(A.25) P1o < c5eP/?P exp(cy58,,) < cyreP/?.

Evaluation of p, , and p, .. By Lemma 6 and Lemma 7

T’o%( B")(cy 531)2(1 - 580))a

-1
Do o <C h . exp| —
2,0 = AT 2r., .

Y

(A.26)

2r

v',0

7]3( B")(cs 681)2(1 - 580))-

Using the inequality §,, < 1/2, the definition of §,;, (5.10) and the in-
equality loglog(1/¢) > 1, one gets

n2(B")(c38,1)°(1 = 8,9)

P20 =¢C5 exp( -

2rv',j
1 1({vih, . 7
B s &
> (62013/2)2Faj log; vzhy J)exp(—z)
vIBL T
_1( €2€13 \*( Umin 21 1 v, 1
ch( 9 ) » Fajlog;exp Z ZAEIOg;,

where A, = c,4( ) ! exp(#,/4). Substitution of this result into (A.26) gives

1 , 1
Po.» < cihyt exp( —A, log—) <cy Kk le VY exp( —A, log—)
’ ’ & &
and
1
Do o < csexp|l —A, log—|.
’ &

Note that A, - » as ¢ = 0, since 7,/log B} > v,. Therefore,
P, < Cig8?/?,  j=0,%.

This, together with (A.21), (A.24) and (A.25), proves (A.16).

ProOF OF LEMMA 9. By use of (5.14) one has
1 ) 1
4g* 8,

+ Z ...

(A27)  f, g~ —fle <bB)

Choose &, = £,(5) so that

1+ cgexp(—

1 1
max{880,03 exp(— 43*10g—)} <o
) €

for all ¢ € (0, &). In view of (5.8),
1

4B

wﬁ,ocu - bao( B)

1
1+(33exp(— 10g—))2u”floc(3),
&
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if u >1+ 6 and & € (0, gy). Using this inequality, (A.27) and Lemma 6, one
gets, for u > 1 4+ 8 and £ € (0, &),

P tllf, g — flle = u}

1
log—
&

IA

1+cq exp(—

Pf{bw( B) +Zy ., > %,mu}

4B

IA

8 . u? 1.1
Pf{ZB,w > un.( ,8)} <cyhg . exp|— ?(p + Z)Elog;(l - 8,9)

2
ekt e VP exp Y (p+ 2)llogl(1 — 8,0)
min 2 B e &

IA

1. 1|d?
< cyKpin exp| — —log— ?(p+2)(1—680) - 1{].
e

min ﬁ
The condition §,, < min(§, 1/2) entails
2 u2

u ) p pu?
S (P2 (1= 8,0) 12 (148)(1-58,) — 1+ =~

for all £ € (0, &) and v > 1 + 6. Hence,

Pf{l!/[;,loc”fg,g,oo —fll. = u} < ¢, Kol exp

puz1 1
R
(A.28)

2 P 1
<c,exp|l—u 15 log; ,

and the first inequality of Lemma 9 follows.
Using (A.28) we get, for all ¢ € (0, &),

Ep (9520 f. 5= —FIZ) < (1+6)" + f(1+3)pr{¢g,1c||fg,B,w — fll. = ¢V/?) de

@ p
<(1+8)"+¢
(L+8)" +ef i
Since the last integral is of the order O(( 8} /log(1/£))?/?) = o(1), as & — 0,
the lemma is proved. O

1
exp(—tz/‘” log—) dt.
&

ProoF oF LEMMA 10. Using (7.1), (7.2) and (5.3), one gets

KI5 = stsy Ko gl3 =1, IKEPIE = sts3? IKGAIE = 1.
Another application of (5.3) yields
KB(O) = 81'/; TMZB dt = 2#81(05 + bg) =2B(28 — 1)—(23—1)/413[)3.

Thus, (7.3) follows.
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Next, consider the function g,(¢) = H|¢| < 1/2}, and its m-fold convolution
gk =gy,* -+ *g,, where m > 1is an integer. Put

gﬁ(t) = Cgllglk[ﬁ]+4(t)’
where Cg; = g7 5+ 4(0). Note that

o = (1 sin(w/2) ‘”B”“d
Bl_f 27 w/2 ©

— o0

: Ap1+a
LM) de > 7 GLBI+D

= «[w|<,-,( 27 w/2
since (sin(w/2))/(w/2) = 2/ for |w| < = (with sin0/0 = 1). In the sequel

Cg;, 1 = 1,2,..., are positive constants depending only on B. The function g,
has the following properties:
(A.29) gg(0) =1,
(A.30) supp g5 = (—2([ B] + 1), 2([ B] + 1)),
(A.31) 8,(w) = C[ﬂl(iM)ﬂﬁ]-ﬂi'
27 w/2

Let D, > 1 be a fixed number. Set
Kl,ﬁ(t) =K3(t)gﬁ(t/D0).
The Fourier transform of K, ; is
K, (o) = [ Es(u)Dods(Do(u ~ w)) du.

Since K,(u) = sy55'K, 5(s3u) = sys51 /(1 + |u/s,**) and [g,(r) dr =
g5(0) = 1, one gets

|, 4(0) — Ky(0)]

1A 1 1
8185 /gﬁ(T) — dr

<
(A.32) 1+|(7/Dy + 0)/s,["* 1+ lw/s,|*F

<|By(o)|[|85(7)|A(7, 0) dr,
where
|lw|*® —Ir/D, + wl**|
s28 +|7/D, + o|*?

A(t, w) =

max(|wl, Ir/Dy + wl)*?

28— 1+ |r/D, + o|**

< 2Blr/D,|
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If || < 2|7/D,| we have A(1, w) < 3%FCp,|7/D,|**, where sup, . 5 Cyy < . If
|w| > 2|7/D,| one obtains |7/D, + | > |w|/2, and therefore in this case

281

A(T,w) < 2B|T/D0|I;1>a())( 2511 (x/Z)ZB
where supg . 5 Cy3 < . Thus, for all 7 and o,
(A.33) A(7, ) < 3%Cy,lt/D|(1 + /Dy |**71),
where supg . 5 Cyy < .

Together (A.32) and (A.33) entail
B, p(0) — Ky(o)]
< 335034 Kﬁ(w)|/|gAB(7)||T/DO|(1 + |’T/D0|26_1) dr.
Now, due to (A.31), for s = 1 or s = 23, one gets
1 sinu )4[3”4

2 fll| 55

Considering separately integration over |u| < 7/2 and |u| > 7/2, one easily
finds that the last expression in square brackets is bounded uniformly in
B € B. Since also C;i' < w¥P1*7 and D, > 1, (A.34) implies

(A35) |K; z(0) — Ky(w)l < 41FCy5 K, (0)l/Dy = CylKz(0)l/Dy Vo,

where supg c p Cg5 < , Cgg = 4MPCy;.
Set

< 23BCB3|T/D0|

(A.34)

dul.

[1&s(0)]I7l* dr = ¢3!

D, = max(1, 4"'%(2/8)sup, < 5Cys),
D=D(s,B,8)=2([B] +1)D,
and
Ky(t) = (1 + Cye/Dy) (1 - 8/2)K, 4(t).

Let us check that I?B satisfies (1)-(iv) of Lemma 10 if D, (resp., D) is large
enough. Using (A.30), one gets

supp I?B = supp Kl,B = supp gB(~/D0) = (—-D, D).
This proves (i) of Lemma 10. Next, (A.35) entails
(A.36) |B, ()| < (1+ Che/Dy)| By ()]
which yields (ii) of Lemma 10. Now, in view of (7.3) and (A.36),
1=Kylls = (1 + Cse/Dy) ' IK; gl = 1 K5lla(1 — 8/2) 7,

which yields (iii) of Lemma 10. It remains to observe that (iv) of Lemma 10
follows from the relations

K4(0) = K, (0)(1 + Che/Dy) (1 - 8/2) = K, (0)(1 - 8),
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where we used (A.29) and the inequality D, > 2Cg4/8. To check (v) of
Lemma 10 note that, for any 8 € B, j = 0,1, >, and & small enough, one has

Dhy ;< D, ,8;“41135(szlo,glri)l/zﬁgk

where D, > 0 is a constant depending only on L, 3;, p. The last expression
tends to 0 as £ — 0 in view of (3.1).

ProposiTION 4. Let B B, § €(0,1), j €{0,1,%} and let f € L,(—, %) be
a function such that supp f € [0, 1] and the Fourier transform of f satisfies

1f(w)l < (1 - 8/2) LRSS V2IKy(why ).

Then there exists &' € (0,1) independent of B such that for 0 < ¢ < &’ we
have f € W;, B € B.

PrOOF. Put for brevity h = TLB, ;- Since supp f < [0, 1] we have

2
-1
:(87T2) (05‘1,1"'6221), l:1,2,...,

R 1 4
|F(2mi)? =‘%j01f(x)eﬂm dx

where 6, are the Fourier coefficients of f, see Section 2. Thus,

o]

Y a2(B)of= ¥ (20)2 (64 1 + 02) = 82 Y (21)%*|f(2ml)P

k=0 =1 =1
< 8w%(1-8/2)° LY, (21)*’n2F* YK (2mlh)I?
=1

_AY (b M
1221( : (1+ (1)’

where A = 47 (1 — §/2)*L?m ?Ps?s2f~1 and h' = 2mh /s,. Thus, by Proposi-
tion 1 and (5.3)

o

L ai(B)o <A

k=0

t28
dt + 2h'

fo (1 + ¢28)°
= A(mbZ +2h') = (1 - 8/2)°L*n 2F + 2AR'.

To finish the proof it remains to note that @, = L?>72F and that, uniformly
in BEB, j=0,1,,

. 1\ 1285
AR'/Qp < Q*ﬂ'zﬁ;(szlog—)
£

where Lemma 1 was used and @, > 0 is a constant depending only on L, B4,
p. The last expression tends to 0 as £ —» 0 in view of (3.1). O
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