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MAXIMIN CLUSTERS FOR NEAR-REPLICATE
REGRESSION LACK OF FIT TESTS

BY FORREST R. MILLER, JAMES W. NEILL AND BRIAN W. SHERFEY

Kansas State University

To assess the adequacy of a nonreplicated linear regression model,
Christensen introduced the concepts of orthogonal between- and within-
cluster lack of fit with corresponding optimal tests. However, the proper-
ties of these tests depend on the choice of near-replicate clusters. In this
paper, a graph theoretic framework is presented to represent candidate
clusterings. A clustering is then selected according to a proposed maximin
power criterion from among the clusterings consistent with a specified
graph on the predictor settings. Examples are given to illustrate the
methodology.

Ž .1. Introduction. Christensen 1989, 1991 derived uniformly most pow-
erful invariant tests for detecting orthogonal between- and within-cluster
lack of fit in linear regression models. These tests can be useful for assessing
model adequacy for the common circumstance in which replicate measure-

Ž . Ž .ments are not available. Green 1971 , Breiman and Meisel 1976 , Atwood
Ž . Ž . Ž .and Ryan 1977 , Lyons and Proctor 1977 , Shillington 1979 , Daniel and

Ž . Ž . Ž .Wood 1980 , Utts 1982 , Neill and Johnson 1985 and Joglekar, Schuene-
Ž .meyer and LaRiccia 1989 have also proposed lack of fit tests for the case of

nonreplication. However, Christensen’s approach is of particular interest
since the lack of fit space was characterized as a sum of orthogonal subspaces
with corresponding optimal tests.

All of the preceding tests require that the data be grouped into clusters
and, depending on the test statistic, one of two approaches can be used as a
basis for cluster selection. The near-replicate approach groups observations
according to measures of nearness in the predictor space. The rationale
behind this approach parallels the reasoning which motivates the classical

Ž .lack of fit test with replication as introduced by Fisher 1922 . Alternatively,
a second approach determines clusters so that within each group the re-
sponse is well approximated by the hypothesized model or a polynomial
model in the specified predictors. An estimate of error variance is determined
by pooling the residual sums of squares obtained from the local least squares
model fittings within each cluster.

Ž .Joglekar, Schuenemeyer and LaRiccia 1989 summarized the various
grouping methodologies, which can be classified as one of the two previous
approaches. They noted that data-directed clusterings, which are generally
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inherent to the methods based on the local fittings approach, lead to in-
tractable distribution theory problems. In addition, current distance mea-
sures used for determining near-replicate clusters do not always admit an
explicit, much less optimal, relation to the power of the corresponding lack of
fit tests. Nonparametric regression techniques have also been developed to

� Ž .�test the adequacy of parametric linear models Hart 1997 . The choice of
smoothing parameter in this context parallels the problem of cluster selection
as discussed above. A lack of fit test for generalized linear models which

Ž .avoids the need to cluster observations was suggested by Su and Wei 1991 .
The test is based on the supremum of a partial sum process determined by
the residuals. However, in the absence of relatively long sequences of residu-
als with like sign, this test may be expected to have diminished power. In
addition, a rational way of ordering the cases before computing partial sums
is needed.

The tests derived by Christensen involve models based on the near-repli-
cate approach to clustering. These tests are in fact uniformly most powerful
invariant for detecting orthogonal between- and within-cluster lack of fit,
given a specific grouping of the data into near replicates. Thus, properties of
the tests depend heavily on the choice of such clusters. In this paper we
address the question of how to select near-replicate clusters which provide
maximin power properties associated with the optimal tests.

In Section 2, the models and tests for orthogonal between- and within-
cluster lack of fit are reviewed. A graph theoretic framework is presented
in Section 3 to represent a collection of candidate groupings. A maximin
power criterion is proposed in Section 4 in order to then select an optimal
clustering from among the candidate groupings. The methodology is illus-
trated in Section 5.

2. Orthogonal between- and within-cluster lack of fit tests. The
normal theory linear regression model is given by

1 Y � X� � � ,Ž .
where Y is an n-dimensional random response vector, X is a known, nonran-
dom n � p matrix of predictor variables, � is an unknown parameter in R P

Ž 2 .and � is an n-dimensional random error vector distributed as N 0, � In
with unknown � 2 � 0. Lack of fit is said to exist when the linear structure

Ž .X� in model 1 does not adequately describe the mean of Y, that is,
Ž .E Y � X�. In such case we may suppose that a true model which accounts

Ž .for the inadequacy of model 1 is of the form

2 Y � X� � Q� � � ,Ž .
Ž . Ž . Ž 2 . Ž .where C X � C Q and � � N 0, � I . The notation C A denotes then

column space of a matrix A.
In practice, a true model, and thus Q, are of course not known. Also, in the

usual paradigm for testing lack of fit, there are no additional predictor
Ž .variables available for inclusion in model 1 . Hence, a lack of fit vector Q� in
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Ž . Ž .�model 2 is known only to be contained in the lack of fit space C X . A
Ž .�decomposition of C X into orthogonal subspaces was obtained by Chris-

Ž .tensen 1989, 1991 . The characterization provides the basis for the construc-
tion of optimal tests for assessing the existence of various types of lack of fit.
In particular, the lack of fit space can be written as

� � � �C X � C X �C Z � C X �C Z � S,Ž . Ž . Ž . Ž . Ž .Ž . Ž .
where S denotes the orthogonal complement of the sum of the first two

Ž .�subspaces with respect to C X . The n � c matrix Z contains indicator
variables for the near-replicate clusters, and thus contains only zeroes and
ones. The column dimension represents the number of groups for a specified
near-replicate clustering of the observations. Thus, the nonzero values in the
ith column of Z correspond to the observations in the ith cluster of near
replicates, i � 1, 2, . . . , c. A clustering determined by such a Z will also be
called a grouping or partition of the observations. In addition, the first two

Ž .�subspaces in the preceding decomposition of C X are called the orthogonal
between- and within-cluster lack of fit subspaces, respectively. This terminol-
ogy corresponds to one-way analysis of variance in which clusters of repli-
cates are identified with different treatment groups. In the special case that

Ž . Ž .replication exists in the row structure of X, that is, C X � C Z , the tests
Ž . Ž .for between and within cluster lack of fit compare model 1 with model 2 ,

Ž . Ž .�with Q� replaced by lack of fit vectors in C Z and C Z , respectively. Thus,
the test for between-cluster lack of fit reduces to the classical lack of fit test in
the case of replication. Also note that the test for within-cluster lack of fit
would, for example, allow for detection of a trend in time within each group of
replicates whenever the replicates are observed in a time sequence. The
interpretation for the case of near replication generalizes the preceding
concepts.

For computational purposes, projections onto the lack of fit subspaces can
be determined by the following lemma. The proof of the lemma is straightfor-
ward and thus omitted. The notation P denotes the orthogonal projectionA
operator onto a subspace A of Rn.

LEMMA 1. Let U and V be subspaces of Rn and suppose W is the subspace
n Ž �.of R given by W � P V . Then P � P 	 P .U U � V U W

Ž . Ž .�By letting U � C Z and V � C X in the preceding lemma,

P � � P 	 P Z ,CŽ X . � CŽZ . CŽZ . CŽ X .0

where X Z � P X. Thus, the likelihood ratio test statistic for testing0 CŽZ .

H B : E Y 
 C XŽ . Ž .o

versus

�BH : E Y 
 C X � C X �C Z and E Y � C XŽ . Ž . Ž . Ž . Ž . Ž .Ž .a
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is given by
2 B

ZP 	 P Y �rŽ .CŽZ . CŽ X . 10F �B 2 B
� ZP 	 P 	 P Y �rŽ .Ž .CŽ X . CŽZ . CŽ X . 20

B Ž Z . B Bwhere r � c 	 dimension C X and r � n 	 p 	 r with c � dimension1 0 2 1
Ž . Ž . n � � 2C Z and p � dimension C X . Also, for x 
 R , x denotes the squared

T Ž .B BEuclidean length x x of x. Since F � F � whereB r , r B1 2

2 2
�� � P E Y �� ,Ž .B CŽ X . � CŽZ .

a uniformly most powerful invariant size � test of H B versus H B rejects H B
o a o

provided
F � F �

B B .B r , r1 2

The notation F � represents the upper � point of a central F distributiond , d1 2

with d and d degrees of freedom.1 2
By symmetry, the likelihood ratio test statistic F and its distributionW

Ž .W WF � for testingr ,r W1 2

H W : E Y 
 C XŽ . Ž .o

versus

� �WH : E Y 
 C X � C X �C Z and E Y � C XŽ . Ž . Ž . Ž . Ž . Ž .Ž .a

Ž . Ž .� Ž .B Bcan be obtained by replacing C Z with C Z in F and F � , respec-B r , r B1 2

tively.
The following sections specifically address the problem of choosing a

grouping matrix Z to effectively test H B against H B. Although symmetryo a
considerations can be used in part to derive optimal clusters for testing H W

o
against H W, a separate paper will be written to discuss this problem morea
fully.

3. Graph theoretic representation of candidate groupings. For the
maximin power criterion, as defined in the following section, to be computa-
tionally feasible one must generally restrict the number of potential group-
ings under consideration. For example, with n � 16, the number of all
possible groupings is 10,480,142,147, as calculated by the recurrence rela-

� Ž .�tions satisfied by Stirling numbers of the second kind Constantine 1987 .
The following graph theoretic framework may be viewed in part as a device to
eliminate absurd groupings directly and thus reduce the number of partitions
under consideration. In addition, the framework based on graph theory
provides a useful representation of the collection of candidate groupings to
which the maximin criterion is applied.

Suppose the rows of the n � p matrix of predictor variables X are denoted
by r 
 RP, i � 1, . . . , n. A graph G may be defined with n vertices v , . . . , vi 1 n
identified with r , . . . , r , respectively. Furthermore, an edge is said to exist1 n
between two predictor settings r and r if and only if the correspondingi j
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observations are candidates for near-replicate status. Several approaches
may be considered for determining the edge set of G. For example, a nearness
parameter � � 0 can be specified along with a distance function d on R P � R P.

Ž .If d r , r � � then the ith and jth observations are candidates for near-i j
replicate status, and thus an edge exists between vertices v and v . Morei j
generally, different nearness parameters � , k � 1, . . . , p, can be used fork
predictors with different scales. In such a case an edge exists between v andi

Ž k k . kv provided d r , r � � , k � 1, . . . , p, where r denotes the kth compo-j k i j k i
nent of r , and d is a specified distance function appropriate for the scalingi k
of the kth predictor variable. A distance function d on R P � R P can also be
generated as d � 	w d with the d as described above and for selectedk k k
weights w , k � 1, . . . , p. Alternatively, a family of overlapping subsetsk
� 4 P Ž P	1S , . . . , S may be specified in R R in case X has a column of ones or1 m

.its equivalent . An edge exists between vertices v and v if r and r lie in Si j i j k
for some k � 1, . . . , m. For example, the subsets may be overlapping grids in
R P which are chosen in a manner that excludes extreme pairings of the
predictor settings from being clustered together. Each of the preceding ap-
proaches for determining the edge set is illustrated below with a simple
example in R2. In addition, the overlapping grid approach is used in the more
complex setting of Example 2 in Section 5. In either case, a graph is
determined with a corresponding collection of groupings. Specifically, the
collection of groupings associated with a graph are naturally defined as in
Definition 1 below. In this definition, let G be a graph with vertex set V and
recall that a subgraph of G induced by V � V is the graph obtained byo
deleting all vertices not in V from the graph on V, together with all edgeso
that do not join two vertices of V . In addition, a subgraph is complete if thereo
is an edge between every two of its vertices. Note that singletons are
considered to be complete subgraphs.

DEFINITION 1. The collection of groupings consistent with a graph G
� 4 � 4consists of all partitions P � A , . . . , A of V � v , . . . , v such that each1 k 1 n

A determines a complete subgraph of G.i

To illustrate the concepts given in the preceding paragraph and definition,
consider a simple example with

1 1 1 1 1TX �
1.3 1.8 2.6 2.7 3.4

Ž .and suppose the graph on the five vertices rows of X has edge set deter-
mined by Euclidean distance in R2 and a nearness parameter � � 1, as
described above. The resulting graph is given by

1 3 5
� � �

� �
2 4
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TABLE 1
Consistent groupings

( )Dimension C Z

Vertex 2 3 4 5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 2 2 2 1 1 1 2 2 2 2 2 1 2
3 2 3 3 2 2 2 2 2 3 3 3 3 2 2 3
4 2 2 3 3 2 3 3 2 4 4 2 3 3 3 4
5 2 3 3 3 3 2 3 3 3 4 4 4 4 4 5

Note that the same graph is obtained by specifying overlapping subsets in
1 Ž . Ž . Ž .R given by the intervals S � 1, 2 , S � 1.5, 3 and S � 2.5, 4 . For1 2 3

example, an edge exists between vertices v and v since 1.8 and 2.6 lie in S .2 3 2
However, there is no edge between v and v since 1.3 and 2.6 do not lie in a1 3
common S for some i � 1, 2, 3. For n � 5 there are 52 possible groupings, 15i
of which are consistent with this graph. The consistent groupings are listed in

Ž .Table 1 and classified according to the dimension of C Z . The notation used
in the table represents a particular grouping matrix Z by a corresponding

Ž .Tn-tuple z � z , . . . , z where z is the cluster number for the ith row of X.1 n i
It should be emphasized that specification of a graph only indicates which

pairs of observations are potential near replicates. The specification of a
nearness parameter, for example, does not determine a unique grouping but
rather a collection of groupings consistent with the associated graph. The
maximin power criterion is then applied to this collection. One is still
generally choosing a maximin clustering from a large number of candidate
groupings represented by the collection of groupings consistent with the
specified graph. Of course the complete graph may be selected, in which case
the collection of consistent groupings consists of all possible groupings.
However, for most practical problems, the number of all possible groupings is
enormous, as indicated above.

4. Maximin power criterion for clustering near replicates.

4.1. Definition of the criterion. The tests discussed in Section 2 are
optimal for orthogonal between- and within- cluster lack of fit, which depend
on the choice of the grouping matrix Z. For the purpose of clustering in
observational experiments, the matrix X may be regarded as fixed while the
matrix Z remains to be chosen. To identify clusterings that allow the
corresponding optimal lack of fit test to discriminate effectively between

Ž . Bmodel 1 and a type of lack of fit represented by model H , a maximina
strategy is proposed. In particular, since the power of the F test for lack of fit
is an increasing function of the noncentrality parameter, a maximin criterion
will be applied to � to provide a cluster selection associated with the optimalB
test. It will be shown below that the degrees of freedom parameters of the F
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distribution for the optimal test, corresponding to a maximin clustering, are
inherently in concordance with the objective of maximal power. Jones and

Ž . Ž . Ž .Mitchell 1978 , Atkinson and Fedorov 1975 and Atkinson 1972 discuss
design criteria which also use a maximin power approach for detecting lack of
fit. However, these criteria are concerned with the selection of design points
which determine the rows of X. In addition, the alternative models upon

Ž .which these criteria are based are of the form of model 2 where Q is a
matrix of known functions of the settings of the predictor variables in X. For

Ž . Ž .this form of model 2 , Shelton, Khuri and Cornell 1983 also suggested a
maximin power criterion to select check points for use in assessing lack of fit.
Model discrimination designs for polynomial regression were discussed by

Ž .Dette 1994, 1995 . Specifically, optimal designs which maximize the mini-
mum power of a given set of alternatives were discussed, in addition to
generalized c-optimal designs for polynomial regression.

In order to present the maximin criterion for cluster selection, a set of
candidate groupings is required. Assume a graph G has been specified along
with the collection of groupings consistent with the graph as defined in
Section 3. This collection must be restricted according to the dimension
considerations given in the following definition.

DEFINITION 2. Let 
 denote the set of grouping matrices Z which giveG
Ž .� Ž . � 4partitions consistent with G and satisfy C X �C Z � 0 , excluding the

trivial partitions which cluster all or none of the observations together.

For example, returning to the X matrix and associated graph introduced
in Section 3, 
 consists of those partitions consistent with the graph andG

Ž .having dimension C Z equal to three or four. This observation follows from
Ž .� Ž . Zthe fact that dimension C X �C Z � c 	 rank X where c � dimension0

Ž . ZC Z , and noting that rank X � 2 for all the matrices Z indicated in Ta-0
ble 1. Thus, excluding the trivial partition corresponding to c � 5, only
clusterings with c � 3, 4 provide orthogonal between-cluster lack of fit sub-
spaces with positive dimension. Note that the trivial partition which clusters
all of the observations together, that is, the case c � 1, is automatically

Ž .�excluded for this example since X has a column of ones and thus C X
Ž . � 4�C Z � 0 .

Suppose the alternative model is assumed to be of the form given by H B
a

for some Z 
 
 , and one wishes to test the adequacy of the H B model. AG o
maximin criterion will next be discussed in the present context to determine
an appropriate Z 
 
 , and hence a clustering. To explain the basic conceptG
underlying the maximin criterion for cluster selection, let � denote a quadratic

Ž .�form defined on the lack of fit space C X . As seen in the following
discussion, � must be positive definite on each of the lack of fit subspaces
Ž .� Ž .C X �C Z for Z 
 
 . A specific class of such forms which allow forG

nearness considerations is given in Section 4.2. For fixed Z 
 
 , determineG
the vector in the corresponding orthogonal between-cluster lack of fit space
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which minimizes the noncentrality parameter � , subject to the restrictionB
� 4that the vector lies in a set of the form � 
 � for some � � 0. We want to

determine a Z 
 
 which maximizes such minimum noncentrality parame-G
ter values. Specifically, a Z 
 
 is sought which maximizesG

�2� �
 � inf v : v 
 C X �C Z , � v 
 �Ž . Ž . Ž .� 4Z

for some fixed � � 0. Next, letting

� � 2v �3 l � inf : v 
 C X �C Z , v � 0Ž . Ž . Ž .Z ½ 5� vŽ .
� � 2 Ž . � � 2 Ž . Ž .� Ž .and noting that sv �� sv � v �� v for nonzero v 
 C X �C Z and

any nonzero scalar s, it follows that

� � 2v 1�l � inf : v 
 C X �C Z , � v � � � 
 .Ž . Ž . Ž .Z Z½ 5� v �Ž .
Consequently, a clustering matrix Z 
 
 which maximizes 
 does notG Z
depend on �. Accordingly, a maximin clustering matrix is formally defined as
follows.

DEFINITION 3. A clustering matrix Z 
 
 which maximizes l as givenG Z
Ž .by 3 is defined to be a maximin clustering matrix from among the candidate

groupings in 
 .G

Note that a maximin clustering is invariant under reparametrizations and
does not depend on the data vector Y. Also, implicit in the above discussion is
the fact that the quadratic form � allows comparisons of vectors in the lack of

Ž .� Ž .fit subspaces C X �C Z for different Z 
 
 . In particular, supposeG
Ž .� Ž . Ž .� Ž . Ž .� 
 C X �C Z and � 
 C X �C Z where Z , Z 
 
 and � � �0 0 G

Ž . � � 2� � . Furthermore, if Z is a maximin clustering matrix and � � 
 and0 Z0

� � 2 � � 2 � � 2� � 
 , then � 
 � . Thus, for lack of fit vectors possessing theZ
preceding properties, the corresponding noncentrality parameter values based
on a maximin clustering are maximal as compared to corresponding values
based on nonmaximin clusterings. In fact, by the definition of 
 it followsZo

� � 2 � � 2 Ž .� Ž . Ž . Ž . � � 2that v 
 � for any v 
 C X �C Z with � v � � � and � � 
 .0 Z
Ž .A calculational form for 
 equivalently l is derived in the Appendix.Z Z

4.2. Contour quadratic forms based on power and nearness. A specific
class of quadratic forms � for use in 
 will next be defined. First noteZ
that permuting the columns of a specified grouping matrix Z results in
different Z matrices, but each such Z corresponds to the same clustering.
Such Z matrices will be considered as being equivalent. Thus, when a set of
grouping matrices is specified, a set of equivalence classes is inherently

� 4specified. In particular, the notation Ý , where � is a collection ofZ 
 �

grouping matrices, will indicate that the sum is over all distinct groupings
determined by � . That is, each equivalence class of � contributes just one
term to the sum.
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Now note that the possible alternative models are of the form
Y � X� � P � u � � ,CŽ X . � CŽZ .

Ž .� Ž .�where Z 
 
 and u 
 C X . To motivate a choice for � , let u 
 C X beG
� � 2

�fixed. If P u � � for all Z 
 
 where � � 0 is a small preas-CŽ X . � CŽZ . G
signed number, then one may suppose that u will not contribute to any
detectable between-cluster lack of fit. Next let 
 � 
 consist of thoseE G
groupings determined by a single edge in the edge set E of the specified
graph G. That is, each edge of G determines a clustering in 
 , whichG
clusters only the two connected vertices, with all other vertices being single-
ton clusters. For example, note that 
 for the example introduced in SectionE

Ž .3 consists of those partitions with dimension C Z equal to four. Now observe
� � 2 � � 2

� �that P u � � for all Z 
 
 if and only if P u � �CŽ X . � CŽZ . G CŽ X . � CŽZ .

for all Z 
 
 . Note that the ‘‘if’’ part of the preceding claim follows since forE
Ž . Ž .any Z 
 
 there exists a Z 
 
 such that C Z � C Z , and thusG 1 E 1

� � 2 � � 2
� �P u � P u . The point of introducing 
 and theCŽ X . � CŽZ . CŽ X . � CŽZ . E1

preceding equivalence is that the cardinality of 
 is generally much smallerE
than that of 
 , from which computational advantages are obtained. Thus,G
based on the preceding, consider � defined by

� � 2
�4 � u � w P uŽ . Ž . Ý Z CŽ X . � CŽZ .

Z

 E

Ž .� Ž .for u 
 C X with w 
 0 and Ý w � 1. Since � u is a convex combi-Z Z 
 
 ZE

� � 2 Ž .�nation, P u � � for all Z 
 
 implies that � u � �. Hence,CŽ X . � CŽZ . E

Ž . � � 2
�� u 
 � implies that P u 
 � for at least one Z 
 
 , and uCŽ X . � CŽZ . E

may contribute to detectable between-cluster lack of fit for some Z 
 
 .E
� Z � 2To incorporate nearness as measured by X 	 X into the weight w ,0 Z

let
� Z � 2 � Z�

� 2w � X 	 X X 	 X .ÝZ 0 0
Z*

 E

� � 2 n p 2The notation A denotes the squared matrix norm defined by Ý Ý ai�1 j�1 i j

Ž .where a is the ij th element of an n � p matrix A. The motivation for thei j
above measure of nearness is derived from the fact that the jth row of the
matrix X Z � P X is obtained by averaging over the rows of X correspond-0 CŽZ .
ing to the cluster, as determined by Z, which contains the jth observation,
j � 1, . . . , n. Thus, as we illustrate below, the effect of using the preceding
weights w in � is to penalize those grouping matrices Z which clusterZ
observations corresponding to rows of X which are far apart. Consider the
case with

1, 1, . . . , 1TX � ,x , x , . . . , x1 2 n

and note that � reduces to

� � 2
�� u � w P u ,Ž . Ý Z CŽ X . � CŽZ .i j i j

� �x , x 
Ei j
i�j
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where Z is the grouping matrix that clusters the ith and jth vertices onlyi j
and

2 2w � x 	 x x 	 x .Ž . Ž .ÝZ i j k mi j
� �x , x 
Ek m

k�m

In the following discussion, suppose there are only two values x and x ini jo o

the second column of X which are relatively far part. If there are more than
two such values, then an analogous argument holds in order to obtain the
following conclusions. Now note that if Z 
 
 groups x and x whereG i jo o

Ž .2x 	 x is relatively large, then w � 1. As a result, we claim thati j Zo o i jo o

Ž .� Ž .l � 1 for such Z. To see this, let u 
 C X �C Z and without loss ofZ
� � 2 Ž .� Ž . Ž .� Ž .generality suppose u � 1. Then, since C X �C Z � C X �C Z ,i jo o

� � 2 � � 2 Ž . Ž .�P u � u � 1 and thus w � � u � 1. Consequently, � uCŽ X . � CŽZ . Zi j i jo o o o

Ž .� Ž . � � 2� 1 for u 
 C X �C Z with u � 1, and hence l � 1. This resultZ
indicates that Z matrices which cluster observations corresponding to rows of
X which are far apart are not favored according to the maximin clustering
criterion. The preceding conclusion follows, since l 
 1 for every Z 
 
Z G

Ž .when � has the general form given by 4 . Of course � may be defined with
alternative choices for the weights w . For example, a uniform weight may beZ

Ž .	1taken with w � cardinality 
 .Z E
For the maximin approach to clustering to be operative, the quadratic form

Ž .� Ž .� must be positive definite on each subspace C X �C Z for Z 
 
 . TheG
following proposition provides a condition to ensure that any � of the form

Ž . Ž .�given by 4 is in fact positive definite on C X . The proof of the proposition
is given in the Appendix.

Ž .�PROPOSITION 1. � is positive definite on C X provided

� �5 C X �C Z � C X ,Ž . Ž . Ž . Ž .Ý
�Z

 E

where 
 �� 
 consists of those Z 
 
 such that w � 0.E E E Z

4.3. Refinements and atoms. As will be shown, the maximin approach to
clustering necessarily results in a cluster selection from among those parti-
tions which group as many observations together as possible. To facilitate the
following discussion, the concepts of refinement and atoms are introduced in
the next definition. These concepts will be illustrated later in this subsection
in the context of the example introduced in Section 3.

DEFINITION 4. For Z , Z 
 
 , Z is said to be a refinement of Z0 1 G 1 0
Ž . Ž .provided C Z � C Z . In addition, Z is an atom of 
 provided Z is not0 1 0 G 0

a refinement of any other member of 
 . Let 
 denote the set of atomsG 0
in 
 .G
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Note that if Z is a refinement of Z in 
 then1 0 G

� � 2v �: v 
 C X �C Z , v � 0Ž . Ž .0½ 5� vŽ .

� � 2v �� : v 
 C X �C Z , v � 0 .Ž . Ž .1½ 5� vŽ .

Hence, l 
 l , so that maximization of l can be made with respect to theZ Z Z0 1

atoms Z 
 
 . Since atoms represent those partitions consistent with theo
graph which group as many observations together as possible, the claim
made at the beginning of this subsection has been verified. It should also be
noted that this discussion concerning refinements holds for any quadratic

Ž .� Ž .form � which is positive definite on each subspace C X �C Z for Z 
 
 .G
Based on the preceding, in order to determine a maximin clustering for a

given X, the set of atoms 
 in 
 must be determined. The followingo G
theorem characterizes the atoms associated with a graph. The proof of
Theorem 1 is given in the Appendix. In Theorem 1 and in subsequent
discussions, a clique of a graph G is defined as a maximal complete subgraph
of G. In addition, the definition of a minimal cover for a set is recalled for use
in determining the atoms of a graph.

� 4DEFINITION 5. A cover of a set S is a collection of sets A whose union is�

� 4S. A cover A of S is minimal provided A �� A � � for each � . Note� � � � � �

that this is equivalent to the case that for every � there is an element of S
which is in A but not A for � � � .� �

THEOREM 1. Let G be a graph with vertex set V identified with the rows of
X as indicated at the beginning of Section 3. Let C denote the set of cliques of

Ž .G. Also assume that dimension C X � p � k where k is the cardinality of C.

Ž . Ž .i If Z 
 
 determines an atom of 
 and c � dimension C Z , thenG G
c � k.

Ž .ii If G has the property that C is a minimal cover for V, then the atoms
Ž .
 of 
 consist of exactly those Z 
 
 with dimension C Z � k.o G G

To illustrate the use of Theorem 1 for determining atoms, recall the
example introduced in Section 3 and first note by inspection that the set of

�� 4 � 4 � 44cliques for the graph of this example is given by C � 1, 2 , 2, 3, 4 , 3, 4, 5 .
In addition, note that C is not a minimal cover for the vertices of the graph

� 4since the set 2, 3, 4 does not contain an element of V which is not contained
� 4 � 4 Ž .in 1, 2 or 3, 4, 5 . Thus, Theorem 1 ii is not applicable. However, Theorem

Ž . Ž .1 i ensures that the atoms of 
 have dimension C Z � 3, where 3 is theG
cardinality of C. Since as shown previously there are no Z 
 
 withG

Ž .dimension C Z � 3, the set of atoms 
 consists of those Z 
 
 with di-0 G
Ž .mension C Z � 3. As argued above, a maximin clustering would be chosen
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from among those partitions in 
 . Example 2 in Section 5 will be used to0
illustrate the case in which the set of cliques is a minimal cover for the

Ž .vertices of the graph, and thus allows application of Theorem 1 ii to deter-
mine the set of atoms.

ŽNext suppose that a specified graph G breaks up into k � p k and p as
.defined in Theorem 1 disjoint complete subgraphs G , . . . , G with no edges1 k

between the vertices of G and G for i, j � 1, . . . , k and i � j. Let Z be ai j 0

clustering matrix which groups only the vertices of G together for i � 1, . . . , k.i
Ž Z . Ž .�Since dimension C X � p for every clustering matrix Z, dimension C X0

Ž . Ž . Ž Z .�C Z � dimension C Z 	 dimension C X 
 k 	 p. Then, since k � p,0 0 0
Z is in 
 and every clustering in 
 is a refinement of Z . Thus, by0 G G 0
Definition 4, Z is the only atom in 
 . Hence, when there is a clear0 G
grouping, as in this case, the maximin power criterion chooses it. However,
the utility of the criterion is more fully realized when there is not one clear
grouping. In such cases, we want to allow sufficiently many potential near-
replicate pairs so that the graph is connected, as in Examples 1 and 2 of
Section 5. Recall that a graph G is connected if for every two distinct vertices
v , v 
 V there is a continuous path consisting of a finite sequence of distincti j
edges joining v to v . For the case of disconnected graphs, it is possible,i j

depending on � , that the maximin clustering criterion provides no discrimina-
tion between the candidate groupings. This point is further discussed in the
Appendix. However, it should be emphasized that connected graphs provide
the appropriate clustering possibilities in case there is not one clear grouping,
and thus connected graphs are of most interest.

4.4. Power considerations and implementation. The power function of the
optimal size � test for testing orthogonal between-cluster lack of fit is given
by

B B � �B Bq r , r , � , � � P F � F �Ž . Ž .1 2 B B r , r B1 2

for a specified Z 
 
 . Note that q is an increasing function of r B for fixedG 2
values of r B and � and a decreasing function of r B for fixed values of r B

1 B 1 2
� Ž .�and � Ghosh 1973 . Now if Z 
 
 and Z is an atom in 
 with Z aB G 0 G

refinement of Z , then l 
 l as shown in Section 4.3. Consequently,0 Z Zo

maximization of l can be restricted to the atoms of 
 . Furthermore, sinceZ G
Ž . Ž . BŽ . Ž .�C Z is a subspace of C Z , it follows that r Z � dimension C Xo 1 o

Ž . Ž .� Ž . BŽ . BŽ . BŽ .�C Z � dimension C X �C Z � r Z and r Z � n 	 p 	 r Zo 1 2 o 1 o
BŽ . BŽ .
 n 	 p 	 r Z � r Z . Thus, the degrees of freedom parameters for the1 2

distribution of F , based on clusterings corresponding to the atoms, areB
inherently in concordance with the objective of maximal power.

BŽ . BŽ .If the degrees of freedom parameters r Z and r Z are constant on the1 2
atoms Z 
 
 , then the atoms can be compared for power on the basis of theo
l values alone for Z 
 
 . An atom which maximizes l with respect toZ o Z
Z 
 
 thus corresponds to a maximin clustering as defined in Section 4.1.o
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BŽ . BŽ .For implementation purposes, the constancy of r Z and r Z is deter-1 2
Ž .� Ž .mined by directly evaluating dimension C X �C Z for each atom Z 
 
 .o

Ž .� Ž . Ž .Furthermore, since dimension C X �C Z � dimension C Z 	 dimension
Ž Z .C X , there are two ways this constancy may not obtain. In particular, ifo

Ž .dimension C Z is not constant on the atoms Z 
 
 then constancy of theo
degrees of freedom parameters may not hold. On the other hand, if dimension
Ž . Ž Z .C Z is constant but dimension C X is not constant on the atoms theno

constancy of the degrees of freedom may not follow. However, according to
Theorem 1, if the number of cliques for the specified graph G is greater than

Ž .dimension C X and the cliques form a minimal cover for the vertices of G,
Ž .then dimension C Z is equal to the cardinality of the set of cliques for every

atom Z 
 
 . In addition, we claim that for most predictor matrices X, ifo
Ž . Ž .� Ž .dimension C Z is constant on the atoms then dimension C X �C Z is

constant on the atoms as well. This claim, which is justified by Theorem 2
below, leads to the concept of a generic predictor matrix as defined next. The
proof of Theorem 2 is given in the Appendix.

DEFINITION 6. Let X be an n � p matrix of predictor variables with
Ž . Ž .dimension C X � p and let c � dimension C Z for Z a grouping matrix. If

p , if p � c,Zdimension C X �Ž .o ½ c, if p � c,

for all grouping matrices Z then X is generic.

Ž .THEOREM 2. Consider the n � p matrix X � x , . . . , x , where x is a1 p 1
column of ones or its equivalent, to be determined by an element of RnŽ p	1..
With this identification, the set of generic X matrices is open and dense in
RnŽ p	1.. If X does not provide for an intercept in the model, then the preceding
holds with Rn p in place of RnŽ p	1..

Theorem 2 justifies and makes more precise the claim made above. In
particular, except for nongeneric n � p X matrices which constitute a set of

n pŽ nŽ p	1. .Lebesgue measure zero in R R in case of an intercept , if dimension
Ž . Ž .� Ž .C Z is constant on the atoms then dimension C X �C Z is also constant

on the atoms. However, it should be emphasized that for implementation of
the maximin clustering criterion, we do not need to check whether X is
generic. Rather, as indicated previously, we simply check whether dimension
Ž .� Ž .C X �C Z is constant on the atoms. The significance of Theorem 2 is

Ž .� Ž .based on the assurance that the constancy of dimension C X �C Z on the
Ž .atoms will in fact ordinarily be realized whenever dimension C Z is constant

on the atoms. The latter will hold, for example, when the cliques form a
minimal cover for the vertices of the specified graph. In this case, dimension
Ž .� Ž .C X �C Z � k 	 p for all Z 
 
 whenever X is generic with p � k ando

k denotes the number of cliques of G. For completeness we remark that in
Ž .� Ž .case the specified graph produces atoms such that dimension C X �C Z ,
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Z 
 
 , is not constant then one can proceed as follows. First group theo
Ž .� Ž .atoms into classes according to dimension C X �C Z . Next choose an

atom from each class with maximum l value, and then select from amongZ
such atoms the clustering which provides a dominant power curve.

4.5. Consistency of the test based on maximin clustering. In addition to
atom determination, the cliques of a graph can also be related to the
consistency of the test based on F . Suppose that as the total number ofB

Ž .observations n � �, the number of clusters c � dimension C Z � � suchn n
that c �n � �, 0 � � � 1. In addition, assume the true model is of the formn

Ž . Ž . Ž .given by model 2 with dimension C X , Q fixed and dimension C X � pn n n
for all n. Under the preceding asymptotic scheme and assuming independent
zero mean random errors with common second, third and fourth moments,

Ž .Christensen 1989 proved consistency of the test based on F when theW
alternative only holds in the limit. By symmetry, analogous conditions for
consistency of the test based on F can be given. In particular, using theB
same asymptotic scheme and method of proof, the following proposition holds.

� � 2 � � 2 Ž .�PROPOSITION 2. If Q � �c � � � 0 and P Q � � n 	 cn n CŽ X .�CŽZ . n nn n

� 0 then F � 1 � ��� 2 as n � �.B p

Note that the conditions of Proposition 2 ensure that the true model
contains lack of fit Q � , which remains substantial as n � � and is asymp-n
totically between clusters. Next suppose that G and V denote a graph andn n
associated vertex set corresponding to the generic predictor matrix X . Alson
let C represent the set of cliques for G , and suppose C forms a minimaln n n
cover for V . Assume the predictor space is unbounded in R P and letn
c � cardinality C � � as n � � with c �n � �, 0 � � � 1. Finally, sup-n n n

Ž .� Ž . � � 2pose the lack of fit vector Q � 
 C X �C Z for all n and Q � �c �n n n n n
� � 0 as n � �. Then, by Proposition 2, the lack of fit test based on F isB

� � � 2 �consistent. For example, suppose that Q � 	 nb � B for some positiven

� � 2constants b and B for all n. Then Q � �c � b�� � 0 as n � � so thatn n
the lack of fit remains substantial for consistency purposes.

5. Examples.

EXAMPLE 1. Some fundamental concepts of the maximin clustering crite-
rion have been illustrated in Sections 3 and 4 based on the simple matrix X
and associated graph given in Section 3. In particular, the set of atoms

 � 
 was found to be the collection of grouping matrices consistent witho G

Ž .the graph with dimension C Z � 3, as listed in Table 1. Accordingly, a
maximin clustering is selected from this collection and the atoms can be
compared for power by using the maximin noncentrality parameter alone.
Utilizing the calculational form of l given in the Appendix, max l �Z Z 
 
 Zo

1.789945 corresponding to the maximin grouping matrix Z represented by
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Ž .Tz � 1, 1, 2, 2, 3 . As in Table 1, like coordinates indicate that the correspond-
ing observations are to be grouped together.

EXAMPLE 2. The data for this example are taken from Draper and Smith
�Ž . �1981 , page 215 , which reports percentage of properly sealed bars of soap
Ž . Ž . Ž .y , sealer plate clearance x and sealer plate temperature x with1 2

xT � 130, 174, 134, 191, 165, 194, 143, 186, 139,Ž1

188, 175, 156, 190, 178, 132, 148 ,.
xT � 190, 176, 205, 210, 230, 192, 220, 235, 240,Ž2

230, 200, 218, 220, 210, 208, 225 ..

Ž . 2Let X � 1 , x , x . Figure 1 gives a plot of the predictor settings in R16 1 2
with the ith row of X corresponding to i in the figure, i � 1, . . . , 16. To
illustrate the overlapping grid approach for determining a graph, let I �1
� � � �130, 171 and I � 153, 194 be two overlapping intervals whose union2

� �includes the range of values in x . Similarly, let J � 176, 217 and J �1 1 2
� �199, 240 cover the values in x . The corresponding overlapping grid ele-2
ments in R2 are then given by S � I � J for i, j � 1, 2. That is, using thei j i j

cell designations given in Figure 1, S � A � A � A � A , S � A �11 1 2 4 5 21 2
A � A � A , S � A � A � A � A and S � A � A � A � A . The3 5 6 12 4 5 7 8 22 5 6 8 9
S for i, j � 1, 2 determine a graph G with vertices V corresponding to thei j

� 4FIG. 1. Overlapping grid elements S � � A for i, j � 1, 2, where I � 1, 2, 4, 5 , I �i j I k 11 21i j

� 4 � 4 � 4 22, 3, 5, 6 , I � 4, 5, 7, 8 and I � 5, 6, 8, 9 , of the predictor space in R and maximin12 22
grouping for Example 2.
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16 rows of X and edges as discussed in Section 3. For example, an edge exists
between vertices v and v since v and v lie in S . However, there is no1 3 1 3 11
edge between v and v since v and v do not lie in a common S for some1 7 1 7 i j
i, j � 1, 2. In addition, the cliques of G are the sets S � V for i, j � 1, 2. Ai j
method is given in the Appendix to show this is the case. The method is also
applicable to Example 1, although the cliques in the simple setting of that
example can be determined by inspection. Thus, the set of cliques for the
graph G is given by

� 4 � 4 � 4C � 1, 3, 15 , 2, 4, 6, 11, 14 , 3, 5, 7, 9, 12, 15, 16 ,�
� 44, 5, 8, 10, 11, 12, 13, 14 .4

Furthermore, C is a minimal cover for V since v is in the first set but no1
other, v is in the second set but no other, v is in the third set but no other2 9

Ž .and v is in the fourth set but no other. Thus, by Theorem 1 ii , the set of8
atoms 
 � 
 consists of those groupings consistent with G and havingo G

Ž .dimension C Z � 4, where 4 is the cardinality of C. Specifically, the atoms
for this example are the groupings that have observation 1 confined to cluster
1, observations 2 and 6 confined to cluster 2, observations 7, 9 and 16
confined to cluster 3 and observations 8, 10 and 13 confined to cluster 4. Note
that the cluster designations are arbitrary. Also note that observation 1 is

Žconfined to cluster 1 since this observation lies in a portion of S in11
.particular, the A cell which does not overlap with any of the remaining grid1

elements S , S or S . Thus, there can be no edge between v and any21 12 22 1
vertex which lies in the A , A or A cells by construction of the graph3 7 9
according to the overlapping grid approach. Analogous reasoning can be used
to justify the claims made for the other three clusters. The remaining
observations lie in one of the four clusters described above. As determined by
computer enumeration, there are 128 atoms for this example while the
cardinality of the set of all possible groupings is 10,480,142,147 as indicated
in Section 3. A Fortran program has been written and implemented for
general use to calculate max l , which for this example is 1.10291Z 
 
 Zo

corresponding the maximin grouping matrix Z represented by z �
Ž .T Ž .1, 2, 1, 4, 3, 2, 3, 4, 3, 4, 2, 3, 4, 4, 1, 3 notation as in Table 1 and shown in
Figure 1.

APPENDIX

A calculational form for l is derived in Part A of the Appendix. Proofs ofZ
Proposition 1 and Theorems 1 and 2 are given in Parts B, C and D,
respectively. Disconnected graphs are discussed in Part E and a method for
determining the cliques of a graph derived by the overlapping grid approach
is developed and applied to Example 2 in Part F.

� 4Part A. To calculate l or equivalently 
 for Z 
 
 , let e , . . . , e beZ Z G 1 d
Ž .� Ž .an orthonormal basis for C X �C Z where d denotes the dimension of

Ž .� Ž . Ž 1 d . dC X �C Z . Thus, letting v , . . . , v be the d-tuple in R representing
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Ž .� Ž .v 
 C X �C Z with respect to this basis,
d

22 i� �v � vŽ .Ý
i�1

and
d d

i j� v � v v b ,Ž . Ý Ý i j
i�1 j�1

where
b � � e , e for i , j � 1, . . . , d.Ž .i j i j

Next let � and � , i � 1, . . . , d, represent the eigenvalues and correspondingi i
Ž .orthonormal eigenvectors, respectively, of the matrix B � b . Hence, let-i j

ting x � y denote the usual Euclidean inner product in Rn,
d

22 i� �v � �Ž .Ý
i�1

and
d

2i� v � � � ,Ž . Ž .Ý i
i�1

where
� i � v � � for i � 1, . . . , d.i

Thus, 
 may be computed by considering the constrained extrema problem:Z

d
2minimize f x � x subject to g x � �Ž . Ž .Ý i

i�1

Ž . d Ž . d 2for x � x , . . . , x 
 R , x � 0, where g x � Ý � x and � is a positive1 d i�1 i j

Ž . Ž . Ž Ž ..constant. Critical points of the function F x � f x � � � 	 g x are deter-
mined by �f � � �g and given by

�
x � , x � 0 for j � i , i � 1, . . . , d ,i j(�i

where � denotes the Lagrange multiplier. Thus, the minimum value of f
subject to g � � is ��� where � is the largest eigenvalue of the matrixmax max
B. Hence,


 � ��� and l � 1�� .Z max Z max

Part B. The proof of Proposition 1 follows Lemma 2. The proof of Lemma
2 is straightforward and thus omitted.

LEMMA 2. Let U and V be subspaces in Rn and suppose W and W are1 2
n Ž �.the subspaces of R given by W � P V and W � P V, respectively.1 U 2 U

Then:

Ž . �i U � V � U � W ,1
Ž . Ž � .ii U � U �V � W .2
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Ž .PROOF OF PROPOSITION 1. First note that by Lemma 2 i ,
�� � �

�C X � P C Z � C X �C ZŽ . Ž . Ž . Ž .Ž .ž /CŽ X .

Ž .�for Z 
 
 . Thus, by condition 5 ,E

�� �
�6 C X � P C Z .Ž . Ž . Ž .Ž .Ý ž /CŽ X .

�Z

E

Ž .Next note that 6 is equivalent to
�

� � 47 P C Z � 0 .Ž . Ž .Ž .� CŽ X .
�Z

E

Ž .This equivalence will be established below. Now note that 7 implies that �
Ž .� Ž .�is positive definite on C X . To see this, let v 
 C X and suppose that

P � v � 0CŽ X . � CŽZ .

Ž . Ž .� Ž .� �for all Z 
 
 . Thus, v 
 C X � C Z for all Z 
 
 . By Lemma 2 ii ,E E

� � �
�v 
 C X � C X � C Z � P C ZŽ . Ž . Ž . Ž .Ž . Ž .CŽ X .

for all Z 
 
 �. Hence,E

�
�v 
 P C ZŽ .Ž .� CŽ X .

�Z

 E

Ž . Ž .� Ž .so that v � 0 by 7 . Thus, for v 
 C X , � v � 0 implies that v � 0.
Ž . Ž . Ž .The equivalence of 6 and 7 follows by first observing that 7 holds if

and only if
��n

�8 R � P C Z .Ž . Ž .Ž .Ý ž /CŽ X .
�Z

 E

Ž . Ž .Thus, 8 implies 6 immediately. In addition, since
� �

�P C Z � C XŽ . Ž .Ž .CŽ X .

for all Z 
 
 �, we have thatE

��
�C X � P C Z .Ž . Ž .Ž .Ý ž /CŽ X .

�Z

 E

Ž .Thus, assuming that 6 holds,
�� �n

�R � C X � C X � P C Z .Ž . Ž . Ž .Ž .Ý ž /CŽ X .
�Z

 E

Ž . Ž . Ž . Ž .Hence, 6 implies 8 and the equivalence of 6 and 7 follows. �

Part C. The proof of Theorem 1 follows directly from Lemmas 3 and 4
below. The proof of Lemma 3 is straightforward and thus omitted.

� 4LEMMA 3. Let G be a graph with vertex set V. Let C � C , . . . , C be the1 k
collection of cliques of G. Then we have the following.
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Ž .i C is a cover for V.
Ž . � 4ii If P � A , . . . , A is a partition of V which is consistent with G, then1 m

� 4for each i � 1, . . . , m, A � C for some j 
 1, . . . , k .i j

� 4LEMMA 4. Let C � C , . . . , C be a cover of a set T. Suppose L is the1 k
� 4collection of all partitions P of T satisfying: if P � A , . . . , A then for each1 m

� 4i � 1, . . . , m there exists j 
 1, . . . , k such that A � C .i j

Ž .i Let P 
 L with cardinality of P equal to m 
 k � 1. Then there exists
P* 
 L such that P is a refinement of P* and the cardinality of P* is equal to
m 	 1.

Ž . � 4ii Suppose the cover C is minimal. If P � A , . . . , A 
 L, then the1 m
cardinality of P is greater than or equal to k.

Ž .PROOF. i Since m � k, there exists 1 � a, b � m with a � b and 1 � j
� �� k such that A � C and A � C . Thus, P* � A A 
 P, 1 � i � m,a j b j i i

4 � 4i � a, i � b � A � A 
 L with cardinality m 	 1.a b
Ž . � 4ii For each i � 1, . . . , m, choose j 
 1, . . . , k such that A � C . Let �:i i ji

� � 4 � � 4 Ž .i 1 � i � m � j 1 � j � k where � i � j . For each j � 1, . . . , k, choosei
� � 4 � � 4t 
 C �� C . Define � : j 1 � j � k � i 1 � i � m by t 
 A . Sincej j a� j a j � Ž j.

t � C for 1 � a � k and a � j, it follows that A � C for a � j. Thusj a � Ž j. a
Ž Ž ..� � j � j. Hence, � is onto and m 
 k. �

Part D. The proof of Theorem 2 follows directly from Theorems 3 and 4
Ž . nbelow. In the following, let X � x , . . . , x where each x is a vector in R1 p i

with p � n, and identify X with a point in Rn p. As in Section 2, let P :A
Rn � Rn denote the orthogonal projection onto a subspace A � Rn. The proof
of Lemma 5 is straightforward and thus omitted.

Ž . NLEMMA 5. Suppose P z , . . . , z is a polynomial function on R which is1 N
� N Ž . 4 Nnot identically zero. Then the set z 
 R : P z � 0 is open and dense in R .

LEMMA 6. There exists an open dense subset O � Rn p such that X 
 O
Ž .implies dimension C X � p.

n p Ž .PROOF. Consider X as a variable point in R and let P X be the
determinant of the upper p rows of X. Since there are X for which P is not

Ž . n pzero, the set of X such that dimension C X � p is open and dense in R by
Lemma 5. �

LEMMA 7. Suppose B is a subspace of Rn with dimension B � p � n. Then
Ž . � 4 n pthe set of X for which B � C X � 0 contains an open dense subset in R .

� 4PROOF. Let v , . . . , v be a basis for B and extend this collection to a1 k
� 4linearly independent set denoted by v , . . . , v , v , . . . , v . Next let V be1 k k�1 n	p

Ž .the n � n 	 p matrix with columns given by v , j � 1, . . . , n 	 p, andj
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Ž . Ž .define P X as the determinant of the n � n matrix V, X . Since there are
Ž . � 4X for which P is not zero, the set of X such that B � C X � 0 contains an

open dense subset in Rn p by Lemma 5. �

In the following proofs, the fact that in a complete metric space the
intersection of finitely many open dense subsets is open and dense will be
used.

LEMMA 8. Suppose A is a subspace of Rn with dimension A � c 
 p. Then
there exists an open dense subset O � Rn p such that X 
 O implies dimen-A A

Ž . Ž .sion P C X � dimension C X � p.A

Ž . Ž .PROOF. First note that dimension P C X � dimension C X if and onlyA
� Ž . � 4 Ž . �if A �C X � 0 , with dimension C X � p � c and dimension A � n 	 c.

Ž . Ž .This follows by considering P : C X � A so that dimension C X � dimen-A
Ž Ž .. Ž . Ž � Ž ..sion kernel P � C X � dimension P C X � dimension A �C X �A A

Ž .dimension P C X . Next note by Lemma 7 there exists an open dense subsetA
n p � Ž . � 4V � R such that X 
 V implies A �C X � 0 . Hence, dimensionA A

Ž . Ž .P C X � dimension C X . Now take O � V � O where, by Lemma 6,A A A
n p Ž .O � R is open and dense such that X 
 O implies dimension C X � p. �

LEMMA 9. Suppose A is a subspace of Rn with dimension A � c � p. Then
there exists an open dense subset O � Rn p such that X 
 O implies dimen-A A

Ž . Ž .sion P C X � c and dimension C X � p.A

ˆ ncŽ .PROOF. Let X � x , . . . , x 
 R . By Lemma 8, there exists an open1 c
ˆ nc ˆ ˆ ˆŽ .dense subset O � R such that X 
 O implies dimension P C X �A A A

ˆ ˆ nŽ p	c.Ž .dimension C X � c. Now take O � O � R � O where, by Lemma 6,A A
n p Ž .O � R is open and dense such that X 
 O implies dimension C X � p.

n p ˆŽ . Ž .Note also that O is open and dense in R , and since P C X � P C X � A,A A A
Ž .dimension P C X � c. �A

THEOREM 3. Suppose A , . . . , A are subspaces of Rn. Then there exists an1 s
n p Ž .open dense subset O � R such that X 
 O implies dimension C X � p and

Ž . Ž .dimension P C X � p if p � dimension A , while dimension P C X �A i Ai i

dimension A if p � dimension A , i � 1, . . . , s.i i

PROOF. Let O , i � 1, . . . , s, be given by Lemma 8 or Lemma 9, and takeAi

O � �s O . �i�1 Ai

The following generalization of Theorem 3 may be used to cover, for
example, the case in which the predictor matrix provides for an intercept in
the model.

THEOREM 4. Suppose A , . . . , A are subspaces of Rn and also let Y be a1 s
subspace of Rn where Y � A for each i � 1, . . . , s. Suppose dimension Y � ki
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Ž . Ž . � 4and consider X � x , . . . , x � y , . . . , y , z , . . . , z where y , . . . , y is1 p 1 k 1 p	k 1 k
a fixed basis for Y, k � p � n. Then there exists an open dense subset O �

nŽ p	k . Ž . Ž .R such that Z � z , . . . , z 
 O implies dimension C X � p and1 p	k

Ž . Ž .dimension P C X � p if p � dimension A , while dimension P C X �A i Ai i

dimension A if p � dimension A , i � 1, . . . , s.i i

PROOF. First note by Lemma 7 there exists an open dense subset O �1
nŽ p	k . Ž . � 4 Ž . Ž .R such that Z 
 O implies Y � C Z � 0 . Then C X � Y � C Z1

� Ž . � 4 Ž � . Ž . � 4and A � C X � 0 if and only if A � Y � C Z � 0 , i � 1, . . . , s.i i
These observations allow the analysis for Theorem 3 to be used to conclude
the proof of Theorem 4.

Ž .Part E. Consider a disconnected graph G � V, E which breaks up into q
connected components with

V , E � V , E � V , E � ��� � V , E .Ž . Ž . Ž . Ž .1 1 2 2 q q

Ž .In this case there is a subspace R which is common to C Z for every Z
Ž . Ž .consistent with G. In fact, R � � C Z � � C Z and dimensionZ 
 
 Z 
 
G o

Ž . Ž .� Ž . Ž .�R � q. If q � p � dimension C X then � C X �C Z � C X �Z 
 
 o
� 4 Ž .R � 0 . Furthermore, R � C Z where Z is the grouping matrix corre-R R

� 4sponding to the partition V , V , . . . , V . Note that Z need not be an1 2 q R
Ž .�element of 
 . Thus, C X �R is common to every alternative model of theG

B Ž . Ž Ž .� Ž .. Ž . Žtype H under consideration and C X � C X �C Z � C X � R �a
Ž .�. Ž � Ž .� Ž ..C X � R �C X �C Z for all Z 
 
 . Consequently, l � 1 for allG Z

Ž .Z 
 
 whenever � has the form given by 4 and G is disconnected asG
specified above, and hence provides no discrimination between the candidate
groupings. Thus, in comparing the atoms consistent with the graph, l mayZ
be modified as

� � 2v �� �l � inf : v 
 R �C X �C Z , v � 0 .Ž . Ž .Z ½ 5� vŽ .
Note that � is not affected by R.

Part F. Let G be a graph determined by a family of overlapping subsets
� 4 p � 4S , . . . , S in R as discussed in Section 3. Let V � v , . . . , v denote the1 m 1 n
set of vertices of G and let V � S � V, i � 1, . . . , m. Conditions will be giveni i

� 4under which V , . . . , V is the collection of cliques of G. We assume that1 m
Ž . Ž .1 �V � V and 2 V � V with V �V � � and V �V � � for i � j. Nexti i j i j j i
recall that for v , v 
 V there is an edge joining v to v if and only ifi j i j
v , v 
 V for some k � 1, . . . , m. Thus, the sets V , i � 1, . . . , m, themselvesi j k i
form complete subgraphs. The question that remains is whether every com-

� 4plete subgraph is contained in some V . That is, V , . . . , V is not thei 1 m
collection of cliques of G if and only if there exists a subset O � V which
induces a complete subgraph of G and O is not contained in any of the sets
V . Suppose such subsets O exist. From all such subsets choose O to be ofi 0
minimal cardinality. The cardinality of O must be at least three since any0
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set of cardinality two which has its points joined by an edge must lie in one of
the sets V by construction of the graph according to the overlapping gridi
approach. Next choose distinct vertices v , v and v from O , and note by01 02 03 0
the minimal cardinality of O that there exist sets V , V and V from the0 01 02 03

� 4collection V , . . . , V such that1 m

� 4O � v � V , v � V ,0 01 01 01 01

� 4O � v � V , v � V ,0 02 02 02 02

� 4O � v � V , v � V .0 03 03 03 03

The preceding discussion establishes the following lemma.

� 4LEMMA 10. If the set of cliques of G is not the collection C � V , . . . , V1 m
then there exists three distinct vertices v , v and v and three distinct sets01 02 03
V , V and V from C such that01 02 03

� 4v , v � V , v � V ,02 03 01 01 01

� 4v , v � V , v � V ,01 03 02 02 02

� 4v , v � V , v � V .01 02 03 03 03

The following corollary follows directly from Lemma 10 and provides condi-
� 4tions under which V , . . . , V is the collection of cliques of G.1 m

ŽCOROLLARY 1. If there does not exist such a configuration v , v , v ,01 02 03
.V , V , V as described in Lemma 10, then the collection of cliques of G is01 02 03

� 4given by V , . . . , V .1 m

The preceding methodology for determining the cliques of a graph derived
by the overlapping grid approach is now applied to Example 2. In this
example there are four overlapping grid elements in R2 given by S , S , S11 21 12
and S . The corresponding sets V , i � 1, . . . , 4, may be identified as22 i

� 4V � S � V � 1, 3, 15 ,1 11

� 4V � S � V � 2, 4, 6, 11, 14 ,2 21

� 4V � S � V � 3, 5, 7, 9, 12, 15, 16 ,3 12

� 4V � S � V � 4, 5, 8, 10, 11, 12, 13, 14 .4 22

Note for example that V � V � � and V � V � � so that by choosing any1 4 2 3
� 4three distinct sets V , V , V from the collection V , . . . , V there exists at01 02 03 1 4

least one pair with empty intersection. Thus, there cannot exist a configura-
tion of the type described in Lemma 10. Hence, by Corollary 1, the collection

� 4of cliques of G in Example 2 is given by V , . . . , V .1 4
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