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A MAXIMAL INEQUALITY FOR CONTINUOUS
MARTINGALES AND M-ESTIMATION IN A

GAUSSIAN WHITE NOISE MODEL1

BY YOICHI NISHIYAMA

Institute of Statistical Mathematics

Some sufficient conditions to establish the rate of convergence of
certain M-estimators in a Gaussian white noise model are presented.
They are applied to some concrete problems, including jump point estima-
tion and nonparametric maximum likelihood estimation, for the regres-
sion function. The results are shown by means of a maximal inequality for
continuous martingales and some techniques developed recently in the
context of empirical processes.

1. Introduction and preliminaries. For every n � �, let X n �
Ž n.X be a continuous stochastic process given byt t ��0, 1�

dX n � f t dt � n�1�2 dW ,Ž .t t

2� � Ž .where f � L 0, 1 and W � W is a standard Wiener process. Lett t ��0, 1�
Ž . 2� ��, d be a metric space. Let some mappings � : � � L 0, 1 and � : � � �

be given. This paper deals with some estimation problems of the unknown
Ž .value � of � defined as � � argmax M � , where the criterion function0 0 � � �

Ž .� � M � is given by

² : 2M � � � � , f � � � �� � �.Ž . Ž . Ž .L �0, 1�

ˆŽ .A natural estimator would be an approximate argmax � of the criterionn
nŽ .process � � M � given by

1n nM � � � t ; � dX � � � �� � �.Ž . Ž . Ž .H t
0

nŽ . Ž . �1�2The idea is based on the fact that the residual M � � M � � n �
1 Ž .H � t; � dW is a terminal variable of a continuous martingale, and thus we0 t

first prepare a maximal inequality for continuous martingales. The main goal
is to give some sufficient conditions to establish the rate of convergence of this

ˆ �1Ž . Ž .estimator, namely, the assertion of the form d � , � � O r where r isn 0 P n n
a sequence of constants such that r ��.n
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More concrete examples which fit in our framework are as follows, al-
though the precise formulations of those problems are stated in Sections 4

Ž .and 5. Examples 1 and 2 are concerned with the cumulative function t � F t
t Ž .� H f s ds. The parameter space � of Examples 1, 2 and 3 should be an0

� � 2� �appropriate subset of 0, 1 , while that of Example 4 is a subset of L 0, 1 .

EXAMPLE 1. Peak point of F. Consider estimating the location of the peak
Ž .of the function F, that is, � � argmax F � . This problem can be treated0 � � �

Ž . Ž . Ž . Ž .by setting � � � � t, � � 1 t and � � � 0.�0, � �

Ž .EXAMPLE 2. Steepest interval of F. Fix a constant b � 0, 1�2 . Let us
consider estimating the location of the interval, with length 2b, on which the
function F increases most rapidly. This problem can be handled by setting
Ž . Ž . Ž . Ž .� � � � t, � � 1 t and � � � 0.� ��b, ��b �

EXAMPLE 3. Jump point of f. Suppose that the function f has a jump at
� , and we are interested in estimating its location. Fixing a ‘‘small’’ constant0

Ž . Ž . Ž .b � 0, we define � � � � t, � � k t � � where

��x � b , x � �b, 0 ,.	k x �Ž . � ��x � b , x � 0, b ,

0, otherwise,

Ž . Ž . Ž .and � � � 0. If the jump is positive, namely f � � f � � � 0, then it0 0
Ž .holds under a mild condition on f that � � argmax M � . The case of a0 � � �

negative jump can be also analyzed by replacing k by �k, although our
approach requires prior knowledge of whether the jump is positive or nega-
tive. Other choices of the function k are also possible.

2� �EXAMPLE 4. Nonparametric MLE. Let � be a subset of L 0, 1 , and
consider an infinite-dimensional parametric model, with parameter � � �,
given by

dX n � � t dt � n�1�2 dW n , �Ž .t t

where W n, � is a standard Wiener process under the probability measure P n.�

Then, the argmax of the log-likelihood ratio process � � log dP n�dP n coin-� � 0nŽ .cides with that of the criterion process � � M � given by

11 2n n
2� �M � � � t dX � � .Ž . Ž .H L �0, 1�t 20

Hence maximum likelihood estimation is also a special case of our framework
1 2

2Ž . Ž . Ž . Ž . � �with � � � � t, � � � t and � � � � � .L �0, 1�2

Some M-estimation problems for diffusion-type processes have been stud-
Ž . Ž . Ž .ied by Lanska 1979 , Genon-Catalot 1990 , Yoshida 1990, 1992 and Kutoy-´

�Ž .�ants 1994, Chapter 7 ; see also the references therein. The Gaussian white
noise model considered here is a special case of diffusion-type processes.
However, the parameter set � in our formulation is not necessarily Eu-
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clidean, and the assumption of differentiability with respect to the parameter
� is not needed. Moreover, the examples listed above possess some interest by
themselves.

Among them, let us mention some known results related to Example 3.
ˆThe asymptotic distribution of the maximum likelihood estimator � of an

�Ž .jump point � can be found in Ibragimov and Has’minskii 1981 , Section0
� �Ž . �VII.2 and Kutoyants 1984 , Section 2.4 . More precisely, they derived the

ˆŽ . Ž .asymptotic behavior of n � � � when the function f is of the form f t �n 0 �

Ž .S t � � with S being a known function, along the approach of finite-dimen-
Ž .sional parametric estimation. Korostelev 1987 showed the rate of conver-

Ž .gence is still order n in a certain nonparametric model. Wang 1995 consid-
ered a broader model, including not only jumps but also cusps, and derived

� ���that the rate of convergence of a jump point estimator is n log n with any
constant � � 0, which is quite close to the best rate. Our model described

Ž .precisely in Section 4.3 is slightly more general than that of Korostelev 1987
Ž .but does not contain that of Wang 1995 , and we get an asymptotic distribu-

Ž .tion result of the rate n. See Wu and Chu 1993 and the references therein
for some results of asymptotic distribution in nonparametric regression mod-
els of fixed design.

Related to Example 4, the rate of convergence of nonparametric maximum
Ž .likelihood estimation has been investigated by van de Geer 1993, 1995 ,

Ž . Ž .Birge and Massart 1993 , and Wong and Shen 1995 , among others. They´
are concerned with discrete-time models and give some criteria for rate of
convergence in terms of metric entropy with bracketing. On the other hand,
in the continuous-time Gaussian white noise model, a criterion given in
Section 5 is based on the standard L2-metric entropy and so is the maximal
inequality for continuous martingales in Section 2. Thus we need no bracket-
ing. Although our model is in continuous time, we discuss also some sieving
methods which lead to a certain discrete sampling.

We will take an approach based on the following theorem in the general
context of M-estimation developed in Chapters 3.2 and 3.4 of van der Vaart

Ž . Ž .and Wellner 1996 hereafter abbreviated to ‘‘VVW’’ into which some ideas
Ž . Ž .due to Kim and Pollard 1990 , van de Geer 1990, 1993, 1995 and Birge and´

Ž . ŽMassart 1993 are also condensed. In what follows, we denote by P* and E*
the outer probability and expectation with respect to the probability measure

.P, respectively.

THEOREM 1.1. For every n � �, let the following be given:

Ž . Ž .i A metric space � , d and a point � � � ;n n n n
Ž . nŽ .ii A stochastic process � � M � defined on a probability space

Ž n n n. Ž .	 , FF , P and a deterministic process � � M � , with parameters in � .n

Ž . � Ž . Ž . 4 Ž .We denote R 
 � � � � : 
�2 � d � , � � 
 for every 
 � 0, � . Sup-n n n n
Ž . Ž . Ž �pose that the following conditions A and B are satisfied for some 
 � 0, � ,0

Ž . Ž . �a Ž .p � 0, some functions � : 0, 
 � 0, � such that 
 � 
 � 
 is decreas-n 0 n
Ž .ing for a constant a � 0, p , and some positive constants r such thatn

�1 Ž . Ž �1 . �pr � 0, 
 and that � r � r .n 0 n n n
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Ž .A There exist some constants C, L � 0 such that for every n � �,

M � � M � � �C
 p �� � R 
Ž . Ž . Ž .n n

whenever Lr�1 � 
 � 
 .n 0
Ž .B There exist some constants C�, L� � 0 such that for every n � �,

n� � n n �E sup M � M � � M � M � � C�� 
Ž . Ž . Ž . Ž . Ž .n n
Ž .��R 
n

whenever L�r�1 � 
 � 
 .n 0

ˆ nThen, for any mappings � : 	 � � such thatn n

n� n ˆ n �p1 lim lim sup P M � � M � � Kr � 0Ž . Ž .Ž .ž /n n n
n��K��

and that
n� ˆ2 lim P d � , � � 
 �2 � 0,Ž . Ž .ž /n n n 0

n��

it holds that
n� ˆlim lim sup P r d � , � � K � 0.Ž .ž /n n n n

n��K��

Ž . Ž . Ž .When the conditions A and B are satisfied for 
 � �, assumption 2 is0
unnecessary.

Ž .Keeping a two-term Taylor expansion of the function � � M � in mind,
VVW presented this result for the case of p � 2 as their Theorems 3.2.5 and
3.4.1. The modification to the case of arbitrary p � 0 is straightforward,
hence the proof is omitted; however, this minor change considerably enlarges
the possibility of applications, as we actually see in Section 4. Notice also
that, after another minor change of the theorem, we can make a remark in
Section 5 that the rate of convergence of sieved non-parametric maximum
likelihood estimators can be obtained uniformly over a class of regression
functions provided a usual metric entropy condition is satisfied.

The crucial point of the above approach is how to get a moment inequality
Ž n .Ž . Ž .for the residual processes � � M � M � as in B . In the i.i.d. case, the

Ž n .Ž .residual M � M � is typically an empirical process indexed by a class of
Ž . Ž . �1�2 Ž .functions, and the function � 
 is of the form � 
 � n � 
 for an n

Ž .function 
 � � 
 not depending on n. In the case of p � 2, the function
1�2 'Ž . Ž .� 
 � 
 leads to the standard rate r � n , while � 
 � 
 leads to then

‘‘cube root asymptotics’’ r � n1�3. VVW contains a good exposition of then
approach with emphasis on the i.i.d. data.

It should be noted, however, that the approach can be applied in much
broader situations whenever we have an inequality to establish the assump-

Ž .tion B . With this aim in mind, in Section 2, we give a maximal inequality for
Ž .continuous martingales. Based on it, some sufficient conditions to check B in

our situation are presented in Section 3. The rigorous formulations of Exam-
ples 1, 2 and 3 are stated in Section 4, and we derive not only rate of
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convergence but also asymptotic distribution. Section 5 contains a detailed
discussion on Example 4; the maximal inequality is again useful for the
construction of a sieve there.

The inequality given in Section 2 is formulated in the framework of
continuous martingales, and it has thus a potential to serve some rate of
convergence theorems and their applications not only in the Gaussian white
noise model but also in more general models of, for instance, diffusion-type

Ž .processes; see Nishiyama 1998 . However, for simplicity we do not pursue
exhaustive generality in the present paper.

Let us close this section with stating some notation. For a given subset 
Ž . Ž .of a metric space XX , � , we denote by N , �; � the smallest number of

�closed balls, with �-radius � � 0, which cover the set  for definiteness we
Ž .allow N , �; � � �, although we shall always suppose  is totally bounded

�with respect to �: the centers of the closed balls need not belong to  . The
notation � stands for the modern definition of weak convergence underP

Žthe probability measure P that does not require the measurability see, e.g.
.Definition 1.3.3 of VVW . The stochastic integral is denoted by f � X �

1 Ž .H f t dX .0 t

2. Maximal inequality for continuous martingales. Let B �
Ž Ž . . Ž .	, FF, F � FF , P be a stochastic basis and , � a metric space. Lett t � ��

� � 4X � X : � �  be a family of continuous local martingales defined on B
indexed by . We need two definitions.

� � � � 4DEFINITION 2.1. A quadratic �-modulus X of a family X � X : � � �

� 4of continuous local martingales is defined as an � � � -valued stochastic�
� �process t � X given by�, t

� � � �² :' X � X , X � X t
� �X � sup � t � � .� , t �� � , �Ž .� , ��

���

REMARK. Since the set  is not necessarily countable, the random ele-
� �ment X may not have any measurability. Moreover, although the pre-�, t

² � �:dictable covariation X , X is uniquely determined up to a negligible set
for every pair � , � � , for the same reason, the quadratic �-modulus of X
may not be unique even in the almost sure sense. However, we do not require
its uniqueness because the assertion of the following theorem is valid for any
choice of quadratic �-modulus of X.

� � 4DEFINITION 2.2. A family X � X : � �  of continuous local martin-
gales is said to be �-separable if there exist a countable subset * of  and a
negligible set N � FF such that for every � � 0 and � � 	  N,

� �X � � X � : � � *, � � , � � � � t � � , �� �  ,Ž . Ž . Ž .� 4t t �

� 4where the closure is taken in � � ��, �� .
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Ž .THEOREM 2.3. Let , � be a totally bounded metric space. Let X �
� � 4X : � �  be a �-separable family of continuous local martingales indexed
by  such that X � � 0 and � a finite stopping time, both of which are defined0

� �on a stochastic basis B. Then, for any choice of quadratic �-modulus X of�

X, it holds that for every �, � � 0,
�

� �� �E* sup sup X � X 1 � C� log 1 � N  , � ; � d� ,' Ž .Ht t �� X � � � 4� , �
0� � � , ��t� 0, �

Ž .� � , � ��

provided the integral of the right-hand side is finite, where C � 0 is a
universal constant.

The proof of the above result is given in the Appendix. We are often
concerned only with the terminal variables X �. It is well known that, when�

Ž . �, � is separable, if � � X is continuous in probability, then it admits a�

� �separable version. When X � � holds identically for a choice of the�, �

quadratic �-modulus and a constant � , the above inequality implies the
continuity in probability. Hence the �-separability is not a strong assumption
in practice.

3. Rate of convergence of M-estimators. For every n � �, let X n �
Ž n.X be a continuous stochastic process given byt t ��0, 1�

dX n � f t dt � n�1�2 dW ,Ž .t t

2� � Ž .where f � L 0, 1 , and W � W is a standard Wiener process on at t ��0, 1�
Ž Ž . . Ž .stochastic basis B � 	, FF, F � FF , P . Let �, d be a metric space.t t ��0, 1�

2� �Let some mappings � : � � L 0, 1 and � : � � � be given. Suppose that

� � 2� � , � � � � � � � �� , � � �Ž . Ž . Ž . L �0, 1��

Ž .defines a proper metric � on �. We consider the criterion function � � M ��

defined by

1
2² :3 M � � � � , f � � � � � t ; � f t dt � � �Ž . Ž . Ž . Ž . Ž . Ž . Ž .L �0, 1� H

0
nŽ .and the criterion process � � M � defined by

1n n n4 M � � � � � X � � � � � t ; � dX � � � .Ž . Ž . Ž . Ž . Ž . Ž .H t
0

Further, for given � � � and 
 � 0, we denote0

� � , 
 � � � � : d � , � � 
 ,� 4Ž . Ž .d 0 0

which is the closed ball with center � and d-radius 
 .0

Ž .THEOREM 3.1. Let �, d be a separable metric space. For given mappings
2� � Ž .� : � � L 0, 1 and � : � � �, define the criterion function � � M � and

nŽ . Ž . Ž .process � � M � by 3 and 4 , respectively. For given � � �, suppose0
Ž . Ž . Ž �that the following conditions A� and B� are satisfied for some 
 � 0, � .0
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Ž .A� There exist some constants p, C � 0 such that
p

M � � M � � �Cd � , � �� � � � , 
 .Ž . Ž . Ž . Ž .0 0 d 0 0

Ž . Ž . Ž . Ž .B� There exist a constant a � 0, p and a function �: 0, 
 � 0, �0
�a Ž .such that 
 � 
 � 
 is decreasing and that

�H log N � � , 
 , � ; � d�' Ž .Ž .0 d 0 �
sup � �;

� 
Ž .Ž .
� 0, 
0

diam � � , 
 , �Ž .Ž .d 0 �
sup � �.

� 
Ž .Ž .
� 0, 
0

�1 Ž . p Ž �1 . 1�2Choose any constants r � 0 such that r � 0, 
 and that r � r � n .n n 0 n n
ˆThen, for any �-valued random sequence � such thatn

n ˆ n �p ˆM � � M � � O r and d � , � � o 1 ,Ž . Ž .Ž .Ž . Ž .n 0 P* n n 0 P*

ˆ �1 ˆŽ . Ž . Ž .it holds that d � , � � O r . When 
 � �, the assumption ‘‘d � , � �n 0 P* n 0 n 0
Ž .o 1 ’’ is unnecessary.P*

Ž .PROOF. It suffices to show that the condition B of Theorem 1.1 is
satisfied for � � n�1�2�. Since � is d-separable, we may assume that then

ˆ Ž .values of estimators � � and the true value � belong to a countable,n 0
� Ž . Ž . Ž .d-dense subset �* of �. Denote � � , 
 � � � , 
 � �* and D 
 �d 0 d 0

Ž � Ž . .diam � � , 
 , � . Notice thatd 0 �

5 M n � � M � � n�1�2� � � W .Ž . Ž . Ž . Ž .
� Ž . � �1�2 Ž . Ž .Applying Theorem 2.3 to  � � � , 
 , X � n � � � W and � � D 
 ,d 0 1

Ž .we obtain that for every 
 � 0, 
 ,0

� �1�2 �E sup n � � � � � � W� 4Ž . Ž .
�Ž .� , ��� � , 
d 0

Ž .D 
 ��1�2� Cn log 1 � N � � , 
 , � ; � d�Ž .' Ž .H d 0 �
0

Ž .D 
 ��1�2� Cn log 2 N � � , 
 , � ; � d�Ž .' Ž .H d 0 �
0

Ž .D 
 ��1�2 '� Cn D 
 log 2 � log N � � , 
 , � ; � d� ,'Ž . Ž .Ž .H d 0 �½ 5
0

Ž .where C � 0 is a universal constant. Thus the assumption B� implies the
assertion. �

Ž .The condition B� is analogous to that of Theorem 3.2.10 of VVW. Although
the supremum with respect to 
 comes out of the integral, this condition may
still look awkward at first sight. Indeed, it requires a calculation of certain

Ž .covering numbers of the sets � � , 
 for all sufficiently small 
 � 0. How-d 0
Ž .ever, when the parameter space �, d is Euclidean, this condition can be
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replaced by a simple relationship between the two metrics d and � , as is�

given in the next theorem.

THEOREM 3.2. Let � be a subset of a finite-dimensional Euclidean space
with the usual metric d. Suppose that for given � � � there exist some0

Ž �
 � 0, � and some constants p � q � 0 and C, C� � 0 such that:0

p
M � � M � � �Cd � , � �� � � � , 
 ;Ž . Ž . Ž . Ž .0 0 d 0 06Ž . q

� � , � � C�d � , � �� , � � � � , 
 .Ž . Ž . Ž .� d 0 0

Then, the same conclusion as Theorem 3.1 holds for r � n1�2Ž p�q ..n

Ž .PROOF. It suffices to show that the condition B� of Theorem 3.1 is
Ž . qsatisfied with � 
 � 
 . We may assume without loss of generality that

Ž .C� � 1, and in this case it holds that for every 
 � 0, 
 ,0

7 d � , � � � 1� q
 and � , � � � � , 
 � � � , � � �
 q .Ž . Ž . Ž . Ž .d 0 �

Thus we have

N � � , 
 , � ; �
 q � N � � , 
 , d ; � 1� q
 � N B 
 , d ; � 1� q
 ,Ž . Ž . Ž .Ž . Ž . Ž .d 0 � d 0 d

Ž .where B 
 denotes a closed ball with center being an arbitrary pointd
�Ž . Ž 1� q . 4 rand d-radius 
 . The right-hand side is bounded by 2
 � � 
 � 1 for

Ž �every � � 0, 1 , where r is the dimension of �. Hence, by noting also
Ž Ž . q.N � � , 
 , � ; 
 � 1, we obtaind 0 �

�
�qsup 
 log N � � , 
 , � ; � d�' Ž .Ž .H d 0 �

0Ž .
� 0, 
0

1 q� sup log N � � , 
 , � ; �
 d�' Ž .Ž .H d 0 �
0Ž .
� 0, 
0

1 �1� q' � 4� r log 2� � 1 d� � �.H
0

Ž . Ž Ž . .On the other hand, by putting � � 1 in 7 we obtain diameter � � , 
 , �d 0 �

� 2
 q. �

Ž .In so-called ‘‘regular’’ parametric models, the condition 6 is satisfied with
p � 2 and q � 1, which leads to the ‘‘square root asymptotics.’’ The ‘‘cube root

Ž .asymptotics’’ investigated by Kim and Pollard 1990 , whose origin goes back
Ž .at least to Chernoff 1964 , corresponds to the cases of p � 2 and q � 1�2.

In both theorems, we have to show the consistency of estimators some-
how. Combining our Theorem 2.3 with Corollary 3.2.3 of VVW, we can have a
sufficient condition. Generally speaking, a mild but global assumption yields
the consistency.
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4. Examples: Euclidean parameters. This section is devoted to pre-
senting some examples in the case of � being Euclidean. First, let us briefly
sketch a procedure performed here to derive the asymptotic distribution of
M-estimators based on a continuous mapping theorem for argmax function-
als, although the procedure itself is rather well known. In all examples, we

nŽ .shall consider some rescaled criterion processes h � � h of the form

�n h � a M n � � r h � M n � ,� 4Ž . Ž . Ž .n 0 n 0

where r and a are some appropriate constants. Thus the first problemn n
should be to find the ‘‘rate of convergence’’ r , and Theorem 3.2 is useful atn
this step. The constant a should be determined in connection with r . Next,n n
according to Theorem 3.2.2 of VVW, we shall show the following:

ˆ ˆŽ .1. The uniform tightness of the local sequence h � r � � � .n n n 0
nŽ .2. The weak convergence of the process h � � h to a continuous process

Ž . �Ž .h � � h in l K , for every compact subset K of the space of local
parameters.

ˆ Ž .3. The existence of a unique maximum point h of the path h � � h .

ˆAny Borel random variable on a Polish space is tight, hence so is h. In this
ˆ ˆŽ .way, some results of the form ‘‘r � � � � h’’ are deduced.n n 0 P

The reason why we restrict our attention to the case of finite-dimensional
parameters in this section is that the uniform tightness of the local sequence
ˆ ˆ� Ž . � � � Ž .h Step 1 above is equivalent to ‘‘r � � � � O 1 ,’’ which is actually then n n 0 P
consequence of Theorem 3.2. This is not always true when the parameter
space is general, but Theorem 3.1 is still useful at least for deriving the rate
of convergence as we see in Section 5.

4.1. Peak point of F. Let us consider estimating the value of

� � argmax F � ,Ž .0
� ��� 0, 1

Ž . Ž . t Ž .where t � F t is the cumulative function of f defined by F t � H f s ds.0
This problem can be treated in our general framework by setting

� �� t ; � � 1 t and � � � 0 �� � 0, 1 .Ž . Ž . Ž .�0 , � �

Ž . Ž .The criterion function and process, defined by 3 and 4 , turn out to be
Ž . Ž . nŽ . nM � � F � and M � � X , respectively.�

� � Ž . � �We equip � � 0, 1 with the usual metric d � , � � � � � to apply
'Ž . � �Theorem 3.2. It is clear that � � , � � � � � . Thus, if � is an inner point� 0

� �of 0, 1 and if there exist some constants 
 , C � 0 and p � 1�2 such that0

� � p8 F � � F � � �C � � � �� � � � , 
 ,Ž . Ž . Ž . Ž .0 0 d 0 0

then the same conclusion as Theorem 3.1 holds for r � n1�Ž2 p�1..n
To derive the asymptotic behavior of the rescaled residual n1�Ž2 p�1. �

ˆŽ . Ž .� � � , let us introduce an assumption on the function t � F t .n 0



Y. NISHIYAMA684

Ž .ASSUMPTION 4.1. Let p � � be given. For given � � 0, 1 , the function0
Ž . Ž .t � F t is p � 1 -times continuously differentiable in a neighborhood of �0

with derivatives F Žm., m � 1, . . . , p � 1, and has pth left- and right-deriva-
tives F Ž p. and F Ž p. at � , respectively, which satisfy:� � 0

Ž . Žm.Ž .i When p � 2: F � � 0 for every m � 1, . . . , p � 1.0
Ž . Ž p.Ž . Ž p.Ž .ii When p is odd: F � � 0 � F � .� 0 � 0
Ž . Ž p.Ž . Ž p.Ž .iii When p is even: F � � F � � 0.� 0 � 0

Ž .The condition 8 follows from this assumption by a Taylor expansion.
Moreover, we obtain the following result.

� �PROPOSITION 4.1. Under Assumption 4.1, for any 0, 1 -valued random
ˆsequence � such thatn

n n �p�Ž2 p�1. ˆ� �X � sup X � o n and � � � � o 1 ,Ž . Ž .�̂ � P* n 0 P*n
� ��� 0, 1

1�Ž2 p�1. ˆŽ . � Ž . Ž .4it holds that n � � � � argmax � h � � h in �, wheren 0 P h� �

Ž .h � � h is the deterministic process given by

h pF Ž p. � �p!, � h � 0,Ž .� 0
� h �Ž . p Ž p.½ h F � �p!, � h � 0,Ž .� 0

Ž .and where h � � h is the two-sided Brownian motion, that is, a centered,
� Ž . Ž . � 2 � �continuous Gaussian process such that E � h � � h� � h � h� .

Ž .REMARK. A sufficient condition for the consistency is that 8 holds for

 � �.0

PROOF. It has already been shown by means of Theorem 3.2 that the
1�Ž2 p�1. ˆŽ .sequence n � � � is uniformly tight. Let us consider the stochasticn 0

nŽ .process h � � h defined by

�n h � n p�Ž2 p�1. M n � � n�1�Ž2 p�1.h � M n �Ž . Ž .� 4Ž .0 0

� �n h � �n h ,Ž . Ž .
where

n p�Ž2 p�1.² �1�Ž2 p�1. : 2� h � n � � � n h � � � , f ,Ž . Ž .Ž . L �0, 1�0 0

�n h � n1�Ž4 p�2. � � � n�1�Ž2 p�1.h � � � �W .Ž . Ž .� 4Ž .0 0

nŽ . Ž .An easy computation implies that lim � h � � h for every h � �.n��
nŽ . Ž .Furthermore, since h � � h and h � � h are continuous, this conver-

gence is uniform on every compact set K � �. On the other hand, we can
Ž . �obtain from a version of Theorem 2.3 of Nishiyama 1997 or Corollary 3.4.3

Ž .� n �Ž .of Nishiyama 1998 that � � � in l K for every compact set K � �.P
The existence and the uniqueness of the maximum point of � � � � � follow

� Ž .�from Khinchin’s law of iterated logarithm see, e.g., page 61 of Hida 1980
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Ž .and Lemma 2.6 of Kim and Pollard 1990 , respectively. Hence Theorem 3.2.2
of VVW yields the assertion. �

Ž .4.2. Steepest interval of F. Fix a constant b � 0, 1�2 . We aim to esti-
mate the value of

��b
� � argmax f t dt ,Ž .H0

��b���

which is the center of the interval with length 2b where the function
Ž .t � F t increases most rapidly. This problem fits in our general framework

by setting

� �� t ; � � 1 t and � � � 0 �� � b , 1 � b .Ž . Ž . Ž .� ��b , ��b �

Ž . Ž .The criterion function and process, defined by 3 and 4 , turn out to be
Ž . Ž . Ž . nŽ . n nM � � F � � b � F � � b and M � � X � X , respectively.��b ��b
Here we make an assumption which is similar to Assumption 4.1 in the

preceding example.

ŽASSUMPTION 4.2. Let an even integer p � 2 be given. For given � � b, 10
. Ž . Ž .� b , the function t � f t is p � 1 -times continuously differentiable on an

open set containing � � b and � � b with derivatives f Žm., m � 1, . . . , p �0 0
1, satisfying

Ž . Žm.Ž . Žm.Ž .i f � � b � f � � b for every m � 0, . . . , p � 2;0 0
Ž . Ž p�1.Ž . Ž p�1.Ž .ii f � � b � f � � b .0 0

� �PROPOSITION 4.2. Under Assumption 4.2, for any b, 1 � b -valued ran-
ˆdom sequence � such thatn

X n � X n � sup X n � X n � o n�p �Ž2 p�1.� 4 Ž .ˆ ˆ� �b � �b ��b ��b P*n n
� ��� b , 1�b

and
ˆ� �� � � � o 1 ,Ž .n 0 P*

1�Ž2 p�1. ˆŽ . � Ž . Ž .4it holds that n � � � � argmax � h � � h in �, wheren 0 P h� �

Ž .h � � h is the deterministic process given by

� h � 2�1�2h p f Ž p�1. � � b � f Ž p�1. � � b �p! � h � �,Ž . Ž . Ž .� 40 0

Ž .and where h � � h is the two-sided Brownian motion.

PROOF. It follows from Assumption 4.2 and a Taylor expansion that
Ž p�1. ˜ Ž p�1. ˜f � � f �Ž . Ž .� � p

M � � M � � � � � ,Ž . Ž . Ž .0 0p!

˜ ˜Ž .where � resp. � is a point on the segment connecting � � b and � � b� � 0
Ž . Ž . Ž .resp. � � b and � � b . Thus, since p is even, it holds that M � � M � �0 0

� � p�C � � � in a neighborhood of � for a constant C � 0. On the other0 0
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'Ž . � �hand, it is clear that � � , � � 2 � � � . Hence Theorem 3.2 implies that�
1�Ž2 p�1. ˆŽ .n � � � is uniformly tight. Repeating the same argument as Propo-n 0

nŽ .sition 4.1 to the stochastic process h � � h defined by

�n h � 2�1�2 n p�Ž2 p�1. X n
�1 �Ž2 p�1. � X nŽ . � Ž .� �b�n h � �b0 0

� X n
�1 �Ž2 p�1. � X n ,4Ž .� �b�n h � �b0 0

the ‘‘argmax continuous mapping theorem’’ yields the assertion. �

4.3. Jump point of f. Let us introduce a model for the estimation problem
of jump point of f.

� �ASSUMPTION 4.3. For an inner point � of 0, 1 , there exists a constant0
Ž . Ž .a � 0, 1�2 such that the function t � f t is cadlag on the interval

� �� � a, � � a and that0 0

D � R� � L* � L* � L� � R* � R� � 0,Ž . Ž . Ž .
where

L* � sup f t , R* � sup f t ,Ž . Ž .
� . � �t� � �a , � t� � , � �a0 0 0 0

L� � inf f t , R� � inf f t .Ž . Ž .
� . � �t� � �a , � t� � , � �a0 0 0 0

The constant a � 0 in the above assumption should be known to construct
the estimator given later, but we do not specify any concrete shape of the

Ž .function t � f t , even the value of the constant D � 0. Assumption 4.3
Ž . Ž .means that the function t � f t has a positive jump at � , namely f � �0 0

Ž . � �f � � � R� � L*, which is the biggest one in the interval � � a, � � a .0 0 0
This interpretation shows how natural this assumption is in the present
context.

� �Let the parameter space � � a, 1 � a be equipped with the Euclidean
Ž . � � Ž .metric d � , � � � � � . Fixing a constant b � 0, a , we define

� �9 � t ; � � k t � � and � � � 0 �� � a, 1 � a ,Ž . Ž . Ž . Ž .
where

��x � b , x � �b, 0 ,.	k x �Ž . � ��x � b , x � 0, b ,

0, otherwise.

PROPOSITION 4.3. Under Assumption 4.3, consider the criterion process
nŽ . Ž . n Ž . Ž . � �� � M � � � � � X with � � given by 9 . For any a, 1 � a -valued

ˆrandom sequence � such thatn

n ˆ n �1 ˆ� �M � � sup M � � o n and � � � � o 1 ,Ž . Ž . Ž .Ž .n P* n 0 P*
� ��� a , 1�a
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ˆŽ . � Ž . Ž .4 Ž .it holds that n � � � � argmax � h � � h in �, where h � � hn 0 P h� �

is the deterministic process given by

�1 � �b� 0h 2b H f t dt � f � , � h � 0,Ž . Ž . Ž .½ 5� �b 00	� h �Ž . �1 � �b0
h 2b H f t dt � f � � , � h � 0Ž . Ž . Ž .½ 5� �b 00

Ž .and where h � � h is the two-sided Brownian motion.

REMARK. A sufficient condition for the consistency is that a in Assump-
� � � �tion 4.3 is large so that � � a, � � a � 0, 1 .0 0

� �PROOF. It holds that for any � � � , � � a � b ,0 0

� � � � � �M � � M � � � 2b � � � � R� � � � � � � � R* � L* bŽ . Ž . Ž .Ž .0 0 0 0

� � � �� � � � � b R� � L* � R* � R� � � � � R�� 4Ž . Ž .0 0

� � � �� � � � � bD � � � � R�� 40 0

� .and that, in the same way, for any � � � � a � b, � ,0 0

� � � �M � � M � � � � � � bD � � � � L* .� 4Ž . Ž .0 0 0

Ž . Ž .Thus, choosing sufficiently small constants 
 , C � 0 we have M � � M �0 0
� � Ž .� �C � � � for every � � � � , 
 . On the other hand, an easy computa-0 d 0 0

2''Ž . � �tion implies that � � , � � C� � � � with C� � 4b � 6b . Hence Theo-�

rem 3.2 yields that the rate of convergence in this model is r � n. Repeatn
nŽ .the same argument as Proposition 4.1 to the stochastic process h � � h

nŽ . Ž .�1 � nŽ �1 . nŽ .4defined by � h � 2b n M � � n h � M � to get the assertion.0 0
�

2� �5. Sieved nonparametric MLE. Let � be a subset of L 0, 1 . For
n Ž n.every n � �, let X � X be a continuous, adapted process on at t ��0, 1�

Ž n n n Ž n. . n � n 4filtered space 	 , FF , F � FF , and P � P : � � � a family oft t ��0, 1� �

Ž n n.probability measures on 	 , FF indexed by �. Suppose that the semi-
martingale decomposition of X n with respect to P n is given by�

dX n � � t dt � n�1�2 dW n , � ,Ž .t t

n, � Ž n, � . Ž n n n n.where W � W is a standard Wiener process on 	 , FF , F , P .t t ��0, 1� �

It is well known that under some mild conditions the log-likelihood ratio is
given by

nP�n nL � , � � log � � � � � XŽ . Ž .n
nP� FF1

1 2 2
2 2� � � �� � � � �� , � � �� 4L �0, 1� L �0, 1�2

� Ž .�see, e.g., Theorem III.5.34 of Jacod and Shiryaev 1987 , although we will
not use any property of the log-likelihood ratio. The maximizer of the process
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nŽ . nŽ .� � L � , � coincides with that of the criterion process � � M � defined
by

1 2n n
2� �10 M � � � � X � � .Ž . Ž . L �0, 1�2

Ž . nThe corresponding criterion function � � M � under P turns out to be� �0 0

1 2 1 2 1 2
2 2 2 2² : � � � � � �11 M � � � , � � � � � � � � � �Ž . Ž . L �0, 1� L �0, 1� L �0, 1� L �0, 1�� 0 0 02 2 20

Ž . Ž . Ž .and thus � � argmax M � . In view of 11 and the condition A of0 � � � � 0

Theorem 1.1, it is natural to adopt the L2-metric as the canonical metric d on
Ž . Ž . � � 2�, that is, d � , � � � � , � � � � � . Furthermore, we assume theL �0, 1��

integrability of the L2-metric entropy and specify its rate of convergence
around zero.

Ž � Ž .ASSUMPTION 5.1. For a given increasing function �: 0, 1 � 0, � such
�1 Ž .that 
 � 
 � 
 is decreasing, it holds that



2� �log N � , � ; � d� � O � 
 as 
 �0.' Ž .Ž .Ž .H L �0, 1�

0

According to the function �, choose a sequence of constants r � 1 such thatn
2 Ž �1 . 1�2r � r � n .n n

nŽ .One may think that taking the ‘‘argmax’’ of � � M � over a set of
functions is practically impossible, and this anxiety is natural. Also, the
stochastic integrals with respect to continuous semimartingales can be explic-
itly calculated only if the integrands are piecewise constant. Hence, even if �

� �is a class of continuous functions on 0, 1 , the estimator should be chosen
from a class of piecewise constant functions. Keeping these demands from the
practical point of view, we propose two kinds of sieving methods below.

Ž . � � 2Hereafter we denote by B � ; � the closed ball with center � and � -L �0, 1�
radius � � 0.

� �Sieving a . Each � is a countable subset of � such that � �n
Ž �1 .� B � ; r .� � � nn � � 2� �Sieving b . Each � is a finite subset of L 0, 1 such that � �n
Ž �2 . Ž �2 .� B � ; r and that B � ; r � � � � for all � � � ; further,� � � n n nn
Ž . Ž .log Card � � O n as n � �.n

� �The merit of Sieving b is that � need not be included in �. Notice alson
� � � �that a thinner covering is required in Sieving b than a , but the order

Ž . Ž .‘‘log Card � � O n ’’ would be reasonably fast.n
nŽ . Ž .We extend the parameter set of the process � � M � defined by 10 to

Ž � �.� � � this step is unnecessary in the case of Sieving a . Then, in bothn
˜ ncases, we define the estimator � as any mapping from 	 to � whichn n

satisfies

n ˜ n �212 M � � sup M � � r .Ž . Ž .Ž .n n
���n
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� � Ž .The set � in Sieving a need not be finite. When Card � � �, then n
˜ nŽ .estimator � can be defined as the true maximizer of the process � � M �n

although it may not be unique.

PROPOSITION 5.1. Suppose that � is totally bounded with respect to
� � 2� and thatL �0, 1�

�
2� �13 log N � , � ; � d� � �.'Ž . Ž .H L �0, 1�

0

Under Assumption 5.1, choose a sequence r described there and a sieve �n n
˜ n� � � �following either of Sieving a or b . Then, for any mapping � from 	 to �n n

Ž .satisfying 12 , it holds that
n� ˜ 2� �lim lim sup sup P r � � � � K � 0.Ž .L �0, 1�� n n 00

n��K�� � ��0

REMARK. As stated above, the uniformity in the underlying probability
measure, that is, ‘‘sup ’’ on the displayed equation of the conclusion, is� � �0

actually valid. To see this, it is enough to make some minor modifications of
Ž .the proof of Theorem 1.1 i.e., Theorem 3.2.5 of VVW , or see Theorem 5.1.2 of

Ž .Nishiyama 1998 .

� �PROOF. We will first prove the case of Sieving a and then deduce the
� �case of Sieving b from the former.

� � ŽThe case of Sieving a . We will check the conditions of Theorem 1.1 a
.modified version in the following situation: for every � � �,0

Ž � � 2 . � � 21. The metric space � , � and � � � � argmin � � � ;L �0, 1� L �0, 1�n n n, � � � � 00 nnŽ .2. The stochastic process � � M � and the deterministic process � �
Ž . Ž . Ž .M � , with parameters in � , defined by 10 and 11 , respectively.� n0

Ž . Ž . � Ž . � � 2 4We then denote R 
 � R 
 � � � � : 
�2 � � � � � 
 . ToL �0, 1�n n, � n n0
Ž .check condition A with p � 2, first observe that

� � 2
�1� � � � rL �0, 1�n 0 n

1 

�1� whenever 
 � 8rn4 2

1
2� �� � � � whenever � � R 
 .Ž .L �0, 1�n n4

�1 Ž .Thus we have for every 
 � 8r and every � � R 
 ,n n

M � � M �Ž . Ž .� � n0 0

1 2 2
2 2� � � �� � � � � � � � �� 4L �0, 1� L �0, 1�0 n 02

1 2
2 2 2� � � � � �� � � � � � 2 � � � � � �� 4L �0, 1� L �0, 1� L �0, 1�n n n 02
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� � 21 � � � L �0, 1�n2
2 2� � � �� � � � � � 2 � � �L �0, 1� L �0, 1�n n½ 52 4

1 2
2� �� � � � � L �0, 1�n4

1
2� � 
 ,

16

Ž . Žwhich implies condition A . Notice that the constants ‘‘8’’ and ‘‘1�16’’ have
been chosen not depending on the true value � ; this leads to the uniformity0

. Ž .in � � �. Condition B is established in the same way as Theorem 3.1 by0
virtue of Theorem 2.3, for � � n�1�2�. Hence Theorem 1.1 yields thatn

n� ˜ 2� �lim lim sup sup P r � � � � K � 0.Ž .L �0, 1�� n n n0
n��K�� � ��0

� � 2
�1 � �Since � � � � r , the case of Sieving a has been proved.L �0, 1�n 0 n
� � � �The case of Sieving b . Given � satisfying Sieving b , we introducen

� Ž .� 2
�2a mapping � : � � � such that � � � � � r for all � � � .L �0, 1�n n n n n

� Ž . � � Ž �2 .�Then � � � � meets Sieving a , because � � � B � ; 2r �n n n � � � nn
Ž �1 .�� B � ; r whenever r � 2, which we may assume without loss of� � � n nn ˜ Ž .generality. Given � -valued random elements � satisfying 12 , we considern n

� ˆ ˜ ˜ ˆ �2
2Ž . � �the � -valued random elements � � � � . Since � � � � r �L �0, 1�n n n n n n n

r�1, it suffices to show thatn

n� n ˆ n �215 lim lim sup sup P M � � max M � � Kr � 0.Ž . Ž .Ž .� n nž /0 ����nn��K�� � ��0

Now, let us define

n n n �2	 � max M � � M � � � Kr � K � 0.Ž . Ž .Ž .½ 5K n n
���n

Since

max M n � � max M n � �Ž . Ž .Ž .n���� ���n n

� max M n � � Kr�2 on the set 	nŽ . n K
���n

n ˜ �2� M � � K � 1 r because of 12Ž . Ž .Ž .n n

n ˆ �2 n� M � � 2 K � 1 r on the set 	 ,Ž .Ž .n n K

Ž .it is sufficient for 15 to show that

16 �� � 0 � K � � 0 such that lim sup sup P n� 	n  	n � � .Ž . Ž . Ž .� K Ž� .0
n�� � ��0
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To do it, observe that for every � � �,0

n nmax M � � M � �Ž . Ž .Ž .n
���n

n n� max M � M � � M � M � �Ž . Ž .Ž .Ž . Ž .� � n0 0���n

� max M � � M � �Ž . Ž .Ž .� � n0 0���n

� Y n � Zn .� �0 0

First we consider the deterministic term Zn . Notice that for every � � � ,� n0

M � � M � �Ž . Ž .Ž .� � n0 0

2 21
2 2� � � �� � � � � � � � � �Ž .L �0, 1� L �0, 1�0 n 02

1
2 2 2� � � � � �� � � � � � � � � � � � �� 4Ž . Ž .L �0, 1� L �0, 1� L �0, 1�n 0 n 02

1 �2 �2
2� �� r 2 diam � , � � r .� 4Ž .L �0, 1�n n2

n �2 ŽThus we obtain sup Z � r D for all n � �, where D � diam �,� � � � n0 0
� � 2 .� � 1.L �0, 1�

Next we consider the random term Y n. It follows from Theorem 2.3 that� 0

n� n �1�2 n� �1�2E Y � n E max � � � � � W � Cn H ,Ž .Ž .� � � n n0 0 0 ���n

where C � 0 is a universal constant and
�2r �n

2� �H � log 1 � N � � � , � ; � d�' Ž .H L �0, 1�n n n
0

�2� r log 1 � 2 Card �' Ž .n n

�2� O r log Card � .' Ž .ž /n n

Ž . Ž .Notice that this bound is uniform in � � �. Since log Card � � O n , we0 n
�1�2 Ž �2 . 2 n� nhave n H � O r , which means that lim sup sup r E Yn n n�� � � � n � �0 0 0

� �.
Consequently, we obtain from these estimates that

2 n� n nlim sup sup r E max M � � M � � � �,Ž . Ž .Ž .n � n0
n�� � �� ���0 n

Ž .which implies the assertion 16 by using Markov’s inequality. �

Let us discuss two kinds of concrete examples of the class �, namely,
Ž .monotone functions and smooth functions. Van de Geer 1990, 1995 studied

those classes for the regression model of fixed design and derived the rate of
Ž .2convergence with respect to the pseudo-metric d defined by d � , � �n n

�1 n � Ž n. Ž n. � 2n Ý � t � � t . The rates obtained below are exactly the same asi�1 i i
hers, but the L2-metric which we adopt is stronger than d . It should ben
noted that, granted the pseudo-metric d is natural in regression models ofn
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fixed design, some metrics of L p-type are suitable for the situation where the
function � is a Lebesgue density.

EXAMPLE. Monotone functions. Let us set � to be the class of monotone
� � � �functions � : 0, 1 � 0, 1 . Then it follows from Theorem 2.7.5 of VVW that

Ž . 1�2Assumption 5.1 is fulfilled with � 
 � 
 , which leads to the rate r �n
const.n1�3.

PROPOSITION 5.2. Choosing any grids 0 � t n � t n � ��� � t n � 1 such0 1 k nn n �2�3 � �that t � t � n , define � as the class of monotone functions � : 0, 1i i�1 n
� n n.� V which are piecewise constant on each interval t , t , where V �n i�1 i n

� �2�3 4 � � � �jn : j � � � 0, 1 . Then, the class � of monotone functions � : 0, 1 �
� �0, 1 is covered with the union of closed balls with centers in � andn

�1�3'2� � � �� -radius 2 n . Hence the constructed � meets Sieving a .L �0, 1� n

u l uŽ . lŽ .PROOF. Fix any f � �. Let us choose f , f � � given by f 1 � f 1 �n
1 and

f u t � u ,Ž . i n nfor t � t , t , i � 1, . . . , k ,.i�1 i nl½ f t � l ,Ž . i

where

u � min y � V : sup f s � y ,Ž .i n½ 5
n n� .s� t , ti�1 i

l � max y � V : inf f s � y .Ž .½ 5i n n n� .s� t , ti�1 i

Ž . �2�3If the function t � f t is increasing, then u � l � n . Thus we havei i�1

� l � 2
2 � u l � 2

2 � u l � 1
�2�3f � f � f � f � f � f � 2n .L �0, 1� L �0, 1� L �0, 1�

This means that f is contained in the closed ball with center f l � � andn
�1�3'2� � Ž .� -radius 2 n . The case of t � f t being decreasing is also shownL �0, 1�

in the same way. �

˜ nŽ .Consequently, we obtain that the estimator � � argmax M � , withn � � � n

� being given in Proposition 5.2, satisfies the conclusion of Theorem 5.1 withn
r � n1�3. This rate coincides with that of estimating a monotone densityn

1 � Ž .�under L -norm see, e.g., Birge 1987 . Our result asserts also that grids of´
order n�2�3 are sufficient to get this rate, and the discrete observation of the
process t � X n only on the grids is enough to compute the estimator. Thist
fact is of interest by itself.

EXAMPLE. Smooth functions. Let us consider the class � defined by

� �� � � �17 � � � : 0, 1 � �1, 1 : � � 1 ,� 4Ž . �
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where

Ž� . Ž� .� �� t � � sŽ . Ž .
Žk .� � � �� � max sup � t � supŽ .� ���� �t � sk�� � � � �t� 0, 1 t , s� 0, 1

t�s

for a given constant � � 1�2, where � Žk . denotes the kth derivative of � and
� is the greatest integer that is strictly smaller than � . Then it follows from

Ž . 1� Ž1�2 � .Theorem 2.7.1 of VVW that Assumption 5.1 is fulfilled with � 
 � 
 ,
which leads to the rate r � const.n��Ž2 ��1..n

� �2 � �Ž2 ��1. 4PROPOSITION 5.3. For given � � 1�2, set V � jn : j � � �n
� � n n n n n�2, 2 . Choosing any grids 0 � t � t � ��� � t � 1 such that t � t �0 1 k i i�1n�2 Ž� � 1.�Ž2 ��1. Ž .n and that k � O n as n � �, define the class � byn n

n n n� t � � t � t � t , t ,Ž . Ž . .i�1 i�1 i� �� � � : 0, 1 � V : i � 1, . . . , k .n n nn n �2 � �Ž2 ��1.½ 5� �� t � � t � n ,Ž . Ž .i i�1

Ž .Then, the class � defined by 17 is covered with the union of N -closed ballsn
� � 2

�2 � �Ž2 ��1. Ž .with centers in � and � -radius 2n , and log N � O n asL �0, 1�n n
� �n � �. Hence the constructed � meets Sieving b .n

� n4REMARK. It is always possible to choose some grids t which satisfiesi
two requirements in the proposition, because n2Ž� � 1.�Ž2 ��1. � n holds for any
n � � whenever � � 1�2.

Ž . Ž n .PROOF. Fix any f � � and define f * by f * 1 � f t andk �1n

n nf * t � c for t � t , t , i � 1, . . . , k ,Ž . .i i�1 i n

� Ž n . 4where c � min y � V : f t � y . Then it is easy to see that f * � � . Iti n i�1 n
also holds that

� � �2 � �Ž2 ��1.sup f t � f * t � 2n ,Ž . Ž .
� .t� 0, 1

� � 2
�2 � �Ž2 ��1. Ž . k nand thus f � f * � 2n . Finally, notice that N � Card V 3L �0, 1� n n

Ž . Ž . Ž .and that log Card V � O n as n � �. Thus the assumption k � O nn n
Ž .implies that log N � O n as n � �. �n

The same as in the preceding example, this result says that taking some
grids of order n�2 Ž� � 1.�Ž2 ��1. is enough to get the convergence rate r �n
n��Ž2 ��1. through Theorem 5.1.

APPENDIX

Proof of Theorem 2.3. We will make use of the following lemmas, which
are well known.
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LEMMA A.1. Let t � X be an �-valued, continuous local martingale sucht
that X � 0, and � a bounded stopping time. Then, it holds that for every � ,0
� � 0,

� 2

� � ² :P sup X � � , X , X � � � 2 exp � .�tž / ž /2�� �t� 0, �

For one proof, see, for example, Section 4.13 of Liptser and Shiryaev
Ž .1989 .

LEMMA A.2. Let X , . . . , X be arbitrary �-valued random variables. As-1 N
sume that for a measurable set B and a constant � � 0,

� 2

� �P X � � , B � 2 exp � �� � 0, � i � 1, . . . , N.Ž .i ž /2�

Then, it holds that

� � 'E max X 1 � C � log 1 � N ,Ž .i B
1�i�N

where C � 0 is a universal constant.

For the proof, see, for example, Lemma 2.2.10 of VVW.
In the proof of Theorem 2.3, we will perform exactly the same chaining

Ž .argument as that for Theorem 2.3 of Nishiyama 1997 .

PROOF OF THEOREM 2.3. Under the assumption of �-separability, we may
� m4suppose without loss of generality that the set  is countable. Let  m� �

be a sequence of finite subsets of  such that  m � as m � �. For every
Ž .m � � and p � �, let us denote by q m, p the smallest integer such that

Ž . mq m, p � p and that each of closed balls with centers in  and �-radius
�q Žm , p. m Ž m.2 � 2 contains exactly one point in  . Then it is clear that Card 
Ž �q Žm , p..� N , �; 2 .

m , p m m , p Ž .Next let us introduce some mappings � :  �  , p � r � q m, p ,r r
defined by

� m , p � �m , p � �m , p � ��� � �m , p ,r r r�1 qŽm , p.

where the sets  m , p �  m and the mappings �m , p:  m �  m , p should ber r r
Ž . m , pspecified in the following way. For p � r � q m, p , choose  and definer

m , p Ž . Ž m , p.� which satisfy the following two conditions: 1 Card  �r r
Ž �r . Ž . Ž m , pŽ .. �r m Ž .N , �; 2 ; 2 � � , � � � 2 � 2 for every � �  . For r � q m, p ,r

put  m , p �  m and denote by �m , p the identical mapping on  m.qŽm , p. qŽm , p.
In term of the mappings � m , p which have been introduced, we considerr

the chaining given as follows: for every t � � and � � ,�

� � � �X � X � I � IIŽ . Ž .t t
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where the terms of the right-hand side are given by
Ž . Ž .q m , p q m , p

m , p m , p m , p m , p� Ž� . � Ž� . � Ž� . � Ž� .r r�1 r r�1� � � �I � X � X � X � X ;Ž . Ý Ýt t t t
r�p�1 r�p�1

� � m , p
p Ž� . � m , p

p Ž� . �II � X � X .Ž . t t

Ž .First let us consider the term I . It follows from Lemma A.1 that for every
� , T � 0,

� 2
m , pm , p� Ž� . � Ž� .r r�1� � � �P sup X � X � � , X � � � 2 exp � ,� , �t t �2 r 2ž / ž /2 � 2 �� �t� 0, ��T

and by letting T � � we can replace ‘‘� � T ’’ by ‘‘� ’’ on the left-hand side.
Thus we obtain from Lemma A.2 that

m , pm , p� Ž� . � Ž� . �r �rr r�1� �E sup sup X �X 1 �2 � log 1�N  , � ; 2 ,' Ž .t t �� X � � � 4� , �m � ��� t� 0, �

where, and in the sequel, the notation ‘‘� ’’ means that the left-hand side is
not bigger than the right up to a universal multiplicative constant.

Ž .Next let us consider the term II . Notice that
Ž .q m , p

m , p m , p m , p m , p� � � , � � � � � � , � �Ž . Ž . Ž . Ž .Ž .Ž . Ýp p r r�1
r�p�1

Ž .q m , p
m , p m , p� � � � , � � � � � , �Ž . Ž . Ž .Ž .Ý r r�1

r�p�1

�p Ž . �pand the right-hand side is not bigger than 9 � 2 whenever � � , � � 2 .
Hence it follows from Lemmas A.1 and A.2 that

� � m , p
p Ž� . � m , p

p Ž� . �E sup sup X � X 1t t �� X � � � 4� , �m � �� , �� t� 0, �
�pŽ .� � , � �2

2�p �p� 9 � 2 � log 1 � N  , � ; 2Ž .'
�p �p'� 9 2 � 2 � log 1 � N  , � ; 2 .' Ž .

To show the assertion of the theorem, for a given � � 0 choose p � � such
�p�1 �p Ž . Ž .that 2 � � � 2 . Then, the estimates for the terms I and II yield

that
� � � �E sup sup X � X 1t t �� X � � � 4� , �m � �� , �� t� 0, �

Ž .� � , � ��

Ž .q m , p
�r �r� 2 � log 1 � N  , � ; 2' Ž .Ý

r�p

2�
� 2� log 1 � N  , � ; � d� .' Ž .H

0

The proof is accomplished by letting m � �. �
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