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In this paper, the computation of the exact Fisher information ma-
trix of a large class of Gaussian time series models is considered. This
class, which is often called the single-input–single-output (SISO) model,
includes dynamic regression with autocorrelated errors and the transfer
function model, with autoregressive moving average errors. The method is
based on a combination of two computational procedures: recursions for the
covariance matrix of the derivatives of the state vector with respect to the
parameters, and the fast Kalman filter recursions used in the evaluation
of the likelihood function. It is much faster than existing procedures. An
expression for the asymptotic information matrix is also given.

1. Introduction. This paper is devoted to the exact Fisher information
matrix of a time series �yt� t = 1� � � � �N� generated by a single-input–single-
output (SISO) process defined by the equation

α�L�
β�L�yt =

ω�L�
δ�L� xt +

θ�L�
φ�L�et�(1)

where xt is an explanatory variable, and the et are normally and independently
distributed random variables with mean zero and constant variance σ2. Let L
be the lag operator. The model depends on σ2 and on d = n+m+s+r+q+p+1
parameters, which are the coefficients of the polynomials α�L� = 1 − α1L −
· · · − αnL

n, β�L� = 1 − β1L − · · · − βmL
m, ω�L� = ω0 − ω1L − · · · − ωsL

s,
δ�L� = 1 − δ1L − · · · − δrL

r, θ�L� = 1 − θ1L − · · · − θqL
q and φ�L� = 1 −

φ1L− · · · − φpL
p, stored in a d× 1 vector λ, in the specified order. Denoting

transposition by superscript T, λT = �αT�βT�ωT� δT� θT�φT�� where αT =
�α1� � � � � αn�� βT = �β1� � � � � βm�� ωT = �ω0�ω1� � � � � ωs�� δT = �δ1� � � � � δr��
θT = �θ1� � � � � θq�� and φT = �φ1� � � � � φp�� The model does not need to be
used with all the polynomials, but it includes large classes of models: the
autoregressive moving average (ARMA) model �n = m = r = s = 0�, the
ARMAX model �m = r = p = 0�, the regression model with autocorrelated
errors �m = r = 0� and the transfer function model �n = m = 0�. The first
order derivative of a scalar with respect to a column vector such as λ will be
represented as a column vector.

Let l�λ� be the likelihood function of the sample. The information matrix

J = −E
(
∂2 log l
∂λ ∂λT

)
�
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evaluated at the true unknown value of λ, is useful for obtaining the Cramér–
Rao (lower) bound (CRB) of the estimated parameter vector λ̂. Hence, a good
estimate of its asymptotic covariance matrix is J−1, assuming that the esti-
mation method yields asymptotically efficient estimators. Most practitioners
rely on the observed asymptotic information

J = −∂
2 log l
∂λ ∂λT

�

obtained numerically within the optimization procedure that gives the esti-
mates. The usefulness of the covariance matrix of the estimated parameters
can be (a) experimental design, for example, determination of the number of
observations for achieving a given accuracy [Dharan(1985)] or (b) Wald tests
for the parameters, including tests for restrictions and the problem of zero
pole cancellation [Klein and Spreij (1996)].

Obtaining algorithms for computing J has attracted attention in the
statistical literature [e.g., Godolphin and Unwin (1983); Klein and Mélard
(1989, 1990)], in engineering [e.g., Friedlander (1984); Pham (1989)], mainly
for ARMA models, and also recently in econometrics. There have been some
extensions to wider classes of models such as the vector ARMA or VARMA
model [Newton (1978)], the SISO model [Klein and Mélard (1994a)], the
multiple-input–single-output (MISO) model [Klein and Mélard (1994b)] and
even VARMA models with complex linear restrictions [Mittnik and Zadrozny
(1993)]. Many authors have used an approximation of the Gaussian log-
likelihood based on the innovations sum of squares. This contrasts with
the current practice of using the exact Gaussian likelihood, motivated by
experiments of Ansley and Newbold (1980) and others.

It is well known that the asymptotic information matrix can be obtained
using second order properties of the process. After the pioneering paper of
Whittle (1953), there were attempts to obtain closed forms. The common point
of most of these algorithms is to rely on the evaluation of covariances be-
tween two processes built on the same white noise process, either using a
direct approach (more or less equivalent to an Euclidean algorithm) or using
the evaluation of integrals of a rational function over the unit circle of the
complex plane. In Klein and Mélard (1994a), the SISO model is considered,
but the explanatory variable xt is random, which forces us to select an ARMA
specification for it. In this paper, an alternative and much simpler expres-
sion is given, conditionally with respect to xt, in accordance with the general
practice for inference in regression models.

We are mainly interested in this paper in the exact information matrix J.
Porat and Friedlander (1986) have given a procedure for a model defined by

yt =mt +
θ�L�
φ�L�et�

where mt is a deterministic sequence. Their algorithm needs, however, a num-
ber of operations proportional to N2. This can be quite expensive when N is
large.
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The problem has also been solved for a larger variety of models by Zadrozny
(1989, 1992) and Terceiro (1990), using a state space formulation, but the
closed form recurrences are given for each element of the information matrix,
not for the information matrix as a whole, and the algorithms used are not the
most efficient. For the SISO model, our approach is better because the specific
parametrization is taken into account, the algorithm implies a smaller number
of operations, and the given matrix recurrences produce the whole information
matrix. These three points are discussed more thoroughly in the conclusion.

The algorithm stated in this paper is an expanded and improved version
of a procedure sketched by Mélard and Klein (1994), where it was given for a
stationary Gaussian (ARMA) process zt of order �p�q� defined by

φ�L�zt = θ�L�et�
A much more general model is used with complete and detailed closed form
recurrences and their initial values are presented in a more elegant way. Fur-
thermore, both the asymptotic and exact information matrices are considered.

The algorithm for the exact information matrix needs only a number of
operations proportional to N, that is, an order of magnitude less than Porat
and Friedlander (1986), by relying on a state space representation, recursions
for the covariance matrix of the derivatives of the state vector with respect to
the parameters and the fast Kalman filter recursions used in the evaluation of
the likelihood function of a Gaussian ARMA time series [e.g., Mélard (1984)]
and its derivatives [Mélard (1985); Kohn and Ansley (1985)]. Of course, there
are six polynomials instead of only two.

This article is organized as follows. In the next section we formulate the
model. In Section 3, a general expression for the information matrix for SISO
models is given. The asymptotic version of the information matrix is described
in Section 4, whereas in Section 5 the recurrence equations necessary for
computing the exact information matrix for SISO models are provided. The
conclusion is found in Section 6.

2. The model The SISO model defined in (1) can be written as

α�L�δ�L�φ�L�yt = ω�L�β�L�φ�L�xt + θ�L�β�L�δ�L�et�(2)

Let us denote mt by

mt =
β�L�ω�L�
α�L�δ�L� xt(3)

and wt by

wt = yt −mt =
β�L�θ�L�
α�L�φ�L�et�(4)

Let us first suppose that data are available for yt and xt for t = 1� � � � �N�
Therefore, mt can be computed for t > max�m+ s� n+ r�. In order to simplify
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notation, we shall rather suppose that yt� mt and xt are available, respectively,
for t > 0� t > −�n+ r� and t > −�m+ s��

3. The general expression for the exact information matrix. Let us
denote by y, m and w the vectors composed, respectively, of yt, mt and wt,
t = 1� � � � �N. The log-likelihood from time 1 to time N can be written in the
form

log l = −N
2

log�2π� − 1
2

log�det!� − 1
2
wT!−1w�(5)

where ! is the covariance matrix of the zero mean vector w. The element �i� j�
of the exact information matrix J can be written as [see Porat and Friedlander
(1986)]

Jij = 1
2

Tr
{
!−1 ∂!

∂λi
!−1 ∂!

∂λj

}
+

[
∂m

∂λi

]T
!−1

[
∂m

∂λj

]
�(6)

The algorithm of Porat and Friedlander (1986) makes use of the Levinson–
Durbin algorithm for computing the orthogonal polynomials of a Toeplitz
matrix.

We consider the sequence of Euclidean spaces �t spanned by �w1�w2� � � � �
wt�, t = 1� � � � �N, with the covariance as the scalar product. The orthogonal
projection of wt in the subspace �t−1 is denoted by ŵt. Let ât be the difference
between wt and ŵt, which is orthogonal to �t−1. It is called the sample innova-
tion at time t. Let htσ be the standard deviation of ât and let the normalized
sample innovation be êt = ât/ht, with mean zero and variance σ2. The êt and
the ht can be obtained by the Gram–Schmidt orthogonalization procedure or
any procedure which yields equivalent results. For example, the Cholesky fac-
torization can be used instead, especially in the case where the covariance
matrix is a band matrix (which corresponds to a pure moving average pro-
cess). For a suitably specified model, the Kalman filter is also well adapted.
These algorithms are computationally more efficient than the Gram–Schmidt
procedure.

The likelihood function is built as the density of w. Equivalently, it can be
written as the density of the vector ê with general element êt, multiplied by
the Jacobian of the transformation, which is

∏N
t=1 ht. Hence the log-likelihood

from time 1 to time N can be written in the form

log l = −N
2

log�2π� −N log σ −
N∑
t=1

log ht −
1
2

N∑
t=1

ê2
t

σ2
�

The information matrix is equal to minus the mathematical expectation of the
matrix of second derivatives of the log-likelihood,

∂2 log l
∂λ ∂λT

= −
N∑
t=1

1
ht

∂2ht
∂λ ∂λT

+
N∑
t=1

1

h2
t

∂ht
∂λ

∂ht
∂λT

− 1
σ2

N∑
t=1

∂êt
∂λ

∂êt
∂λT

− 1
σ2

N∑
t=1

êt
∂2êt
∂λ ∂λT

�
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It can be written as

−E
(
∂2 log l
∂λ ∂λT

)
=

N∑
t=1

1
ht

∂2ht
∂λ ∂λT

−
N∑
t=1

1

h2
t

∂ht
∂λ

∂ht
∂λT

+ 1
σ2

N∑
t=1

E

(
∂êt
∂λ

∂êt
∂λT

)
+ 1
σ2

N∑
t=1

E

(
êt

∂2êt
∂λ ∂λT

)
�

(7)

The sequel of this section is devoted to evaluating the last term of the
right-hand side of (7) and to obtaining a closed expression for the third term.

From (4), wt is an ARMA�n + p�m + q� process. We consider the decom-
position of wt onto �t−1 using the ês, s ≤ t, as an orthogonal basis. For time
t ≥ 2 we have

htêt + ŵt = wt�(8)

whereas w1 = h1ê1. Hence, differentiation of (8) yields

∂ht
∂λ

êt + ht
∂êt
∂λ

+ ∂ŵt

∂λ
= ∂wt

∂λ
(9)

= −∂mt

∂λ
�(10)

because of (4). Differentiating a second time gives

∂2ht
∂λ ∂λT

êt + ht
∂2êt
∂λ ∂λT

+ 2
∂ht
∂λ

∂êt
∂λT

+ ∂2ŵt

∂λ ∂λT
= ∂2wt

∂λ ∂λT
�(11)

The inference being conditional on the regressor variable, mt defined by (3) is
not considered as a random variable, and since the normalized sample inno-
vations have zero mean, we deduce from (10) that

∂ht
∂λ

E
(
ê2
t

)+ htE

(
∂êt
∂λ
êt

)
+E

(
∂ŵt

∂λ
êt

)
= 0�

Since ∂ŵt/∂λ ∈ �t−1,

htE

(
∂êt
∂λ
êt

)
= −∂ht

∂λ
σ2(12)

and, similarly from (11) and (12),

E

(
êt

∂2êt
∂λ ∂λT

)
= − 1

ht

∂2ht
∂λ ∂λT

σ2 − 2
ht

∂ht
∂λ

E

(
∂êt
∂λT

êt

)

= σ2
(
− 1
ht

∂2ht
∂λ ∂λT

+ 2
1

h2
t

∂ht
∂λ

∂ht
∂λT

)
�

(13)

Summarizing (7) and (13), we have

−E

(
∂2 log l
∂λ ∂λT

)
=

N∑
t=1

1

h2
t

∂ht
∂λ

∂ht
∂λT

+ 1
σ2

N∑
t=1

E

(
∂êt
∂λ

∂êt
∂λT

)
�(14)
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Note that ∂ht/∂δ and ∂ht/∂ω are equal to zero since the parameters of the
transfer function ω�L�/δ�L� play no role in the error model, and that second
order derivatives do not appear in the final expression.

We are now left to evaluate the expectation of the product �∂êt/∂λ��∂êt/∂λT�
as a function of �∂ŵt/∂λ��∂ŵt/∂λ

T� for each t using an equation which can be
deduced from (9). Indeed, since (10) and the fact that the projections ∂ŵt/∂λ
have zero mean,

h2
tE

(
∂êt
∂λ

∂êt
∂λT

)
= E

([
∂ŵt

∂λ
+ ∂ht
∂λ

êt +
∂mt

∂λ

][
∂ŵt

∂λT
+ ∂ht
∂λT

êt +
∂mt

∂λT

])

= E

(
∂ŵt

∂λ

∂ŵt

∂λT

)
+ ∂ht
∂λ

∂ht
∂λT

σ2 + ∂mt

∂λ

∂mt

∂λT
�

(15)

There remains to obtain recurrence equations for ∂mt/∂λ and for
E��∂ŵt/∂λ��∂ŵt/∂λ

T��. This is done in the Appendix for the former and
in Section 5 for the latter. In Section 4 we obtain a simpler expression for the
asymptotic case.

4. The asymptotic information matrix. As noted earlier, there is no
published procedure for the asymptotic information matrix for the general
SISO model except in Klein and Mélard (1994a), where the regressor is as-
sumed to be stochastic. For the sake of comparison with the exact information
matrix, we shall briefly adapt the technique described there to the case of
inference conditional to the regressor.

Let us differentiate (4) with respect to λ, giving

− ∂mt

∂λ
−

(
∂

(
β�L�θ�L�
α�L�φ�L�

)/
∂λ

)
et −

β�L�θ�L�
α�L�φ�L�

∂et
∂λ

= 0�(16)

hence

∂et
∂λ

= −α�L�φ�L�
β�L�θ�L�

∂mt

∂λ
−

(
∂

(
β�L�θ�L�
α�L�φ�L�

)/
∂λ

)
α�L�φ�L�
β�L�θ�L� et(17)

and, noting that êt and et are asymptotically equivalent,

E

(
∂êt
∂λ

∂êt
∂λT

)
= E

[{(
∂

(
β�L�θ�L�
α�L�φ�L�

)/
∂λ

)
α�L�φ�L�
β�L�θ�L� et

}

×
{
eTt
α�L�φ�L�
β�L�θ�L�

(
∂

(
β�L�θ�L�
α�L�φ�L�

)/
∂λ

)T}]

+
(
α�L�φ�L�
β�L�θ�L�

∂mt

∂λ

)(
α�L�φ�L�
β�L�θ�L�

∂mt

∂λ

)T
�

(18)

which should be introduced in (14).
Let us consider the first term, since an equation for ∂mt/∂λ has been ob-

tained in the Appendix. The derivatives are easily simplified. For instance,
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the ith element of

∂

∂φT

(
β�L�θ�L�
α�L�φ�L�

)
α�L�φ�L�
β�L�θ�L� = − 1

φ�L�
∂φ�L�
∂φT

is φiL
i/φ�L� and the jth element of the derivative with respect to βT is

−βjLj/β�L�. The derivatives with respect to ωT and δT are identically equal
to zero. The element of the first term of the right-hand side of (18) correspond-
ing to φi and βj is given by

−φiβjE
[
φ−1�L�et−iβ−1�L�et−j

]
�(19)

which can be computed as the covariance at lag �i−j� between two autoregres-
sive processes with respective autoregressive polynomials φ�L� and β�L� built
on the same white noise process et with variance σ2. See Klein and Mélard
(1994a) for more details and Tunnicliffe Wilson (1979) for an algorithm.

All the elements of the first term of the asymptotic information matrix,
established in (18), can be summarized in a general form, with the notation
given in the Appendix, as

1
2πi

∮
γ
M�λ��z�dz

z
�

where γ is the positively oriented unit circle and

M�λ��z�=




Mn�z−1�MT
n �z�

α�z−1�α�z� −Mn�z−1�MT
m�z�

α�z−1�β�z� 0 0 −Mn�z−1�MT
q �z�

α�z−1�θ�z�
Mn�z−1�MT

p �z�
α�z−1�φ�z�

−Mm�z−1�MT
n �z�

β�z−1�α�z�
Mm�z−1�MT

m�z�
β�z−1�β�z� 0 0 −Mm�z−1�MT

q �z�
β�z−1�θ�z� −Mm�z−1�MT

p �z�
β�z−1�φ�z�

0 0 0 0 0 0

0 0 0 0 0 0

−Mq�z−1�MT
n �z�

θ�z−1�α�z�
Mq�z−1�MT

m�z�
θ�z−1�β�z� 0 0

Mq�z−1�MT
q �z�

θ�z−1�θ�z� −Mq�z−1�MT
p �z�

θ�z−1�φ�z�
Mp�z−1�MT

n �z�
φ�z−1�α�z� −Mp�z−1�MT

m�z�
φ�z−1�β�z� 0 0 −Mp�z−1�MT

q �z�
φ�z−1�θ�z�

Mp�z−1�MT
p �z�

φ�z−1�φ�z�




�

5. The state space approach. This section consists of an expanded and
improved version of a procedure sketched in Mélard and Klein (1994). The
objective is to obtain a recurrence for E��∂ŵt/∂λ��∂ŵt/∂λ

T��. This will be done
using a fast version of the Kalman filter [named after Chandrasekhar; see
Morf, Sidhu and Kailath (1974)], which is well adapted to the time invari-
ance of the model in state space form. The approach is generally used in
fast algorithms for evaluating the exact likelihood function of an ARMA pro-
cess. Since all the recurrences bear on vectors instead of on matrices in the
usual Kalman filter, they are suited to differentiation. As a side-product, the
∂ht/∂λ, which are also needed in (15), will be produced. In the present case,
wt is an ARMA�n+p�m+q� process with AR and MA respective polynomials
ρ�L� = α�L�φ�L� and µ�L� = β�L�θ�L�.
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There are several nearly equivalent state space representations. We use
the same representation as Pearlman (1980) and Mélard (1984), using a state
vector Wt of dimension g = max�n+ p�m+ q+ 1� written as

wt =HWt�

Wt+1 = FWt +Get+1�

where H = �1�0� � � � �0�, GT = �1�−µ1� � � � �−µg� and F = �Fi�j� is a g × g
matrix such that Fi�1 = ρi and Fi�j = δi� j−1 �j = 2� � � � � g� for i = 1� � � � � g,
using Kronecker’s δ and the convention that ρi = 0, i > n + p, µ0 = −1 and
µi = 0� i > m+ q.

The vector Ŵt is defined by the projection of the elements of Wt onto �t−1.
It can be computed using the Chandrasekhar recurrences

Ŵt = FŴt−1 + �Kt−1/ht−1�êt−1�(20)

ŵt =HŴt�(21)

htêt = wt − ŵt�(22)

νt−1 =HLt−1/h
2
t−1�(23)

Kt =Kt−1 − νt−1FLt−1�(24)

Lt = FLt−1 − νt−1Kt−1�(25)

h2
t = h2

t−1�1 − ν2
t−1��(26)

The initial conditions are the following. Denoting γk = cov�wt�wt−k�/σ2

and τk = cov�wt� et−k�/σ2 [see Mélard (1984) or Demeure and Mullis (1989)
for algorithms], and

ψk =
g∑
j=k

(
ρjγj−k+1 − µj−1τj−k

)

and ψg+1 = 0, then take Ŵ1 = 0, h2
1 = γ0 and ρkγ0 +ψk+1 as the kth element

of K1 = L1 [see Mélard (1984)].
We denote the derivative of a g× 1 column vector z with respect to a d× 1

column vector λ as the gd× 1 column vector defined by(
∂z

∂λ

)T
=

((
∂zT1
∂λ

)T
� � � � �

(
∂zTg

∂λ

)T)
�

That notation is not the one recommended in Magnus and Neudecker [(1988),
Section 9.3-4], but is appropriate for the problem studied in this paper.

In order to be able to use recurrence equations, it is necessary to differen-
tiate the initial conditions given above, including the covariances and taking
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care that Ŵ1 = 0 identically and thus ∂Ŵ1/∂λ = 0. For more details, see
Mélard (1985).

The derivatives with respect to λ of the recurrences (20)–(26) are then writ-
ten. The most delicate part is the derivative of the first term of (20), namely
(omitting the subscript t− 1 to simplify the notation),

∂

∂λ




ρ1ŵ+ Ŵ2

ρ2ŵ+ Ŵ3

���

ρg−1ŵ+ Ŵg

ρgŵ




=




∂ρ1

∂λ
ŵ+ ρ1

∂ŵ

∂λ
+ ∂Ŵ2

∂λ

∂ρ2

∂λ
ŵ+ ρ2

∂ŵ

∂λ
+ ∂Ŵ3

∂λ
���

∂ρg−1

∂λ
ŵ+ ρg−1

∂ŵ

∂λ
+ ∂Ŵg

∂λ

∂ρg

∂λ
ŵ+ ρg

∂ŵ

∂λ




=




∂ρ1

∂λ

∂ρ2

∂λ
���

∂ρg−1

∂λ

∂ρg

∂λ




ŵ+




ρ1
∂ŵ

∂λ
+ ∂Ŵ2

∂λ

ρ2
∂ŵ

∂λ
+ ∂Ŵ3

∂λ
���

ρg−1
∂ŵ

∂λ
+ ∂Ŵg

∂λ

ρg
∂ŵ

∂λ




=Rŵ+�F⊗Id�
∂Ŵ

∂λ
�

where R is the vector of derivatives of the first column of F with respect to λ,
and ⊗ denotes the Kronecker product. Let D = F⊗ Id and Ct−1 =Kt−1/h

2
t−1.

Recall that ât = htêt = wt − ŵt, so we obtain

∂ât
∂λ

= ∂wt

∂λ
− ∂ŵt

∂λ
= −∂mt

∂λ
− ∂ŵt

∂λ
= −∂mt

∂λ
−H

∂Ŵt

∂λ
�

Hence, the derivative of (20) is

∂Ŵt

∂λ
= RHŴt−1 +D

∂Ŵt−1

∂λ
+ ∂Ct−1

∂λ
ât−1 +Ct−1 ⊗

∂ât−1

∂λ
�(27)

The other derivatives are

∂νt−1

∂λ
= 1

h2
t−1

(
H
∂Lt−1

∂λ
− 2

HLt−1

h3
t−1

∂ht−1

∂λ

)
�

∂Kt

∂λ
= ∂Kt−1

∂λ
− �FLt−1� ⊗

∂νt−1

∂λ
− νt−1

{
RHLt−1 +D

∂Lt−1

∂λ

}
�
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∂Lt

∂λ
= RHLt−1 +D

∂Lt−1

∂λ
−Kt−1 ⊗

∂νt−1

∂λ
− νt−1

∂Kt−1

∂λ
�

∂h2
t

∂λ
= ∂h2

t−1

∂λ
�1 − ν2

t−1� − 2h2
t−1νt−1

∂νt−1

∂λ
�

We need also those expectations

E
[
â2
t

] = h2
t σ

2

and

E

[
∂Ŵt

∂λ

]
= DE

[
∂Ŵt−1

∂λ

]
−Ct−1 ⊗E

[
∂ŵt−1

∂λ

]
+Ct−1 ⊗

[
∂mt−1

∂λ

]
�

Denoting S = H ⊗ Id and noticing that ât−1 is not correlated with Ŵt−1,
∂Ŵt−1/∂λ and ∂ât−1/∂λ�we deduce the recurrence equations which are needed:

E�ŴtŴ
T
t � = FE�Ŵt−1Ŵ

T
t−1�FT +Ct−1C

T
t−1h

2
t σ

2�(28)

E

[
Ŵt

∂ŴT
t

∂λT

]
= FE

[
Ŵt−1

∂ŴT
t−1

∂λT

]
DT +FE

[
Ŵt−1Ŵ

T
t−1

]
HTRT

−F

{
CT
t−1 ⊗E

[
Ŵt−1

∂ŴT
t−1

∂λT

]
ST

}

−F

{
CT
t−1 ⊗E

[
Ŵt−1

]∂mt−1

∂λT

}
+Ct−1

∂CT
t−1

∂λT
h2
t σ

2�

(29)

E

[
∂Ŵt

∂λ

∂ŴT
t

∂λT

]
= RHE

[
Ŵt−1Ŵ

T
t−1

]
HTRT +DE

[
∂Ŵt−1

∂λ

∂ŴT
t−1

∂λT

]
DT

+RHE

[
Ŵt−1

∂ŴT
t−1

∂λT

]
DT +DE

[
∂Ŵt−1

∂λ
ŴT

t−1

]
HTRT

+ �Ct−1C
T
t−1� ⊗

{
HE

[
∂Ŵt−1

∂λ

∂ŴT
t−1

∂λT

]
HT +

[
∂mt−1

∂λ

∂mt−1

∂λT

]

+HE

[
∂Ŵt−1

∂λ

]
∂mt−1

∂λT

+
(
∂mt−1

∂λ
HE

[
∂ŴT

t−1

∂λT

])}

−R

[
CT
t−1 ⊗

{
HE

[
Ŵt−1

]∂mt−1

∂λT
+HE

[
Ŵt−1

∂ŴT
t−1

∂λT

]
ST

}]

−
[
Ct−1 ⊗

{
SE

[
∂Ŵt−1

∂λ
ŴT

t−1

]
HT + ∂mt−1

∂λ
E
[
ŴT

t−1

]
HT

}]
RT(30)
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−D

[
CT
t−1 ⊗

{
E

[
∂Ŵt−1

∂λ

∂ŴT
t−1

∂λT

]
ST +E

[
∂Ŵt−1

∂λ

]
∂mt−1

∂λT

}]

−
[
Ct−1 ⊗

{
SE

[
∂Ŵt−1

∂λ

∂ŴT
t−1

∂λT

]
+ ∂mt−1

∂λ
E

[
∂ŴT

t−1

∂λT

]}]
DT

+ ∂Ct−1

∂λ

∂CT
t−1

∂λT
h2
t σ

2�

In spite of the improved notation used here, (28)–(30) are much more complex
than the corresponding recurrences in Mélard and Klein (1994) because terms
in ∂mt−1/∂λ which do not exist there are introduced in the new last term
of (27).

6. Conclusion. We have discussed the asymptotic information matrix
and the exact information matrix of a large class of Gaussian time series
models. It should be stressed that the asymptotic information matrix is only
an approximation, being related to the conditional likelihood function, not the
exact likelihood function. We have given algorithms for both the asymptotic
and exact information matrix as a whole instead of element by element.

Although the algorithm may seem more complex than the direct use of (6),
the number of operations is obviously O�N� instead of O�N3�, and O�N2�
for the algorithm of Porat and Friedlander (1986). Furthermore many of the
operations in (30) can be avoided because many matrices of derivatives will
be composed of 0’s and 1’s [see Zadrozny (1989), page 547]. In any case, there
are at most O�d2g2� operations at each t.

The algorithms of Terceiro (1990) and Zadrozny (1989) are slightly less ef-
ficient for several reasons. First, each element �i� j� of the information matrix
is computed separately. In the case of Terceiro (1990), each of them is even
computed using a specific form of the state space model where equations of
the original state vector and of its derivatives with respect to λi and λj are
stacked.

Second, we have used the Chandrasekhar recurrences [Morf, Sidhu and
Kailath (1974)] instead of the Kalman filter used by both Zadrozny (1989) and
Terceiro (1990), which implies a reduction of the complexity of the algorithm.
Indeed the Chandrasekhar recurrences are computationally more efficient by
an order of magnitude with respect to the Kalman filter. Very often fast proce-
dures are also much more complex, but it is not the case here. On the contrary,
the Chandrasekhar equations are also slightly simpler than the corresponding
Kalman filter equations. If we consider the univariate ARMA(p�q) model and
take q = p to simplify the comparisons, the number of operations (multipli-
cations and divisions) of the algorithm of Terceiro is of order 72p4N, whereas
ours is of order 32p3N. Except for very high N, where the asymptotic infor-
mation matrix may be enough, the action can be in the constants, but 72p4

will be more easily close to N than 32p3 [thereby coming close to the number
of operations of the method of Porat and Friedlander (1986)]. One may add
that the reason for keeping the computational burden as low as possible is
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that the information matrix can be needed in an iterative score method and
therefore be invoked a large number of times by an optimization algorithm.

Third, both the algorithms of Terceiro (1990) and Zadrozny (1989) are de-
scribed for a general state space model, in vector form and with a multivariate
input variable, but the parametrization is not specified. The SISO model can
of course be written under the state space form using (2), but the parameters
which appear in the coefficients are products of three polynomials. In our ap-
proach, the whole matrix is computed in one run and takes the specific form
of the model and parametrization into account. The proposed method can be
easily implemented, using the purely matrix recurrences given in the paper,
which are appropriate for a modern computer language with matrix support.
Generalization to multiple input is straightforward.

Our matrix presentation can probably be improved in the future by com-
puting Cholesky factors of the information matrix, thereby making it possible
to check that it is strictly positive definite (as a check of model identification).
Computation element by element makes this check impossible or at least un-
reliable because of rounding errors. Note that factorization of the asymptotic
information matrix has already been exploited by Klein and Spreij (1996, 1997)
for ARMAX and ARMA models, respectively.

APPENDIX

We assume that ∂mt/∂λ = 0 for t ≤ 0. Given the initial values for xt and mt

for t ≤ 0, the subsequent values of ∂mt/∂λ can be obtained by recurrence. By
virtue of (3) we shall derive a recurrence relationship for ∂mt/∂λ which yields

∂mt

∂λ
=

n∑
i=1

αi
∂mt−i
∂λ

+
r∑

j=1

δj
∂mt−j
∂λ

+
n∑
i=1

r∑
j=1

δjαi
∂mt−i−j
∂λ

−
n∑
i=1

mt−i
∂αi
∂λ

−
r∑

j=1

mt−j
∂δj

∂λ
+

n∑
i=1

r∑
j=1

(
∂αi
∂λ

δj + αi
∂δj

∂λ

)
mt−i−j

+ ∂ω0

∂λ
xt −

∂ω0

∂λ

m∑
k=1

βkxt−k −ω0

m∑
k=1

∂βk
∂λ

xt−k −
s∑
l=1

∂ωl

∂λ
xt−l

+
s∑
l=1

m∑
k=1

(
∂ωl

∂λ
βk +ωl

∂βk
∂λ

)
xt−l−k�

We give now the general form of each term. Let ;k� t be an �d × k� matrix
with �∂mt−j/∂λi� as element �i� j�, i = 1� � � � � d, j = 1� � � � � k and Mk�L� =
�1L · · · Lk−1�T. We denote

M̃
�α�
n �L� = (�Mn�L��T 0Tm 0Ts+1 0Tr 0Tq 0Tp

)T
�

M̃
�δ�
r �L� = (

0Tn 0Tm 0Ts+1 �Mr�L��T 0Tq 0Tp
)T
�

M̃
�ω�
s �L� = (

0Tn 0Tm+1 �Ms�L��T 0Tr 0Tq 0Tp
)T
�

M̃
�β�
m �L� = (

0Tn �Mm�L��T 0Ts+1 0Tr 0Tq 0Tp
)T
�
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so we can write:
n∑
i=1

αi
∂mt−i
∂λ

= ;n� t α�

r∑
j=1

δj
∂mt−j
∂λ

= ;r� t δ�

n∑
i=1

r∑
j=1

αiδj
∂mt−i−j
∂λ

= αTMn�L�;r� t−1 δ�

n∑
i=1

mt−i
∂αi
∂λ

= M̃
�α�
n �L�mt−1�

r∑
j=1

mt−j
∂δj

∂λ
= M̃

�δ�
r �L�mt−1�

n∑
i=1

r∑
j=1

∂αi
∂λ

δjmt−i−j = M̃
�α�
n �L� δTMr�L�mt−2�

n∑
i=1

r∑
j=1

αi
∂δj

∂λ
mt−i−j = M̃

�δ�
r �L�αTMn�L�mt−2�

and,
∂ω0

∂λ
xt =

(
0Tn 0Tm xt 0Ts 0Tr 0Tq 0Tp

)T
�

ω0

m∑
k=1

∂βk
∂λ

xt−k = ω0M̃
�β�
m �L�xt−1 = (

0Tn ω0M
T
m�L�xt−1 0Ts+1 0Tr 0Tq 0Tp

)T
�

∂ω0

∂λ

m∑
k=1

βkxt−k = (
0Tn 0Tm βTMm�L�xt−1 0Ts 0Tr 0Tq 0Tp

)T
�

s∑
l=1

∂ωl

∂λ
xt−l = M̃

�ω�
s �L�xt−1�

s∑
l=1

m∑
k=1

∂ωl

∂λ
βkxt−l−k = M̃

�ω�
s �L�βTMm�L�xt−2�

s∑
l=1

m∑
k=1

ωl

∂βk
∂λ

xt−l−k = M̃
�β�
m �L�ωTMs�L�xt−2�

Note that the derivatives with respect to φT and θT are equal to zero.
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284. Birkhäuser, Boston.

Kohn, R. and Ansley, C. F. (1985). Computing the likelihood and its derivatives for a Gaussian
ARMA model. J. Statist. Comput. Simul. 22 229–263.

Magnus, J. R. and Neudecker, H. (1988). Matrix Differential Calculus with Applications in
Statistics and Econometrics. Wiley, New York.

Mélard, G. (1984). Algorithm AS197: A fast algorithm for the exact likelihood of autoregressive-
moving average models. J. Roy. Statist. Soc. Ser. C 33 104–114.

Mélard, G. (1985). Exact derivatives of the likelihood of ARMA processes. In Proceedings of the
Statistical Computing Section 187–192. Amer. Statist. Assoc., Washington, DC.

Mélard, G. and Klein, A. (1994). On a fast algorithm for the exact information matrix of a
Gaussian ARMA time series. IEEE Trans. Signal Processing 42 2201–2203.

Mittnik, S. and Zadrozny, P. A. (1993). Asymptotic distributions of impulse responses, step re-
sponses, and variance decompositions of estimated linear dynamic model. Econometrica
61 857–870.

Morf, M., Sidhu, G. S. and Kailath, T. (1974). Some new algorithms for recursive estimation
on constant, linear, discrete-time systems. IEEE Trans. Automat. Control 19 315–323.

Newton, H. J. (1978). The information matrices of the parameters of multiple mixed time series.
J. Multivariate Anal. 8 317–323.

Pearlman, J. G. (1980). An algorithm for the exact likelihood of a high-order autoregressive-
moving average process. Biometrika 67 232–233.

Pham, D. T. (1989). Cramér–Rao bounds for AR parameter and reflection coefficient estimators.
IEEE Trans. Acoust., Speech, Signal Processing 37 769–772.

Porat, B. and Friedlander, B. (1986). Computation of the exact information matrix of Gaussian
time series with stationary random components. IEEE Trans. Acoust., Speech, Signal
Processing 14 118–130.

Terceiro, J. L. (1990). Estimation of Dynamic Econometric Models with Errors in Variables.
Springer, Berlin.

Tunnicliffe Wilson, G. T. (1979). Some efficient computational procedures for high order ARMA
models. J. Statist. Comput. Simul. 8 303–309.



1650 A. KLEIN, G. MÉLARD AND T. ZAHAF
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