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The construction of run orders of two-level factorial designs with ex-
treme (minimum and maximum) numbers of level changes is considered.
Minimizing the number of level changes is mainly due to economic con-
siderations, while the problem of maximizing the number of level changes
arises from some recent results on trend robust designs. The construction
is based on the fact that the 2k runs of a saturated regular fractional facto-
rial design for 2k−1 factors can be ordered in such a way that the numbers
of level changes of the factors consist of each integer between 1 and 2k−1.
Among other results, we give a systematic method of constructing designs
with minimum and maximum numbers of level changes among all designs
of resolution at least three and among those of resolution at least four. It is
also shown that among regular fractional factorial designs of resolution at
least four, the number of level changes can be maximized and minimized
by different run orders of the same fraction.

1. Introduction. This paper considers the construction of run orders of
two-level factorial designs with extreme numbers of level changes when the
experiments are to be conducted sequentially Here “extreme” means both
“minimum” and “maximum.” The problem of minimizing the number of level
changes arises naturally from economic considerations when it is expensive,
time-consuming or difficult to change factor levels [Draper and Stoneman
(1968), Joiner and Campbell (1976)]. On the other hand, one-dimensional de-
pendence is to be expected in many factorial field trials, where units are usu-
ally long and thin, and adjoining along the long edge, and temporal dependence
is at least a strong possibility in many industrial factorial experiments—the
phrase “run order” suggests observations are taken over time. Such depen-
dence can be modeled using fixed or random trends. Cheng and Steinberg
(1991) determined trend robust run orders of two-level factorial designs un-
der first-order autoregressive and other more complex time series models for
the time trend effects. Run orders with a maximum number of level changes
are found to be nearly optimal for the AR(1), and highly efficient for some
other models.

The problem of minimizing the total number of level changes in a regular
two-level factorial design was solved in Cheng (1985). With obvious modifica-
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tions, it can also be applied to determine run orders with a maximum number
of level changes The work of Cheng (1985) was to construct run orders with
minimum numbers of level changes for a given defining relation. Similarly,
Cheng and Steinberg (1991) found efficient run orders (under time trends or
dependence) of a regular fractional factorial design with a given defining re-
lation, but other defining relations may yield designs with more efficient run
orders. In this paper, the selection of defining relation and run order will be
considered at the same time. Some results along this line have been reported in
Wang and Jan (1995). In particular, they have given rules for constructing de-
signs with minimum numbers of level changes in several different situations.
However, these rules are not adequately justified. The proof is incomplete (see
Remark 3.1) and their rule for constructing resolution-four designs with the
minimum number of level changes is not correct.

We shall first present some preliminary results concerning saturated frac-
tional factorial designs of resolution three in Section 2. These results provide
the basis for the construction in this paper. Designs with minimum numbers
of level changes are then considered in Section 3. In particular, a systematic
method is given for constructing designs which have minimum numbers of
level changes among all the designs of resolution at least three and among
those of resolution at least four. Section 4 is concerned with maximizing the
number of level changes. It is interesting to note that among fractional fac-
torial designs of resolution at least four, the number of level changes can be
maximized and minimized by two different run orders of the same fraction.
The proof of the main theorem in Section 3 is presented in Section 5.

Now we review some background material and notation that will be used
throughout this paper. The two levels of each factor are denoted by 0 and
1. For any two �0�1�-vectors a = �a1� � � � � an�T and b = �b1� � � � � bm�T, a ⊕ b
denotes their Kronecker sum �a1 + b1� � � � � a1 + bm� � � � � an+ b1� � � � � an+ bm�T,
where the arithmetic is carried out mod 2, and when n = m, a + b denotes
the vector whose ith component is ai + bi �mod 2�. Each combination of n
two-level factors is denoted by a row vector x = �x1� x2� � � � � xn�, where xi = 0
or 1. An N-run design (together with a run order) can be represented by an
N × n matrix. Such a design is called an orthogonal array with strength t,
denoted OA�N�2n� t�, if in any N× t submatrix, all the 2t 1 × t vectors of 0’s
and 1’s appear equally often. Orthogonal arrays with strength 2 can be used
as orthogonal main-effect plans since such designs allow the estimation of all
the main effects when the interactions are negligible. A main-effect plan with
N = n+ 1 is called saturated.

Important examples of orthogonal arrays are the classical regular fractional
factorial designs constructed by using defining relations as discussed in many
textbooks on experimental design. Recall that a regular 2n−p fractional fac-
torial design, which has n two-level factors and 2n−p runs, is determined by
p independent defining effects (also called defining words.) The resolution of
such a design is defined as the length of the shortest word in its defining
relation [Box and Hunter (1961)]. It is well known that a regular fractional
factorial design of resolution R is an orthogonal array with strength R− 1.
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Since a 2n−p fractional factorial design is a group under the component-
wise addition x+y� it contains n−p independent generators. These are n−p
factor-level combinations such that all their possible sums produce all the
combinations in the fraction. Cheng and Steinberg (1991) describe a reverse
foldover algorithm, useful for constructing run orders with extreme numbers
of level changes. Let k = n− p and suppose x1� � � � �xk is a sequence of inde-
pendent generators. The run order obtained by the reverse foldover algorithm
starts with 0, the combination in which all the factors are at level 0. The
subsequent runs can be constructed by induction as follows. Suppose the first
2s runs are z1� � � � � z2s , 0 ≤ s ≤ k − 1. Then the next 2s runs are z2s + xs+1,
z2s−1+xs+1� � � � � z1+xs+1. It is clear that in the resulting run order, the number
of level changes of the ith factor, 1 ≤ i ≤ n� is equal to

∑k
j=1 (the ith compo-

nent of xj�2k−j. The generators x1� � � � �xkcan be selected carefully to produce
an extreme number of level changes. In fact, from the results in Cheng (1985),
the following can be established.

Lemma 1.1. For any given regular 2n−p fractional factorial design d, let
k = n− p independent generators x1� � � � �xk be constructed as follows: x1 has
the smallest number of components equal to 1 among all the combinations in
d, and for each 2 ≤ i ≤ k, xi has the smallest number of components equal
to 1 among all the combinations in d which are not linear combinations of
x1� � � � �xi−1. Then the run order of d obtained by applying the reverse foldover
algorithm to x1� � � � �xk has the minimum number of level changes among all
the �2n−p�! run orders of d. In the above, if “smallest” is changed to “largest,”
then a run order with a maximum number of level changes is obtained.

An important consequence of Lemma 1.1 is that extreme numbers of level
changes can always be achieved by applying the reverse foldover algorithm to
appropriate sequences of independent generators.

2. Saturated orthogonal arrays with strength two. We first prove
that in a saturated two-level orthogonal array with strength 2, the number of
level changes between any two runs is a constant.

Theorem 2.1. In any run order of a saturated orthogonal array OA�N�
2N−1�2�, there are N/2 level changes between any two consecutive runs.

Proof. Denote the two levels by 1 and −1. Represent any run order of
a saturated OA�N�2N−1�2� by an N × �N − 1� matrix X� Then the matrix
H = 	1N ��� X
 is a Hadamard matrix, where 1N is the N × 1 vector of ones.
It follows that HH′ = NIN, that is, the rows of H are mutually orthogonal.
Therefore for any two rows of X, N/2 − 1 corresponding entries have the
same sign and N/2 have opposite signs. ✷

An interesting consequence of Theorem 2.1 is that all the run orders of
a saturated OA�N�2N−1�2� have the same total number of level changes
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N�N − 1�/2. In this case, there is no need to consider the minimization or
maximization of the total number of level changes. If such an orthogonal ar-
ray is also a regular fractional factorial design, then run orders can be con-
structed so that the numbers of level changes for the N− 1 factors consist of
each integer from 1 to N − 1 [Wang and Jan (1995), but also discovered by
us independently]. Before describing this interesting and useful fact in more
detail, we note that it is not true for nonregular saturated designs.

For each i = 1� � � � � k� let

Ai = ai1 ⊕ · · · ⊕ aik�(2.1)

where aii = �0�1�T� and all the other aij’s are equal to �0�0�T� Then the rows of
the 2k×k matrix 	A1� � � � �Ak
 are all the 2k combinations of k two-level factors
in the standard (Yates) order. Each Ai can be thought of as representing the
main effect of the ith factor; then for any 1≤ i1 < · · · < it ≤ k, the component-
wise sum Ai1

+· · ·+Ait
represents the interaction of factors i1� � � � � it. There are

2k−k−1 such interaction columns. Let M be the 2k×�2k−1� matrix consisting
of A1� � � � �Ak and all the interaction columns such that the 2k−1 columns are
ordered as follows: the first column is A1, and for each 1 ≤ s < k, if the first
2s − 1 columns are a1� � � � �a2s−1, then the next 2s columns are As+1 + a2s−1,
As+1+a2s−2� � � � �As+1+a1, As+1, where A1� � � � �Ak are as defined in (2.1). Now,
use each column of M to define the levels of a factor in 2k runs; then M gives a
run order of a saturated design of size 2k. For any n such that k < n ≤ 2k−1, a
regular 2n−�n−k� design together with a run order can be obtained by choosing n
columns of M. Furthermore, it is easy to see that the numbers of level changes
of the 2k − 1 factors in M are the increasing sequence 1�2� � � � �2k − 1. This
fact is useful for constructing designs with extreme numbers of level changes;
see Wang and Jan (1995) and later discussions in this paper.

For example, when k = 3, M consists of the seven columns A1, A1 +A2, A2,
A2 + A3, A1 + A2 + A3, A1 + A3, A3,

0 0 0 0 0 0 0

0 0 0 1 1 1 1

0 1 1 1 1 0 0

0 1 1 0 0 1 1

1 1 0 0 1 1 0

1 1 0 1 0 0 1

1 0 1 1 0 1 0

1 0 1 0 1 0 1�

(2.2)

Any n �3 < n ≤ 7� columns of (2.2) define a run order of a 2n−�n−3� fractional
factorial design. For example, the first five columns define a 25−2 design with
15 �= 1 + 2 + 3 + 4 + 5� level changes. Label the five corresponding factors
by A�B�C�D and E, respectively. Then since the second column is the sum
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of the first and the third, and the fifth column is the sum of the first and the
fourth, this design has two independent defining effects ABC and ADE, and
the defining relation is I = ABC = ADE = BCDE.

The matrix M can also be constructed as follows. For each integer 1 ≤ i ≤
2k − 1, let b̃i be the k × 1 vector which gives the binary representation of i,
with the digit corresponding to 2j−1 appearing at the �k−j+1�th component
of b̃i, 1 ≤ j ≤ k, that is, i = ∑k

j=1 [the �k − j + 1�th component of b̃i
 · 2j−1�
Form the matrix

B̃ = [
b̃1 b̃2 · · · b̃2k−1

]
�(2.3)

Let the rows of B̃ be x̃1� � � � � x̃k. Since b̃1� b̃2� � � � � b̃2k−1 are all the 2k−1 non-
zero k×1 vectors of 1’s and 0’s, the rank of B̃ is equal to k. Therefore x̃1� � � � � x̃k
are a set of independent generators of a saturated regular fractional factorial
design of size 2k. Applying the reverse foldover algorithm to this generator
sequence yields the matrix M� Indeed, the number of level changes in the ith
column is equal to

∑k
j=1 (the ith component of x̃j� · 2k−j = ∑k

j=1 (the jth
component of b̃i� · 2k−j = ∑k

j=1 [the �k − j + 1�th component of b̃i
2j−1 = i�
For example, when k = 3, the binary representations of 1�2� � � � �7 are

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1�

Run order (2.2) can be obtained by applying the reverse foldover algorithm to
these three row vectors.

We conclude this section with a useful lemma.

Lemma 2.1. In the run order of a regular 2n−p fractional factorial design
obtained by applying the reverse foldover algorithm to an arbitrary sequence of
independent generators, the resulting n columns of factor levels must be among
the columns of M.

Proof. Suppose u1� � � � �uk is the sequence of independent generators used
in the construction. Then since b̃1� b̃2� � � � � b̃2k−1 are all the 2k − 1 nonzero
k × 1 vectors of 1’s and 0’s, the columns of 	uT1 � � � � �uTk 
T are among those of
	b̃1 b̃2 · · · b̃2k−1
. ✷

3. Designs with minimum numbers of level changes. The fact that
the columns of M are in a strictly increasing order with respect to the numbers
of level changes suggests that a design with the minimum number of level
changes can be obtained by successively choosing columns of M [Wang and
Jan (1995)].

Theorem 3.1. Among the regular fractional factorial designs with n two-
level factors in N = 2k runs, where 2k−1 ≤ n ≤ 2k − 1, a design with the
minimum number of level changes can be obtained by selecting the first n



TWO-LEVEL FACTORIAL DESIGNS 1527

columns of M. An equivalent method is to apply the reverse foldover algorithm
to the row vectors of the submatrix 	b̃1 b̃2 · · · b̃n
 of (2.3). The resulting design
is of resolution at least three.

Proof. It is obvious that the design constructed is of resolution at least
three. We now show that it has the minimum number of level changes among
all the regular fractional factorial designs.

By Lemma 1.1, for a regular fractional factorial design with any given defin-
ing relation, a minimum number of level changes can always be achieved by
applying the reverse foldover algorithm to an appropriate sequence of inde-
pendent generators. It follows from Lemma 2.1 that in such a run order, the n
columns of factor levels must be among the columns of M. Since the columns
of M are ordered so that the numbers of level changes of the factors are strictly
increasing, the method described in this theorem obviously produces a design
with the minimum number of level changes. ✷

Remark 3.1. In general, not all the run orders of a regular fractional fac-
torial design can be constructed by the reverse foldover algorithm. For such
run orders, the columns of factor levels are not necessarily drawn from those
of M. Therefore it is necessary to invoke Lemma 1.1 [which goes back to Cheng
(1985)] to show that it is enough to restrict attention to the columns of M, as
Wang and Jan (1995) did. In this sense, Wang and Jan’s (1995) arguments are
incomplete.

The condition 2k−1 ≤ n ≤ 2k − 1 is to ensure that the rank of 	b̃1 b̃2 · · · b̃n

is equal to k, and therefore the design constructed is a genuine unreplicated
fractional factorial design. If k ≤ n < 2k−1, then the design obtained by ap-
plying the reverse foldover algorithm to the row vectors of 	b̃1 b̃2 · · · b̃n
 is a
replicated fractional factorial design. Such a design has a minimum number
of level changes when replicated fractional factorial designs are allowed. If
one insists on using unreplicated fractional factorial designs, then a design
with the minimum number of level changes can be constructed by choosing
the k columns �b̃2s�0≤s≤k−1 together with the first n − k columns in the ma-
trix obtained by deleting b̃2s , 0 ≤ s ≤ k − 1, from 	b̃1 b̃2 · · · b̃2k−1
. Note that
�b̃2s�0≤s≤k−1 are the first k linearly independent columns of 	b̃1 b̃2 · · · b̃2k−1
.

When additional properties besides resolution three are desired, the se-
lection of columns from M or (2.3) must be subject to some constraints. For
instance, Cheng and Jacroux (1988) showed that for any 1 ≤ i1 < · · · < it ≤ n,
the t-factor interaction column Ai1

+ · · · + Ait
is orthogonal to a polynomial

time trend with degree t− 1, and suggested the method of selecting appropri-
ate interaction columns to construct trend-free run orders. This and the same
argument as in the proof of Theorem 3.1 can be used to justify Wang and
Jan’s (1995) rule that a design with the minimum number of level changes
among those of resolution at least three in which all the main-effect contrasts
are linear-trend free can be obtained by selecting the first n non-main-effect
columns of M. Wang and Jan (1995) also gave selection rules subject to other
constraints. If a design of resolution at least four is required, then the sum of
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any two selected columns cannot be selected. This makes the construction of
run orders with minimum numbers of level changes among all the designs of
resolution at least four a nontrivial problem. In fact, as we shall see later in
Example 3.1, Wang and Jan’s (1995) rule for constructing such designs is not
correct.

The rest of this section is devoted to a correct method of constructing designs
with minimum numbers of level changes among those of resolution at least
four. We shall present our construction and proof in terms of the selection
of columns from B̃ in (2.3). For convenience, we shall let y1 = 0, and define
yi = b̃i−1, 2 ≤ i ≤ 2k� If we think of each yi as a factor-level combination in
a 2k design, then y1� � � � �y2k are the 2k combinations in the standard (Yates)
order. A design with n factors can be constructed by selecting n columns from
y2� � � � �y2k . Then each yi defines a factor with i− 1 level changes.

It is well known that an n-factor design of resolution at least four must
have at least 2n runs. Therefore for a regular fractional factorial design of
size 2k to be of resolution at least four, the number of factors is at most 2k−1.
The following describes a solution for designs of resolution at least four for n
factors in 2k runs, where 2k−2 + 1 ≤ n ≤ 2k−1.

Theorem 3.2. (i) When 2k−2 + 1 ≤ n ≤ 2k−2 + 2k−3, a design with n fac-
tors in 2k runs which minimizes the number of level changes among those
of resolution at least four can be constructed by selecting the 2k−2 columns
y2k−3+1� � � � �y2k−3+2k−2 and the n− 2k−2 columns y2k−1+1� � � � �y2k−1+n−2k−2 ;

(ii) When 2k−2 +2k−3 +1 ≤ n ≤ 2k−1, a solution can be obtained by selecting
the 2k−2 columns y2k−3+1� � � � �y2k−3+2k−2 , the 2k−3 columns y2k−1+1� � � � �y2k−1+2k−3

and the n− 2k−2 − 2k−3 columns y2k−2k−3+1� � � � �y2k−1+n.

It is clear that in Theorem 3.2, the sum of any two selected columns is
not selected. Therefore the design obtained is of resolution at least four. The
proof that this method does produce designs with minimum numbers of level
changes among those of resolution at least four will be presented in Section 5.

Applying the method of Theorem 3.2, we obtain the following selection of
columns from y2� � � � �y2k :

24−1: select columns 2, 3, 5, 8
25−1: select columns 3, 4, 5, 6, 9
26−2: select columns 3, 4, 5, 6, 9, 10
27−3: select columns 3, 4, 5, 6, 9, 10, 15
28−4: select columns 3, 4, 5, 6, 9, 10, 15, 16
29−4: select columns 5, 6, 7, 8, 9, 10, 11, 12, 17

210−5: select columns 5, 6, 7, 8, 9, 10, 11, 12, 17, 18
· · · .

Note that for 2n−p designs, the columns referred to in the above are �n −
p� × 1 vectors. For example, both column five’s used in constructing 28−4 and
29−4 designs are binary representations of 4, but the former is the 4×1 vector
�0�1�0�0�T, and the latter is the 5×1 vector �0�0�1�0�0�T. We also note that
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the designs constructed by the method of Theorem 3.2 are not the only possible
solutions.

Example 3.1. Consider 210−5 designs. The 10 columns given above lead to
a design with 93 level changes. This is the same as to select the following ten
columns of M� A2 + A3, A1 + A2 + A3, A1 + A3, A3, A3 + A4, A1 + A3 + A4,
A1 +A2 +A3 +A4, A2 +A3 +A4, A4 +A5, A1 +A4 +A5. Wang and Jan’s (1995)
solution is to select the first five linearly independent columns A1, A1 + A2,
A2 + A3, A3 + A4, A4 + A5 of M and then successively select five additional
columns subject to the constraint that the sum of any two selected columns
cannot be selected: A3, A2 + A3 + A4, A1 + A2 + A4, A1 + A4, A2 + A4 + A5.
These correspond to y2, y3, y5, y9, y17 and y8, y12, y14, y15, y20, with 95 level
changes.

Remark 3.2. When k ≤ n ≤ 2k−2, the rules given in Theorem 3.2 need
to be modified. We first give a solution for the easier case where replicated
fractional factorial designs are allowed. In this case, let k′ be an integer such
that 2k

′−2+1 ≤ n ≤ 2k
′−1. Then apply the same rule as in Theorem 3.2 (with k

replaced by k′) to select n columns from the 2k
′ − 1 columns �y2�y3� � � � �y2k′ �,

where each yi is k × 1. Since k′ < k, these n columns do not have full rank.
Therefore the design obtained is a replicated fractional factorial design. If one
insists on using an unreplicated fractional factorial design, then there must
be k linearly independent columns among those which are selected. This can
be achieved by the following method: let n′ be the largest integer such that
n ≥ n′ ≥ 2k−�n−n′�−2 + 1. Then a design with the minimum number of level
changes among the unreplicated fractional factorial designs of resolution at
least four can be obtained by selecting the n− n′ columns

⋃n−n′
m=1�y2k−m+1� and

n′ additional columns from �y2�y3� � � � �y2k′ � by using the rules of Theorem 3.2,
where k′ = k− �n−n′�. For example, consider 28−3 designs. If replicated frac-
tions are allowed, then one solution is obtained by choosing the eight columns
y3, y4, y5, y6, y9, y10, y15, y16, where each yi is a 5 × 1 vector. On the other
hand, if only unreplicated fractions are allowed, then one needs to include
y17. To choose seven additional columns, since 7 ≥ 24−2 +1� one can apply the
same rules as in Theorem 3.2 to choose seven columns from y2�y3� � � � �y16.
This results in the eight columns y3, y4, y5, y6, y9, y10, y15, y17.

The following alternative description of a design constructed by the method
of Theorem 3.2 is useful for determining its defining relation. Let

aj = b̃2j−1� j = 1� � � � � k�(3.1)

Then b̃1� b̃2� � � � � b̃2k−1 are in the Yates order for the independent columns
a1� � � � �ak; that is, 	b̃1� b̃2� � � � � b̃2k−1
 = 	a1, a2�a1 + a2�a3�a1 + a3�a2 +
a3�a1 + a2 + a3�a4�a1 + a4�a2 + a4� � � �
. Now let c1 = ak−2, cj = ak−2 + aj−1
for j = 2� � � � � k − 2, ck−1 = ak−1 and ck = ak. Obviously c1� � � � �ck are k
independent columns. Furthermore, it can be seen that the design with a
minimum number of level changes among those of resolution at least four
constructed by the method of Theorem 3.2 takes the odd-order interaction



1530 C.-S. CHENG, R. J. MARTIN AND B. TANG

columns (including main effect columns) successively in the Yates order for
the independent columns c1� � � � �ck. That is, it is given by

c1� c2� c3� c1 + c2 + c3� c4� c1 + c2 + c4� c1 + c3 + c4�

c2 + c3 + c4� c5� c1 + c2 + c5� c1 + c3 + c5� c2 + c3 + c5�

c1 + c4 + c5� c2 + c4 + c5� c3 + c4 + c5� c1 + c2 + c3 + c4 + c5�

c6� c1 + c2 + c6� c1 + c3 + c6� c2 + c3 + c6� c1 + c4 + c6�

c2 + c4 + c6� c3 + c4 + c6� c1 + c2 + c3 + c4 + c6� � � � �

(3.2)

This can be verified by comparing the two sequences and noting that
y1� � � � �y2k are in the Yates order. From the pattern of the columns in (3.2),
one can easily determine the defining relation of the resulting design.

Example 3.2. Consider 28−4 designs. The binary representations of 2, 3,
4, 5, 8, 9, 14 and 15 give the following 4 × 8 matrix:

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

1 1 0 0 0 0 1 1

0 1 0 1 0 1 0 1�

Applying the reverse foldover algorithm to the four rows of the above matrix,
we obtain a run order of a 28−4 design with the minimum number of level
changes among all 28−4 designs of resolution at least four. Label the eight
factors (columns) by A, B, C, D, E, F, G and H. Then by the remark in the
previous paragraph, these eight columns correspond to c1, c2, c3, c1 +c2 +c3,
c4, c1 + c2 + c4, c1 + c3 + c4 and c2 + c3 + c4. Clearly this design is defined by
D = ABC,F = ABE,G = ACE andH = BCE and therefore has independent
defining effects ABCD, ABEF, ACEG and BCEH.

4. Designs with maximum numbers of level changes. To construct
designs with maximum numbers of level changes, we start from y2k and move
down the list. For example, the maximum number of level changes for n factors
in N = 2k runs is Nn − n�n + 1�/2� which results from choosing columns
y2k� � � � �y2k−n+1� Designs constructed in this manner have resolution at least
three, and the resolution is at least four when n ≤ N/2� The latter holds
because y

N−i + y
N−j = yi + yj� for all i� j and yi + yj = yr, i� j ≤ 2k−1 ⇒

r ≤ 2k−1; therefore if n ≤ N/2, then the sum of any two selected columns is
not selected. However, since y

N
+ y

N−1
+ y

N−2
+ y

N−3
= 0, the resolution is at

most four when n > 3� Furthermore, since �y1�y2� � � � �y2k−1� is a subgroup,
increasingly many words in the defining relation will have length 4 for n > 3.
The implications of these results are that for n > 3, designs which maximize
the number of level changes over all designs (including replicated fractional
factorials) do not have maximum resolution if there exist designs of resolution
higher than four, and even if the maximum resolution is four, resolution-four
designs with maximum numbers of level changes may have more words of
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length four [higher aberration in the sense of Fries and Hunter (1980)]. In
other words, maximum resolution and minimum aberration designs tend not
to produce maximum numbers of level changes.

For example, among all unreplicated 27−2 designs, the maximum number
of level changes (194) is achieved by the resolution-four design with defining
relation I = ABCD = CDEF = ABEF. For the minimum aberration design,
which has one word of length four and two words of length five, the maximum
number of level changes is only 183. These numbers of level changes can be
verified by using Lemma 1.1. A third design with two words of length four
and one word of length six can produce 187 level changes. On the other hand,
if replicated designs are allowed, then the maximum of 196 is achieved. Note
that the large increase possible in the maximum number of level changes over
the usual unreplicated designs can appreciably increase the design efficiency
under dependence.

It can be seen that y2k = ∑k
i=1 ai, and for m = 0�1� � � � � k − 2, y2k−2m =∑

1≤i≤k� i�=m+1 ai, where a1� � � � �ak are as defined in (3.1). The k columns
y2k�y2k−1�y2k−2� � � � �y2k−2k−2 are clearly linearly independent. In fact, they
maximize the total number of level changes among all choices of k linearly in-
dependent columns from y1�y2� � � � �y2k . Therefore a run order of the complete
2k design with a maximum number of level changes can be obtained by using
columns y2k�y2k−1�y2k−2� � � � �y2k−2k−2 . Another consequence of this is that
when 2k−2 +1 ≤ n ≤ 2k−1, the resolution-four design obtained by selecting the
n columns y2k , y2k−1, y2k−2� � � � �y2k−n+1 is an unreplicated fractional factorial
design because they include all the k linearly independent columns y2k , y2k−1,
y2k−2� � � � �y2k−2k−2 . Now let c1 = y2k and ci = y2k−2i−2 for i = 2� � � � � k. Then
y2k�y2k−1�y2k−2� � � � �y2k−n+1 can also be obtained by taking the odd-order
interaction columns (including main effect columns) successively in the Yates
order for c1� � � � �ck as in (3.2), except that we have a different definition of ci
here. This shows that when 2k−2 + 1 ≤ n ≤ 2k−1, the resolution-four designs
with maximum and minimum numbers of level changes constructed here and
in Section 3, respectively, have the same defining relation. In fact, it can be
seen that this is also true for unreplicated fractions when k ≤ n ≤ 2k−2.

Example 4.1. Consider 28−4 designs. The binary representations of 15, 14,
13, 12, 11, 10, 9 and 8 give the following 4 × 8 matrix:

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0�

Applying the reverse foldover algorithm to the four rows of the above matrix,
we obtain a run order of a 28−4 design with the maximum number of level
changes among all 28−4 designs of resolution at least four. Label these eight
columns by A, B, C, D, E, F, G and H. Then, as in Example 3.2, this design
has independent defining effects ABCD, ABEF, ACEG and BCEH.
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The following is a list of 4-, 8-, 16- and 32-run designs with maximum num-
bers of level changes. When more than one design of the same size is given,
the first is a usual unreplicated design. If this design is not of the highest pos-
sible resolution for the given size, it is followed by an unreplicated design of
the highest resolution, which has fewer level changes. A replicated fractional
factorial design is also given if it has a larger number of level changes. The
notation 2n−p+1 means two identical replicates of a 2n−p design. The compo-
nents of s = �s1� � � � � sn� are the numbers of level changes of the n factors, and
S = ∑n

i=1 si is the total number of level changes. The designs are obtained by
selecting columns y

s1+1�����
y
sn+1�

N = 4
n = 2� s = �3�2�� S = 5, (complete 22)
n = 3� s = �3�2�1�� S = 6. �23−1

III � I=ABC�
N = 8
n = 3� s = �7�6�5�� S = 18, (complete 23)
n = 4� s = �7�6�5�4�� S = 22, �24−1

IV � I=ABCD�
n = 5� s = �7�6�5�4�3�� S = 25, �25−2

III � I=ABCD = ADE = BCE�
26−3
III � 27−4

III similar.

N = 16
n = 4� s = �15�14�13�11�� S = 53� (complete 24)

s = �15�14�13�12�� S = 54, �24−1+1
IV � I=ABCD�

n = 5� s = �15�14�13�12�11�� S = 65, �25−1
IV � I=ABCD�

s = �15�14�13�11�7�� S = 60, �25−1
V � I=ABCDE�

n = 6� s = �15�14�13�12�11�10�� S = 75, �26−2
IV � I=ABCD = CDEF = ABEF�

27−3
IV � 28−4

IV � 29−5
III � � � � �2

15−11
III similar.

N = 32
n = 5� s = �31�30�29�27�23�� S = 140, (complete 25)

s = �31�30�29�28�27�� S = 145, �25−1+1
IV � I=ABCD�

n = 6� s = �31�30�29�28�27�23�� S = 168, �26−1
IV � I=ABCD�

s = �31�30�29�27�23�16�� S = 156, �26−1
VI � I=ABCDEF�

s = �31�30�29�28�27�26�� S = 171, �26−2+1
IV � I=ABCD = ABEF

= CDEF�
n = 7� s = �31�30�29�28�27�26�23�� S = 194, �27−2

IV � I=ABCD = CDEF = ABEF�
s = �31�30�29�28�27�26�25�� S = 196, �27−3+1

IV � I=ABCD = ABEF
= ACEG = · · ·�

n = 8� s = �31�30�29�28�27�26�25�23�� S = 219, �28−3
IV I=ABCD = ABEF

= ACEG = · · ·�
s = �31�30�29�28�27�26�25�24�� S = 220, �28−4+1

IV � I=ABCD = ABEF
= ACEG = ABGH = · · ·�

n = 9� s = �31�30�29�28�27�26�25�24�23�� S = 243, �29−4
IV � I=ABCD = ABEF

= ACEG = ABGH = · · ·�
210−5
IV � 211−6

IV � � � � �216−11
IV � 217−12

III � � � � �231−26
III similar.

Remark 4.1. As noted in Remark 3.1, although the method presented in
this paper can be used to construct designs and run orders with maximum
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numbers of level changes, not all such run orders can be generated by the
reverse foldover algorithm. There may be run orders with the same maximum
total number of level changes S, but different s. For example, Cheng and Stein-
berg (1991) presented two different run orders of a complete 24 design with
the same maximum number of level changes, but one has s = �15�14�13�11�
and the other has s = �15�13�13�12�. In fact, �14�14�13�12� is possible. A
more uniform distribution of level changes leads to slightly higher efficiency
and more equal variances of estimated effects. For more discussions of this
issue, see Saunders, Eccleston and Martin (1995).

5. Proof of Theorem 3.2. Note that in order to have resolution at least
four, if two columns x and y are selected, then x + y cannot be selected. We
first state two simple lemmas which impose some constraints on the selection
of columns.

Lemma 5.1. For any integers s and a� where a > 0, if y ∈ �y2s+1� � � � �y2s+1�,
z ∈ �ya·2s+1+1� � � � �ya·2s+1+2s� and u ∈ �ya·2s+1+2s+1� � � � �y�a+1�·2s+1�� then y + z ∈
�ya·2s+1+2s+1� � � � �y�a+1�·2s+1� and y + u ∈ �ya·2s+1+1� � � � �ya·2s+1+2s�.

Proof. As noted earlier, y1, y2� � � � �y2k can be viewed as the combinations
of a 2k design in the standard (Yates) order. ✷

Lemma 5.2. For any integers s and a� where a > 0� if at least one of the
2s columns y2s+1� � � � �y2s+1 is selected, then at most 2s columns can be selected
from �ya·2s+1+1� � � � �y�a+1�·2s+1�.

Proof. Suppose y ∈ �y2s+1� � � � �y2s+1� is selected. It follows from Lemma
5.1 that if v ∈ �ya·2s+1+1� � � � �y�a+1�·2s+1�� then y + v ∈ �ya·2s+1+1� � � � �y�a+1�·2s+1 �.
Only one of v and y + v can be selected. ✷

For an arbitrary design d of resolution at least four, we shall show that the
method of Theorem 3.2 produces a design with the number of level changes no
more than that of d. Lemma 5.2 holds for any s, but in the following we shall
let s be the smallest integer such that at least one of y2� � � � �y2s+1 is selected by
d (so none of the columns yi with i ≤ 2s is selected). The proof of Theorem 3.2
is now presented in four steps.

Step 1. Show that it is sufficient to consider the case s ≤ k− 3.
Divide the 2k columns y1� � � � �y2k into 2k−s−2 sets of size 2s+2, each of which

is further divided into four sets of size 2s. Specifically, for any nonnegative
integer m such that �m+1�2s+2 ≤ 2k, let Am

0 = �ym2s+2+1� � � � �ym2s+2+2s�, Am
1 =

�ym2s+2+2s+1� � � � �ym2s+2+2s+1�, Am
2 = �ym2s+2+2s+1+1� � � � �ym2s+2+3·2s� and Am

3 =
�ym2s+2+3·2s+1� � � � �y�m+1�2s+2�.

Step 2. For s ≤ k − 3, show that it is enough to consider the case where
at least one column is selected from Am

0 ∪Am
2 for a certain m with 0 ≤ m ≤

2k−s−3 − 1.
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Let g be the smallest m as in Step 2. If g = 0, let r = 0� otherwise, let
r be such that 2r−1 ≤ g ≤ 2r − 1� Now write n as n = t · 2r+s+1 + u, where
0 ≤ u < 2r+s+1 and

u = e2s+1 + q�(5.1)

0 ≤ q < 2s+1. Let

w = t2r + e�(5.2)

Then n = w2s+1 +q. Now 2r−1 ≤ g ≤ 2k−s−3 −1 ⇒ r−1 < k− s−3 ⇒ 2r+s+1 ≤
2k−2. Since n > 2k−2, n > 2r+s+1; therefore,

t ≥ 1�(5.3)

Step 3. Show that when u≤2r+s, the total number of level changes
under d is at least as large as that of the n columns �⋃t2r−1

m=0 �Am
1 ∪ Am

2 �� ∪
�yt2r·2s+2+1�yt2r·2s+2+2� � � � �yt2r·2s+2+u�, while for u > 2r+s, it is at least as large
as the total number of level changes in �⋃t2r−1

m=0 �Am
1 ∪ Am

2 �� ∪ �yt2r·2s+2+1�
yt2r·2s+2+2� � � � �yt2r·2s+2+2r+s� ∪ �yt2r·2s+2+3·2r+s+1� � � � �yt2r·2s+2+2r+s+1+u�. Since
n = t2r+s+1 + u ≤ 2k−1, we do have t2r · 2s+2 + 2r+s+1 + u ≤ 2k. There-
fore the selection of these columns is possible. Note that these columns may
not produce resolution-four designs; they are merely used to provide lower
bounds.

Step 4. Show that the total number of level changes of the columns in
Step 3 is at least as large as that under a design constructed by the method
of Theorem 3.2.

Proof of Step 1. If s > k− 3, then none of the 2k−2 columns y1� � � � �y2k−2

is selected. Divide all the 2k columns successively into eight sets of equal size,
say B1�B2� � � � �B8, where B1 consists of the first 2k−3 columns, B2 consists of
the next 2k−3 columns, and so on. Then the design of Theorem 3.2 successively
selects columns from B2, B3, B5 and B8, while d skips B1 and B2, and draws
its first column from B3. It is clear that the excessive numbers of level changes
of columns from B3 cannot be compensated by any possible savings provided
by later columns.

Proof of Step 2. We first state the following simple lemma.

Lemma 5.3. If y ∈ A0
i � i = 0 or 2 and z ∈ Am

j , j = 0�1�2�3, then y+z ∈ Am
l ,

where l ≡ i + j�mod 4�. Hence if v of the 2s columns in A0
i are selected, and

at least one column in Am
j is also selected, then at most 2s − v columns in Am

l

can be selected.

Since at least one of the 2s columns y2s+1� � � � �y2s+1 is selected, by Lemma 5.2
for eachm ≥ 2k−s−3, at most 2s columns can be selected fromAm

0 ∪Am
1 . Suppose

for all 0≤ m ≤ 2k−s−3 − 1, none of the columns in Am
0 ∪Am

2 is selected. Then
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those selected from the first 2k−1 columns must be from sets of the form Am
1

or Am
3 . It can easily be seen that, compared with the design constructed by

the method of Theorem 3.2, the resulting excessive numbers of level changes
cannot be compensated by any possible savings from those selected from the
second half, which suffer from the restriction that at most 2s columns can be
selected from each Am

0 ∪Am
1 .

Since the proof of Step 3 is long, we present the proof of Step 4 first.

Proof of Step 4. By comparing the columns selected by the method of
Theorem 3.2 and those in Step 3, it can be seen that both achieve the same
number of level changes for selecting 2k−2 columns from y1� � � � �y2k−1 and also
for selecting 2k−1 columns from y1� � � � �y2k . For values of n between 2k−2 + 1
and 2k−2 + 2k−3, the method of Theorem 3.2 successively chooses the columns
with the smallest numbers of level changes, while for values of n between
2k−1 and 2k−2 +2k−3 +1, it successively deletes from y1� � � � �y2k those with the
largest numbers of level changes.

Proof of Step 3. We have seen that at most 2s columns can be selected
from ya2s+1+1� � � � �y�a+1�2s+1 . It follows that for each 0 ≤ m ≤ w, at most 2s+1

columns can be selected from Am
0 ∪Am

1 ∪Am
2 ∪Am

3 . For any 0 ≤ m ≤ w − 1,
if b of these columns are selected by d, where b < 2s+1, then 2s+1 − b columns
must be made up from those beyond yw2s+2+q. For convenience, let S�m� be
the total number of level changes of these 2s+1 columns. Then by Lemma 5.2,

S�m� ≥
2s∑

i=1

�m2s+2 + i− 1� +
2s∑

i=1

�m2s+2 + 2s+1 + i− 1��(5.4)

We shall also use S�w� to denote the total number of level changes of the q
columns selected fromAw

0 ∪Aw
1 ∪Aw

2 ∪Aw
3 � excluding the make-up columns men-

tioned earlier if there are any. Let yi1� � � � �yin , i1 < · · · < in� be the columns
selected in Step 3. For 0 ≤m ≤ w−1, let T�m� denote the total number of level
changes of �yim2s+1+1�����

yi�m+1�2s+1
�, and if q > 0� let T�w� be the total number of

level changes of �yiw2s+1+1�����
yiw2s+1+q

�� Thus, for example, when 0 ≤m ≤ t2r − 1,

T�m� =
2s+1∑

i=1

�m2s+2 + 2s + i− 1��(5.5)

The difference S�m� − T�m�, denoted E�m�, will be called the excess of d
in Am

0 ∪Am
1 ∪Am

2 ∪Am
3 � It remains to show that the total excess

∑w
m=0E�m� is

nonnegative. The proof requires careful calculation of a lower bound on each
S�m� subject to the constraints in Lemmas 5.2 and 5.3. We shall treat the
cases g = 0 and g �= 0 separately.

Case 1. g = 0. In this case, r = 0� q = u and t = w. Let v be the number of
columns selected from A0

2. Then since none of the columns in A0
0 is selected,

by the definition of g, v > 0.
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(i) Bounding E�0�: by Lemma 5.3, x ∈ A0
2 and y ∈ A0

1 ⇒ x + y ∈ A0
3�

Therefore at most 2s columns can be chosen from A0
1 ∪A0

3, and hence at most
2s + v columns are selected from A0

0 ∪A0
1 ∪A0

2 ∪A0
3. It follows that at least

2s − v columns need to be chosen from those beyond yt2s+2+u. Thus

S�0� ≥
2s+v∑

i=1

�2s + i− 1� +
2s−v∑

i=1

�t2s+2 + u+ i− 1��(5.6)

From (5.5) and (5.6), a straightforward calculation shows that

E�0� ≥ 	�t− 1�2s+2 + 2s+1 + u− v
�2s − v��(5.7)

(ii) Bounding E�m� for each 0 < m < t: suppose at least one column is
chosen from Am

0 . Then by Lemma 5.3, at most 2s − v columns in Am
2 can be

selected. As a consequence, if 2s columns are to be selected from Am
2 ∪ Am

3 ,
then at least v columns must be chosen from Am

3 . So

S�m� ≥
2s∑

i=1

�m2s+2 + i− 1� +
2s−v∑

i=1

�m2s+2 + 2s+1 + i− 1�

+
v∑

i=1

�m2s+2 + 3 · 2s + i− 1��
(5.8)

It follows from (5.5) and (5.8) that

E�m� ≥ −�2s − v��2s + v��(5.9)

On the other hand, if none of the columns of Am
0 is selected, then

S�m� ≥
2s+1∑

i=1

�m2s+2 + 2s + i− 1� = T�m��

So E�m� ≥ 0, and (5.9) still holds for all 0< m < t.
(iii) BoundingE�t�: similarly to (5.8), a lower bound on S�t� can be obtained

by successively choosing u columns from �the 2s columns of At
0� ∪ �the first

2s − v columns of At
2� ∪ �the first v columns of At

3� in the order they appear.
Compare this with how Step 3 selects the columns beyond yt·2s+2 ; it is easy to
see that

if u ≤ 2s� then E�t� ≥ 0�(5.10)

and when u > 2s, by the same argument as in the proof of Step 4, we may
assume u = 2s+1 for bounding E�t� from below. Therefore as in (5.9),

u > 2s ⇒ E�t� ≥ −�2s − v��2s + v��(5.11)

Finally, from (5.7), (5.9), (5.10) and (5.11), we conclude that the total excess is
at least �2s − v�	�t− 1�2s+2 + 2s+1 +u− v− �t− 1��2s + v�
 when u ≤ 2s and is
at least �2s − v�	�t − 1�2s+2 + 2s+1 + u − v − t�2s + v�
 when u > 2s. Both are
nonnegative since v ≤ 2s and, by (5.3), t ≥ 1. This proves Case 1.
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Case 2. g > 0. In this case, the above argument needs to be modified. A
key point in the proof of Case 1 is that, by Lemma 5.3, y ∈ A0

i , i = 0 or 2,
and z ∈ Am

0 ∪Am
1 ∪Am

2 ∪Am
3 ⇒ y + z ∈ Am

0 ∪Am
1 ∪Am

2 ∪Am
3 , which implies

certain constraints on the selection of columns from Am
0 ∪Am

1 ∪Am
2 ∪Am

3 . For
g > 0, when y ∈ Ag

i � i = 0 or 2 and z ∈ Am
0 ∪Am

1 ∪Am
2 ∪Am

3 , y + z may not
belong to Am

0 ∪Am
1 ∪Am

2 ∪Am
3 . Instead, we have the following modification of

Lemma 5.3.

Lemma 5.4. For any nonnegative integer m, there is an h�m� such that

h�0� = g and if y ∈ Ag
i , i = 0 or 2, and z ∈ Am

j , j = 0�1�2�3, then y+z ∈ Ah�m�
l ,

where l ≡ i + j�mod 4�. Hence if v of the 2s columns in A
g
i are selected and

at least one column in Am
j is also selected, then at most 2s − v columns in

A
h�m�
l can be selected. Write m as m = a2r + b� where 0 ≤ b < 2r. Then

h�m� = a2r + b′ for some b′, where b < 2r−1 ⇒ 2r−1 ≤ b′ ≤ 2r − 1 and
b ≥ 2r−1 ⇒ 0 ≤ b′ < 2r−1.

Unlike the case g = 0, selecting columns from Am
0 ∪Am

1 ∪Am
2 ∪Am

3 causes
some constraints on the selection of columns fromA

h�m�
0 ∪Ah�m�

1 ∪Ah�m�
2 ∪Ah�m�

3 .
Instead of bounding each E�m� separately, we shall derive lower bounds on
E�m� +E�h�m���

Let v be the number of columns selected from A
g
0 .

(i) Bounding E�0� +E�g� = E�0� +E�h�0��: by the definition of g� none of
the columns in A0

0 ∪A0
2 is selected. A simple application of Lemma 5.4 shows

that at most 3 · 2s + v columns can be selected from �A0
0 ∪ A0

1 ∪ A0
2 ∪ A0

3� ∪
�Ag

0 ∪ Ag
1 ∪ Ag

2 ∪ Ag
3 �� Therefore at least 2s − v columns must be made up

from those beyond yw2s+2+q. Similarly to (5.6), S�0�+S�h�0�� = S�0�+S�g� ≥
∑2s
i=1�2s+ i−1�+∑2s

i=1�3 ·2s+ i−1�+∑v
i=1�g2s+2 + i−1�+∑2s

i=1�g2s+2 +2s+1 +
i− 1� +∑2s−v

i=1 �w2s+2 + q+ i− 1�. By comparing with (5.5), we have

E�0� +E�g� ≥ 	�w− g�2s+2 + q− v
�2s − v��(5.12)

(ii) Bounding E�m� for 0 < m ≤ 2r − 1, m �= g: by the definition of g, when
0 ≤m ≤ g− 1, S�m� ≥ ∑2s

i=1�m2s+2 + 2s + i− 1� +∑2s
i=1�m2s+2 + 3 · 2s + i− 1�.

Comparing this with (5.5), we have

E�m� ≥ 22s for all 0 < m < g�(5.13)

while from (5.4),

E�m� ≥ −22s for all g < m ≤ 2r − 1�(5.14)

(iii) Bounding E�m� + E�h�m�� for 2r ≤ m ≤ t2r − 1: it follows from
Lemma 5.4 that if at least one column is selected from each of Am

0 and Am
2 ,

then at most 2s−v columns can be selected from each of Ah�m�
0 and Ah�m�

2 � As a
consequence, if 2s+1 columns are to be chosen fromA

h�m�
0 ∪Ah�m�

1 ∪Ah�m�
2 ∪Ah�m�

3 �
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then at least v columns must be chosen from each of Ah�m�
1 and Ah�m�

3 . Then

S�m� +S�h�m��

≥
2s∑

i=1

�m2s+2 + i− 1� +
2s∑

i=1

�m2s+2 + 2s+1 + i− 1�

+
2s−v∑

i=1

�h�m�2s+2 + i− 1� +
v∑

i=1

�h�m�2s+2 + 2s + i− 1�

+
2s−v∑

i=1

�h�m�2s+2 + 2s+1 + i− 1�

+
v∑

i=1

�h�m�2s+2 + 3 · 2s + i− 1��

(5.15)

From (5.5) and (5.15), a straightforward calculation shows that E�m� +
E�h�m�� ≥ −2�2s − v��2s + v�� Similarly, if no column is selected from Am

0 or
no column is selected from Am

2 , then E�m� + E�h�m�� ≥ −�2s − v��2s + v�,
and if no column is selected from Am

0 ∪Am
2 , then E�m�+E�h�m�� ≥ 0. In any

case, we have

E�m� +E�h�m�� ≥ −2�2s − v��2s + v� for all 2r ≤m ≤ t2r − 1�(5.16)

By Lemma 5.4, m ≤ t2r − 1 ⇒ h�m� ≤ t2r − 1� Thus
∑t2r−1
m=2r�E�m� +

E�h�m��� = 2
∑t2r−1
m=2r E�m�. By (5.16),

t2r−1∑

m=2r
E�m� ≥ −�t− 1�2r�2s − v��2s + v��(5.17)

(iv) Bounding
∑
m≥t2r�E�m� + E�h�m���: since m ≥ t2r ⇒ h�m� ≥ t2r,

again, by comparing with how Step 3 selects the columns beyond yt2r2s+2 , it is
easy to see that

if u ≤ 2r+s then
∑

m≥t2r
�E�m� +E�h�m��� ≥ 0(5.18)

and when u > 2r+s, by the same argument as in the proof of Step 4, we may
assume u = 2r+s+1 for bounding

∑
m≥t2r�E�m� +E�h�m��� from below. Then

since
∑�t+1�2r−1
m=t2r T�m� = ∑2r+s

i=1 �t2r+s+2 + i−1�+∑2r+s
i=1 �t2r+s+2 +3 ·2r+s+ i−1� =

∑�t+1�2r−1
m=t2r �∑2s+1

i=1 �m2s+2 + 2s + i − 1��, without changing the total excess, we
may replace each T�m� with

∑2s+1

i=1 (m2s+2 + 2s + i− 1�, as in (5.5). Then (5.16)
continues to hold for m ≥ t2r. Thus

�t+1�2r−1∑

m=t2r
�E�m� +E�h�m��� ≥ −2�2s − v��2s + v�2r�
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which implies that

�t+1�2r−1∑

m=t2r
E�m� ≥ −�2s − v��2s + v�2r�(5.19)

By (5.12), (5.13), (5.14), (5.17), (5.18) and (5.19), the total excess is at least
	�w−g�2s+2+q−v
�2s−v�+�2g−2r�22s−2r�t−1��2s+v��2s−v� when u ≤ 2r+s

and is at least 	�w−g�2s+2 + q− v
�2s− v� + �2g− 2r�22s− t2r�2s+ v��2s− v�
when u > 2r+s. Both are nonnegative since v ≤ 2s, 2r−1 ≤ g ≤ 2r−1, t ≥ 1 [by
(5.3)], and when u > 2r+s, by (5.1) and (5.2), we have w−g ≥ t2r+ e− 2r+ 1�
with e ≥ 2r−1. This completes the proof. ✷
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