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BANDWIDTH SELECTION: CLASSICAL OR PLUG-IN?

By Clive R. Loader
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Bandwidth selection for procedures such as kernel density estimation
and local regression have been widely studied over the past decade. Sub-
stantial “evidence” has been collected to establish superior performance
of modern plug-in methods in comparison to methods such as cross vali-
dation; this has ranged from detailed analysis of rates of convergence, to
simulations, to superior performance on real datasets.

In this work we take a detailed look at some of this evidence, looking
into the sources of differences. Our findings challenge the claimed supe-
riority of plug-in methods on several fronts. First, plug-in methods are
heavily dependent on arbitrary specification of pilot bandwidths and fail
when this specification is wrong. Second, the often-quoted variability and
undersmoothing of cross validation simply reflects the uncertainty of band-
width selection; plug-in methods reflect this uncertainty by oversmoothing
and missing important features when given difficult problems. Third, we
look at asymptotic theory. Plug-in methods use available curvature infor-
mation in an inefficient manner, resulting in inefficient estimates. Previous
comparisons with classical approaches penalized the classical approaches
for this inefficiency. Asymptotically, the plug-in based estimates are beaten
by their own pilot estimates.

1. Introduction. The problem of automatic choice of smoothing parame-
ters has been widely studied. The work has been most predominantly in the
setting of kernel density estimation with a single fixed bandwidth, so we ini-
tially focus on that setting. The bandwidth selection methods studied in the
literature can be divided into two broad classes.

Classical methods. Cross validation, Mallows’ Cp, Akaike’s information cri-
terion and the like. These are more or less natural extensions of methods used
in parametric modeling.

Plug-in methods. The bias of an estimate f̂ is written as a function of the
unknown f, and usually approximated through Taylor series expansions. A
pilot estimate of f is then “plugged in” to derive an estimate of the bias and
hence an estimate of mean integrated squared error. The “optimal” h mini-
mizes this estimated measure of fit.

More complete descriptions of these approaches are given in Section 3 for
density estimation and Section 6 for local regression.

In the context of kernel density estimation, the plug-in approach appears
to predate “classical” approaches, dating to Woodroofe (1970). However, more
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specific algorithms and the strong promotion of the approach began in the mid-
1980s, and continues with increasing vigor. Proponents of the plug-in approach
have been strongly critical of classical approaches. For example, Park and
Marron (1990) state:

In many simulation studies and real data examples, however, the perfor-
mance of (least squares cross-validation) has been often disappointing � � �

and continue:

Because of the limitations of least squares cross-validation, there has been
serious investigation made into other methods of bandwidth selection. The
most appealing of these are plug-in rules and biased cross-validation.

Similarly strong comments are made by other authors; for example, Rup-
pert, Sheather and Wand (1995) and Marron [(1996), Section 3]. The evidence
presented to back up these claims is threefold: real data examples [Sheather
(1992), Jones, Marron and Sheather (1996)], simulation studies [Park and
Marron (1990), Park and Turlach (1992), Scott and Terrell (1987), Gasser,
Kneip and Köhler (1991)] and asymptotic theory [Hall, Sheather, Jones and
Marron (1991), Chiu (1991), Härdle, Hall and Marron (1992)].

In this paper we take a detailed look at this evidence. We find the evidence
for superior performance of plug-in approaches is far less compelling than pre-
viously claimed. In turn, we consider real data examples, simulation studies
and asymptotics. Among the findings are that plug-in approaches are tuned
by arbitrary specification of pilot estimators and are prone to oversmoothing
when presented with difficult smoothing problems.

The purpose of this paper is not simply comparison, but understanding
bandwidth selectors. Thus we concentrate on a fairly small number of exam-
ples and investigate how the bandwidth selectors perform in relation to the
datasets and difficulty of the problems at hand. A complete understanding
of this paper requires careful interpretation of the following question: What
makes bandwidth selection difficult?

Consider for example Figure 1. This shows a simulated dataset, fitted with
a locally quadratic smooth and two different bandwidths; the small bandwidth
on the left is selected by a classical approach; the larger bandwidth on the right
by a plug-in approach. The model and bandwidth selectors will be described
in Section 6.

Visually, the plug-in fit in Figure 1 is preferable; it captures the main trend
in the data and has far less spurious noise. However, there is also another
possible feature; near x = 0�6, there are several successive large observations
that do not fit the underlying pattern.

Usually, we hope that nature isn’t too nasty, and faced with a real dataset
of this type, most statisticians would conclude that the blip at x = 0�6 is due
to random chance, and the left panel of Figure 1 is seriously undersmoothed.
However, a bandwidth selector has to make its decision purely from the data:
are these observations sufficient to represent a real feature? Clearly, this is
a difficult decision, and any bandwidth selector is occasionally going to make
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Fig. 1. Local quadratic smooths of a simulated dataset, with two different bandwidths.

mistakes. What we can expect is a meaningful assessment of the dataset at
hand; the bandwidth selector should say that there is little to choose between
the two fits in Figure 1.

An often repeated criticism of classical approaches is that they are too
variable and frequently undersmooth. If repeated samples are drawn from
the same model, cross validation (and other classical approaches) can select
bandwidths that are very different from sample to sample. See, for example,
Section 3 of Marron (1996) or Gasser, Kneip and Köhler [(1991), page 643].
But in light of examples such as Figure 1, this behavior is to be expected; a
bandwidth selector has to make a decision as to what features in the dataset
are real. We argue that variability of cross validation is not a problem but a
symptom of the difficulty of bandwidth selection. Less variable bandwidth se-
lectors display this difficulty in another way: consistently oversmoothing when
presented with problems with small and difficult to detect features.

This paper is organized as follows: Some density estimates and bandwidth
selectors are introduced in Sections 2 and 3, respectively. Some examples,
both real and simulated, are presented in Section 4. The relevance of asymp-
totic theory is discussed in Section 5. Local regression examples are presented
in Section 6. The main conclusions of the paper are summarized in Sec-
tion 7. The simulations and fits in this paper were obtained using the author’s
locfit software package; further details can be found at http://cm.bell-labs.
com/stat/project/locfit.

2. Some density estimates. Let X1� � � � �Xn be an independent sample
from an unknown density f�x�. The kernel estimate [Rosenblatt (1956)] of
f�x� is

f̂h�x� =
1
nh

n∑
i=1

W

(
Xi − x
h

)
(1)



418 C. R. LOADER

for a suitable weight functionW�u� ≥ 0, with
∫∞
−∞W�u�du = 1. An alternative

representation is that f̂�x� is the solution â of the equation

1
n

n∑
i=1

W

(
Xi − x
h

)
=
∫ ∞

−∞
W
(u− x
h

)
adu�

Thus the kernel estimate is a locally constant approximation, matching
a weighted zeroth order sample moment with the corresponding moment of
the local estimate.

Better estimates can be obtained by replacing the locally constant approxi-
mation with local parametric approximations; see Hjort and Jones (1996). As
a specific example, let A�v� = �1 v 1

2v
2�T, and consider solutions â = â�x�

of the equations

1
n

n∑
i=1

W

(
Xi − x
h

)
A�Xi − x� =

∫ ∞

−∞
W
(u− x
h

)
A�u− x�f̃�u�a�du

where f̃�u�a� is a locally three-parameter approximation. The density esti-
mate is f̂�x� = f̃�x� â�x��. Using the locally quadratic approximation

f̃�u�a� = 	a�A��u− x��
 = a0 + a1�u− x� + a2

2
�u− x�2(2)

gives rise to the fourth-order kernel estimate [Lejeune and Sarda (1992)].
Another approximation is the locally log-quadratic f̃�u�a�= exp�	a�A�u −

x�
�, which leads to the local likelihood method of Loader (1996a). This method
has some significant advantages over the higher order kernel methods; it nec-
essarily produces nonnegative estimates and is better for estimating the tails
of the density.

3. Some bandwidth selectors. The original cross-validation criterion,
proposed by Habbema, Hermans and Van Der Broek (1974) and Duin (1976),
selects the bandwidth h that maximizes

LCV�h� =
n∏
i=1

f̂h�−i�Xi��

where f̂h�−i�Xi� denotes the density estimate with Xi deleted. For kernel
density estimation, this is equivalent to minimizing

LCV�h� = −
n∑
i=1

log f̂h�Xi� −
n∑
i=1

log
(
1 −W�0�/�nhf̂h�Xi��

)
�

An approximation to the LCV criterion is the Akaike-style criterion,

AIC�h� = −
n∑
i=1

log f̂h�Xi� −
n∑
i=1

infl�Xi�

where infl�Xi� measures the sensitivity of the density estimate when Xi is
changed; infl�x� = W�0�/�nhf̂�x�� for kernel density estimation. See Loader
(1996b) for more details.
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The use of LCV/AIC with kernel density estimation tends to be unsatisfac-
tory. The reason is that the likelihood criteria are very tail sensitive, where
kernel estimates perform particularly poorly. The advantage of the LCV and
AIC criteria is their completely general definition; they extend almost immedi-
ately to better density estimates and to other settings such as local regression
and likelihood models.

For kernel density estimation, most bandwidth selectors target the inte-
grated squared error loss function

ISE�h� =
∫ ∞

−∞
�f̂h�x� − f�x��2 dx

=
∫ ∞

−∞
f̂h�x�2dx− 2

∫ ∞

−∞
f̂h�x�f�x�dx+

∫ ∞

−∞
f�x�2 dx�

The term
∫∞
−∞ f̂h�x�2 dx depends solely on the density estimate and can be

evaluated numerically. The third term
∫∞
−∞ f�x�2 dx does not depend on h

and can be ignored. Least squares cross validation [Rudemo (1982), Bowman
(1984)] then estimates the central term

∫∞
−∞ f̂h�x�f�x�dx by leave-one-out

cross validation, giving the criterion

LSCV�h� =
∫ ∞

−∞
f̂h�x�2 dx− 2

n− 1

n∑
i=1

(
f̂h�Xi� −

W�0�
nh

)
�

To describe plug-in selectors, we use the bias and variance approximations

E�f̂h�x�� − f�x� ≈
h2

2
f′′�x�

∫
v2W�v�dv�

var ��� f̂h�x�� ≈
f�x�
nh

∫
W�v�2 dv− f�x�

2

n
�

see Scott (1992), page 130. The mean integrated squared error is then approx-
imately

MISE�h� ≈ a0�W�2h4

4

∫ ∞

−∞
f′′�x�2 dx+ a1�W�

nh
�(3)

where a0�W� = ∫∞
−∞ v

2W�v�dv and a1�W� = ∫∞
−∞W�v�2 dv. The asymptotically

optimal bandwidth is obtained by minimizing (3),

hopt =
(

a1�W�
na0�W�2

∫∞
−∞ f

′′�x�2 dx

)1/5

�(4)

To estimate hopt, one substitutes an estimate of
∫∞
−∞ f

′′�x�2 dx. Usually this
is derived from a “pilot” kernel estimate of the second derivative,

f̂′′k�x� =
1
nk3

n∑
i=1

W′′
(
Xi − x
k

)
�

∫ ∞

−∞
f̂′′k�x�2 dx = 1

n2k6

n∑
i=1

n∑
j=1

∫ ∞

−∞
W′′

(
Xi − x
k

)
W′′

(
Xj − x
k

)
dx�
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Using the standard normal kernel φ�x�, this becomes

∫ ∞

−∞
f̂′′k�x�2 dx = 1

n2�√2k�5

n∑
i=1

n∑
j=1

φ�4�
(
Xi −Xj√

2k

)
�(5)

Figure 2 shows an example for the Old Faithful geyser dataset, discussed
more in Section 4. A pilot bandwidth k selects a bandwidth h = h�k�; this
relation is shown by the solid line in Figure 2. Clearly the plug-in step alone
doesn’t solve much; by varying the pilot bandwidth, a wide range of band-
widths can be selected.

The most common solution to the pilot bandwidth problem is through an
“assumed” relation between the pilot bandwidth and bandwidth, k = k�h�.
For example, the fixed point iterations of Gasser, Kneip and Köhler (1991)
(hereafter GKK) implicitly assume k = n1/10h. The Sheather–Jones method
[Sheather and Jones (1991)] (SJPI) uses a more complicated relation based
on a reference normal model. These relations are shown by the dashed lines
in Figure 2. The selected bandwidth is determined by the intersection of the
actual and assumed relations.

There are many variants of the plug-in idea in the literature. First, sev-
eral different ideas for specifying the pilot bandwidth k have been suggested.
Second, alternative estimates of

∫∞
−∞ f

′′�x�2 dx have been considered. Third,
more accurate bias approximations can be used in (3); for example, “smoothed
bootstrap” and “smoothed cross-validation” selectors effectively substitute pi-
lot estimators into the exact bias expression. These changes are relatively
minor in the context of the issues raised in this paper, so we refer to Jones,
Marron and Sheather (1996) for more discussion and references.

Another variant is biased cross validation [Scott and Terrell (1987)] (BCV),
which takes k = h, and substitutes (5) (modified by deleting the i = j terms)

pilot bandwidth k

se
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Fig. 2. Plug-in bandwidth selection. A pilot bandwidth k selects a bandwidth h� this relation is
shown by the solid lines. The dashed lines show the assumed relations for the Sheather–Jones and
Gasser–Kneip–Köhler selectors.
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directly into the MISE expansion (3). The bandwidth is selected to minimize
the estimated MISE.

4. Some density estimation examples. A widely used dataset in the
density estimation literature consists of 107 eruption durations of the Old
Faithful geyser. Azzalini and Bowman (1990) note that there are several dif-
ferent Old Faithful datasets and provide an interesting Markov chain analy-
sis, as well as discussing some geological background. The dataset used here
is given by Silverman (1986), Scott (1992) and others. Silverman smoothed
the data using a kernel density estimate and the standard Gaussian kernel,
and visually selected h = 0�25. Classical selectors select h = 0�101 (LSCV);
h = 0�0649 (AIC) and h = 0�126 (LCV).

Plug-in selectors reported by Sheather (1992) include h = 0�206 (SJPI);
h = 0�228 using the method of Park and Marron (1990) and h = 0�494 using
the method of Hall, Sheather, Jones and Marron (1991). BCV selects h = 0�282.
Chiu (1991) selects h = 0�215. The GKK assumed relation in Figure 2 produces
h = 0�268.

Figure 3 shows the density estimates produced by five of these selectors.
The results seem fairly clear cut: the three classical approaches (AIC, LCV
and LSCV) all undersmooth and produce estimates that are far too noisy. The
plug-in approaches (BCV and SJPI) are far better, smoothly reproducing the
two peaks that are supported by the data. From the list above, nearly all the
plug-in approaches produce h between 0.2 and 0.3; this agrees with the visual
smooth of Silverman. Thus there appears to be a fairly clear consensus as to
what works and what does not work on this dataset.

Of course, with real data we can’t be completely sure. Instead, consider
simulations from the Gaussian mixture distribution

fσ�x� =
1

107σ

107∑
i=1

φ

(
x−Xi

σ

)
�

where Xi are the observations in the Old Faithful dataset. Samples of size
107 are drawn, and two values of σ are considered: σ0 = 0�219 and σ1 = 0�070.
The advantage of considering normal mixtures is that, with a normal kernel
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Fig. 3. Density Estimates for the Old Faithful dataset. Each estimate is computed using a stan-
dard Gaussian kernel estimate; the bandwidths are selected by five different methods.
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density estimate, the mean integrated squared error has a closed form ex-
pression [Taylor (1989), Marron and Wand (1992)], and the MISE-minimizing
bandwidth is easily computed. For σ = σ0, we obtain the bandwidth h = 0�206,
that selected by the SJPI method on the original data. For σ = σ1, the band-
width is h = 0�101, that selected by LSCV on the original data.

The results of 1000 simulations at each value of σ are shown in Figure 4.
Each of the five bandwidth selectors is applied to each dataset. From the
results of the 1000 simulations, we display estimated densities of the selected
bandwidths.

AIC tends to undersmooth, often producing no bandwidth at all, as the crite-
rion may be monotone. LCV and LSCV are quite variable, although on average
they get close to the desired bandwidths. BCV oversmooths substantially. The
Sheather–Jones plug-in method is indeed the least variable selector; unfortu-
nately, it shows only modest response to the data and is quite incapable of
selecting the smaller bandwidth, even when the small bandwidth is correct.

The conclusion with regard to Figure 3 is quite straightforward. The appar-
ent better performance of the BCV and SJPI methods has nothing to do with
asymptotic superiority enabling the method to reject a poor bandwidth. Rather,
it is prior assumptions implicitly made by the selectors, and there is nothing
in the data that caused the selection of h = 0�206 in preference to h = 0�101.

The simulations lead us to reconsider the original data; have the plug-in
methods really performed better, or are they missing something? Plotting the
fits, as in Figure 3, gives a very one-sided view of the bias-variance trade-off.
Variance is easily seen, since it translates into spurious bumps and wiggles.
Bias is much more difficult to see, since it requires very careful comparison of
the fit with the data. Thus, just looking at the fitted curves may lead one to
oversmooth.
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Fig. 4. Densities of the bandwidths selected for 1000 resamples of the Old Faithful dataset. In the
top row, we take σ = 0�219� with a target bandwidth of h = 0�206. In the bottom row, σ = 0�070�
with a target bandwidth of h = 0�101.
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In the regression setting, the use of residual plots to look for bias is well
established; see, for example, the extensive discussion in Cleveland (1993).
In density estimation, the use of residuals is less well established, in part be-
cause of the difficulty of defining residuals. One approach is to convert density
estimation into a local likelihood regression [Tibshirani and Hastie (1987)], ei-
ther by considering spacings and fitting a local exponential regression, or by
rounding the data and considering a local Poisson regression. One can then
use any of the residuals used in generalized linear models; see Section 2.4 of
McCullagh and Nelder (1989).

Figure 5 shows two such residual plots for the Old Faithful dataset, at
h = 0�101 and h = 0�206. The residual plots are enhanced by adding a smooth
local regression fit. Notice that in the right panel, the smooth shows a sharp
peak just to the left of duration = 2; this lines up perfectly with the left
peak in the original data. This provides a clear indication the peak has been
oversmoothed. At the smaller h = 0�101, there is still some suggestion of
oversmoothing, but far less severe.

The evidence is beginning to suggest that LSCV may have selected the cor-
rect bandwidth for the original data, and the plug-in approaches have over-
smoothed. This does not imply that every bump shown by LSCV in Figure 3
is real. Rather, it must be remembered that the LSCV, BCV and SJPI are at-
tempting to minimize MISE and not to produce the correct number of peaks.
The residual plots of Figure 5 suggest the left peak is trimmed by SJPI. In
retrospect, this oversmoothing can also be seen in Figure 3; both the BCV and
SJPI estimates place substantial mass to the left of the smallest observation.

For our second example, consider the claw density from Marron and Wand
(1992), which consists of five peaks superimposed on a standard normal den-
sity. Under a theoretical MISE criterion, the claws show up at n = 54 (see
page 726 of Marron and Wand); at n = 193, they should be detectable in
practice with some reliability.
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Fig. 5. Deviance residual plots for the Old Faithful Dataset, at h = 0�101 and h = 0�206. The data
is rounded to the nearest 0�05 and fitted using a local constant Poisson regression. The residuals
are smoothed by a local quadratic regression with span covering 15% of the data.
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Figure 6 shows one sample, with n = 193. Both BCV and SJPI completely
miss the structure. LSCV does find the claws, although with some noise; this
is to be expected since each claw represents on average only 19.3 observations.

Figure 7 displays the bandwidths selected for 1000 simulations from the
claw density, at three different sample sizes. At the smallest sample size,
n = 54, the MISE function has two local minima; h = 0�126 represents claws
and h = 0�394 represents the global structure. Since both local minima have
approximately equal height, a reasonable selector should have the behavior
shown by LSCV: targeting each minimum about half the time. SJPI nicely
models the global structure, but completely misses the claws. At n = 193, the
claws should be easier to detect, but only LSCV does so reliably. At n = 400,
the problem should be getting easy. But BCV only sometimes finds the claws,
and SJPI is always oversmoothing.

If a bandwidth selector is to be useful, it must perform reliably in difficult
cases. In the claw density, this means 54 ≤ n ≤ 193, when the claws should
be detectable with some reliability, but will be far from obvious. In Figure 7,
it is quite clear that only LSCV delivers.

Our final example consists of an equal mixture of ten normal distributions,

f�x� = 1
10

10∑
i=1

φ
(
x− �10i− 5�)�

The sample size is n = 100. One such sample, along with the density estimates
produced by four selectors, is shown in Figure 8. While the ten-modal structure
is quite obvious in the data, only one selector, LSCV, gets close to the MISE-
minimizing bandwidth h = 0�809. The plug-in approaches produce estimates
that obviously don’t fit the data.

Figure 9 summarizes the selected bandwidths for 1000 simulations. The
plug in selectors never find the structure; BCV finds the structure (with a
local minimum) in just 3 of the 1000 simulations.

Figure 10 displays the information provided by the various bandwidth se-
lectors. Although only one simulation is reported, the picture was fairly con-
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Fig. 6. Density estimates for the claw density, with n = 193. The true density is shown with
dashed lines, the estimates with solid lines.
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Fig. 7. Bandwidth simulations for the claw density, at three different sample sizes. The densities
of the selected bandwidths are deliberately undersmoothed, to ensure any bimodality is displayed.
Dashed lines represent the true MISE-minimizing bandwidth(s). Note the densities have all been
rescaled to have height 1�0�

sistent over other replications. LSCV shows a sharp minimum around h = 0�8,
and larger bandwidths are strongly rejected.

BCV is very flat for h > 5 and strongly rejects all smaller bandwidths. The
problem here is BCV’s use of the second derivative in the expansion (3): At
large bandwidths, there is almost no curvature in the estimate, so the bias is
significantly underestimated.

The plug-in curve in the right panel of Figure 10 clearly shows some re-
sponse to the ten-modal structure. But the arbitrariness of the assumed re-
lations is clear: both SJPI and GKK produce very oversmoothed solutions.
Although all curves converge [to �0�0�] on the left, neither method produced
a satisfactory solution in any of the 1000 simulations.
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Fig. 8. Density estimation for a ten-modal normal mixture, using four bandwidth selectors.
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Fig. 9. Selected bandwidths for 1000 simulations from the ten-modal example. The density esti-
mates have been rescaled to have maximum 1�0.
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5. Do plug-in selectors have better asymptotic performance? Some
of the strongest arguments in favor of plug-in bandwidth selectors have been
based on asymptotic studies. In particular, the rates of convergence (in a
sense defined later) of cross validation and similar selectors is Op�n−1/10�,
while plug-in selectors achieve much faster rates. The SJPI method achieves
a rate Op�n−5/14�, and other plug-in algorithms achieve the rate Op�n−1/2�
[Hall, Sheather, Jones and Marron (1991)]. At a glance, these results appear
to provide compelling evidence that plug-in selectors must be better, at least
asymptotically.

For asymptotic comparisons such as this to have any meaning, one has to
follow a simple two stage procedure.

1. Formulate a set of assumptions.
2. Let each method do as well as possible under the assumptions made.

However, for the bandwidth selection results, this procedure has not been
followed. In this section we discuss the crucial difference between the assump-
tions under which the rates are derived and their relation to local quadratic fit-
ting. We argue that when the above procedure is followed, the existing asymp-
totics in fact favor the cross-validation selectors.

First, how should we assess the asymptotic performance of bandwidth se-
lectors? We can consider either of two questions.

1. How close is the selected bandwidth to a target bandwidth? For example,
let h0 = h0�n� be the minimizer of the mean integrated squared error, and
ask how fast does

ĥ− h0

h0

converge to 0? The bandwidth asymptotics stated above measure the rate
of convergence of this quantity.

2. How well does the estimate f̂h�x�, using bandwidth h = ĥ, estimate the
true f�x�? This can be measured by rates of convergence, or loss and risk
measures such as mean integrated squared error.

Most comparisons of bandwidth selectors are based on the first type of
measure, since it more directly measures the performance of the selector and
is much more sensitive to differences between selectors. However, we must
remember that usually measures of the second type address the real question
of interest. In particular, if f̂h�x� is an asymptotically inefficient estimate, it
doesn’t matter how good the bandwidth selector is.

What assumptions are made in the analysis of bandwidth selectors? Most
crucially, one needs assumptions about the smoothness of the underlying den-
sity. For asymptotic analysis of bandwidth selectors, this amounts to assuming
a sufficient number of derivatives. For the asymptotic results for LSCV, two
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derivatives are required. For the asymptotic results for plug-in selectors, at
least four derivatives are required.

Now, recall the optimal rates of convergence for density estimation, dis-
cussed for example in Stone (1980). Under the two derivative assumption,
the best possible rate (in a minimax sense) is f̂h�x� − f�x� = Op�n−2/5�, ob-
tained by a kernel estimate with bandwidth h = O�n−1/5�. But under the
four derivative assumption, the best possible estimates achieve a convergence
rate of Op�n−4/9�. Thus the kernel estimate is asymptotically inefficient, even
when the best bandwidth is known.

Why make a big deal of the difference between Op�n−4/9� and Op�n−2/5�?
The answer comes in two parts: first, considering estimates that attain the
Op�n−4/9� rate, and second studying how these methods relate to plug-in
bandwidth selectors. Achieving the Op�n−4/9� rate is straightforward; locally
quadratic approximations, and other asymptotically equivalent methods, such
as fourth-order kernels, achieve this rate. See, for example, Stone (1980).

How do locally quadratic estimates relate to plug-in bandwidth selectors?
From (4), it is clear that a good plug-in selector must use good estimates of∫
f′′�x�2 dx. However, this requires second derivative estimation and extend-

ing equivalence results for kernel and local regression estimates [Henderson
(1916), Scott (1992), Section 6.2.3.3], one can show that essentially any second-
derivative estimate is (at least asymptotically) the curvature term of a locally
quadratic estimate. For a normal kernel density estimate, one has exact equiv-
alence,

1
nh3

n∑
i=1

φ′′
(
Xi − x
h

)
= â2�

where â2 is the curvature coefficient from the locally quadratic estimate (2).
Thus, plug-in methods such as SJPI are making implicit use of locally quadra-
tic estimates to estimate the curvature of the density. This curvature informa-
tion is used in an asymptotically inefficient manner, namely, to estimate the
bias of the kernel estimate.

What does all this mean in practice? In Figure 11, we compute the AIC
criterion for the Old Faithful dataset, for both kernel �deg = 0� and locally
log-quadratic �deg = 2� estimates. Clearly, AIC prefers the log-quadratic
model, choosing a bandwidth h = 0�37. The resulting estimate, shown in the
right panel of Figure 11, appears to achieve the good aspects of all the kernel
estimates in Figure 3; we have the sharp left peak as shown by the cross-
validation methods and a broad right peak without the apparently spurious
noise.

Now let’s do a plug-in step. The locally log-quadratic estimate in Figure 11
is used as a pilot estimate; the second derivative estimate is

f̂′′�x� = eâ0
(
â2 + â2

1

)
�

where �â0� â1� â2� are the coefficients of the local polynomial. Now, substitute
this estimate into the plug-in formula (4). This produces h = 0�124; thus we
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Fig. 11. Fitting a local quadratic model to the Old Faithful dataset. At left, we plot Akaike’s
criterion, for local constant fitting �0� for h ranging from 0�05 to 0�25� and local log quadratic
fitting �2� for h ranging from 0�1 to 0�6 (h increases from right to left). The selected smoother is
local log-quadratic with h = 0�37� the corresponding fit is shown on the right.

have a plug-in selector producing results quite comparable to the classical
selectors in Figure 3. But clearly the plug-in step doesn’t achieve anything
useful: first, it just reproduces the features (the sharp left peak) in the pilot
estimate, and second, it adds noise in the right peak.

The relative merits of kernel or locally constant fitting versus locally qua-
dratic and cubic smoothing has been central to the smoothing literature for
over a hundred years. In early work, predominantly in actuarial applications,
locally quadratic and cubic methods were nearly universal, since they are
better at modeling peaks in data. See Cleveland and Loader (1996) for more
discussion, references and examples. Despite this enormous experience, there
have been attempts in recent years to argue against locally quadratic smooth-
ing; for example, Marron and Wand (1992) claim that enormous sample sizes
are required for higher order methods to have practical value.

However, the question of usefulness of locally quadratic methods at practical
sample sizes is surprisingly irrelevant to the present discussion of bandwidth
selectors. The important point is that both locally quadratic smoothing and
the second derivative estimates used in a plug-in bandwidth selector rely on
the success of a locally quadratic approximation. Thus we can expect similar
sample sizes to be required for both approaches.

This point is illustrated by the simulations reported in Figure 6. The middle
sample size, n = 193, is the break-even point for the second-order kernel and
fourth-order kernel (locally quadratic) estimates; see Table 2 of Marron and
Wand (1992). For n < 193, there is insufficient data for a locally quadratic ap-
proximation to be successful, and locally constant or locally linear fitting beat
locally quadratic fitting. In these cases, Figure 6 shows the classical selectors
outperforming the plug-in.

From Figure 6, n must be much larger than 193 for the second-derivative
estimation to be successful and the plug-in selectors to work. Even n = 400
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is insufficient. If n were increased sufficiently (such simulations become com-
putationally prohibitive), the asymptotics would eventually take over, and the
plug-in selectors would be less variable than LSCV, when both are restricted
to locally constant fitting. But this clearly is not relevant: at larger sample
sizes, the plug-in selectors are beaten by their own pilot locally quadratic esti-
mates. By allowing plug-in, but not LSCV, to use locally quadratic estimates,
we penalize LSCV for the inefficiency of the plug-in estimate.

6. Local regression. So far we have studied the density estimation prob-
lem. Bandwidth choice also arises in other smoothing problems such as local
regression [Henderson (1916), Cleveland and Devlin (1988)]. Most of the meth-
ods used in density estimation have analogs in the regression problem, and
vice versa.

The regression model we consider is Yi = µ�xi� + εi, and use constant
bandwidth locally polynomial estimates. The bandwidth selectors we consider
target the squared error loss function

L�µ̂� µ� =
n∑
i=1

(
µ̂�xi� − µ�xi�

)2
and the risk function

R�µ̂� µ� = E �L�µ̂� µ�� =
n∑
i=1

E
(�µ̂�xi� − µ�xi��2) �

For equally spaced data, n−1L�µ̂� µ� is a quadrature approximation to inte-
grated squared error. Analagously to (4), the risk-minimizing bandwidth is
asymptotically

hopt =
(
σ2

n

a1�W�
a0�W�2

∫
f�x�−1 dx∫
µ′′�x�2 dx

)1/5

�(6)

where f�x� is the design density andW�v� the weight function; we useW�v� =
�1−�v�3�3I�0�1��v�. Formula (6) was given incorrectly by equation (3.1) of GKK
and correctly by Fan (1993).

The four bandwidth selectors we consider are the following.

1. Generalized cross validation. Choose h to minimize

GCV�h� = n
∥∥�I−H�Y∥∥2

�n− tr �H��2
�

Here, Y = �Y1 · · ·Yn�T and H is the hat matrix �µ̂�x1� · · · µ̂�xn��T = HY.
2. Cp [Mallows (1973), Rice (1984), Cleveland and Devlin (1988)]. Choose h

to minimize

C�h� = 1
σ2

∥∥�I−H�Y∥∥2 − n+ 2 tr �H� �
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3. The plug-in algorithm of GKK. Estimate µ′′�x� using a pilot locally quadra-
tic estimate with bandwidth k, and select the bandwidth h = h�k� plugging
this into (6). Select k by solving the pilot relation k = h�k�n1/10. GKK
originally proposed their method for use with certain kernel estimates;
with equally spaced xi the change to local polynomials makes essentially
no difference.

4. A hybrid of Cp and plug-in methods proposed by Ruppert, Sheather and
Wand (1995) (RSW). The pilot estimate is a blocked locally quartic fit with
the number of blocks, p, chosen by Cp. The bandwidth is selected by plug-
ging the local curvature of this fit into (6).

Two other points need noting. First, all selectors except GCV require an
estimate of σ2. In our simulations, the same variance estimate is used in all
selectors, namely, the normalized residual sum-of-squares based on a locally
quadratic fit with h = 0�05. Second, the asymptotic arguments leading to (6)
are not valid in boundary regions. Both GKK and RSW modify the loss function
by truncating boundary regions; in our implementation of these methods, the
integrals in (6) are taken over �0�1�0�9� rather than �0�1�.

We consider regression problems with n = 100 equally spaced points on
�0�1�; µ�x� = 4�x − 0�5�2 + c sin�10πx� and εi ∼ N�0�1�. For c = 0, µ�x�
is quadratic, with a small, but detectable, curvature. The risk function for a
locally linear smooth has a single minimum. For moderate c, the risk has two
local minima, one corresponding to the quadratic structure and the other to the
sinusoidal structure. The crossover, when the sinusoidal minimum dominates,
is about c = 0�4. For large c, the risk again has a single minimum.

Figure 12 displays the results of 1000 simulations. At c = 0, both Cp and
GCV are centered exactly where they should be. The GKK and RSW methods
are less variable, but consistently undersmooth. At c = 0�4, the C�h�, GCV and
RSW are all bimodal, representing the two local minima of the true risk. GKK
has got this completely wrong, being distributed in between the two minima.

Since RSW uses Cp at the pilot stage and plug-in at the second stage,
shows the bandwidths, Figure 13 split by the number of blocks selected at the
Cp stage. The three panels are visually almost identical; that is, the plug-in
step does almost no adapting to the different regression functions. What has
changed is the initial Cp step.

For our second regression example, we use locally quadratic regression since
this frequently beats locally linear in practice. The risk-minimizing bandwidth
is asymptotically

hopt =
(
σ2

n

a1�W∗�
a0�W∗�2

∫
f�x�−1 dx∫
µ�iv��x�2 dx

)1/9

�(7)

where W∗ is the “equivalent” kernel [Henderson (1916)],

W∗�v� = A�0�T
(∫
A�u�A�u�TW�u�du

)−1
A�v�W�v�
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Fig. 12. Selected bandwidths for 1000 local linear regression simulations.

withA�v�T = �1 v v2�. To modify the GKK algorithm for the locally quadra-
tic estimate, we simply use a locally quartic fit at the pilot stage to estimate
µ�iv��x�. For RSW, we again use the blocked locally quartic fit as the pilot
estimate, but plug into (7).

We take µ�x� = 1−48x+218x2 −315x3 +145x4 + c exp�−1000�x−0�62�2�.
Figure 14 displays the results of 1000 simulations for c = 0 and c = 3. At
c = 0, this should be favorable to plug-in selectors, since the pilot locally
quartic estimate has no bias, and large pilot bandwidths can be used. This is
reflected in Figure 14, where GKK and RSW are substantially less variable.

Are C�h� and GCV too variable? In Figure 14 with c = 0, the bandwidths se-
lected range from 0.05 (the programmed lower bound) to over 0.4. In Figure 12
with c = 0, the variability is even larger.

Let’s take a closer look at one of the “worst” samples generated in the
simulations of Figure 14. The dataset, that used in Figure 1, selected h =
0�0618 (C�h�); h = 0�0616 (GCV) and h = 0�288 (GKK). The RSW method
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Fig. 14. Selected bandwidths for local quadratic regression.
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Fig. 15. Informative bandwidth assessment for the “bad” dataset. The flatness of the C�h� plot
(left) reflects the uncertainty in the data. The GKK method selects the larger bandwidth (right)
without any suggestion of the uncertainty.

selected one block at the Cp step, leading to the bandwidth h = 0�353. The
C�h� and GKK fits were shown in Figure 1.

If one looks just at the selected bandwidth, the GKK method and RSW (by
virtue of its initial Cp step) have got this dataset right, and C�h�) and GCV
have got it wrong. But the plug-in methods (particularly GKK) pay a price for
this: oversmoothing and missing the structure on the more difficult problem
in Figure 14, when c = 3. Looking at the whole criterion, rather than just the
selected bandwidth, produces a much more valuable assessment. The C�h�
plot in the left panel of Figure 15 correctly reflects the uncertainty in the
dataset, with two local minima and a nearly flat plot from 5 to 30 degrees of
freedom. GCV (not shown) produces a similar flat plot. GKK selects the larger
bandwidth, with no hint of uncertainty at the smaller bandwidth. The result
is catastrophic failure when the bump is real, as demonstrated in Figure 14.

The conclusion here is simple. Variability of C�h� and GCV is not the prob-
lem, but a symptom of how difficult purely data-based bandwidth selection is.
It is easy to “fix” the variability of C�h� to give better results on the dataset
in Figure 1, for example, by taking the left-most local minimum rather than
the global minimum. However, this type of fix fails to address the difficulty of
bandwidth selection and will lead to failure in difficult problems, similar to
GKK in Figure 15.

7. Conclusions. We have studied a wide range of bandwidth selectors,
on both real and simulated data. When the results are analyzed carefully, the
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much touted plug-in approaches have fared rather poorly, being tuned largely
by arbitrary specification of pilot bandwidths and being heavily biased when
this specification is wrong. We do not claim that classical approaches such as
AIC and cross validation will always produce the best estimates, but rather
that, used properly, the results will often be far more informative than other
recent work in bandwidth selection suggests.

Much of the criticism directed at cross validation and classical approaches
to bandwidth selection would be better directed at kernel estimation and fixed
bandwidth methods. We see this in the Old Faithful dataset: the small band-
widths are being selected by LSCV because that is the only way the sharp left
peak can be modeled. Another criticism of classical approaches, particularly
LCV, is that they can oversmooth when used with heavy tailed distributions.
If an outlier is left out of the dataset, then smoothing the remaining observa-
tions may produce no estimate at that point, forcing a larger bandwidth to be
selected. A reference for this point is Schuster and Gregory (1981), who point
out that LCV produces inconsistent fixed bandwidth kernel estimates when
the underlying distribution has heavy tails. Schuster and Gregory then cor-
rectly conclude a fixed bandwidth estimate is inadequate for heavy tails and
use this to motivate variable bandwidth kernels. Subsequent authors [e.g.,
Scott (1992), page 163] incorrectly conclude there is a problem with LCV.

With the Old Faithful dataset, simulations based on a smoothed bootstrap
approach, residual diagnostics and higher order fits have all suggested the
classical approaches are correct in choosing small bandwidths, and the plug-
in approaches incorrectly oversmooth, with regard to the integrated squared
error loss function. This point has been missed by previous authors applying
kernel methods, who rely exclusively on bandwidth selectors and looking at
the fitted curves to determine an acceptable fit and do not perform any diag-
nostics to detect lack of fit. While the statistician may still prefer the over-
smoothed estimate, it is hardly fair to praise plug-in methods (and criticize
LSCV), since these methods target MISE and not smoothness of the estimate.
If smoother estimates are preferred, then the MISE criterion should be ac-
knowledged as inadequate and bandwidth selectors directed towards a more
appropriate criterion.

The comparisons between classical and plug-in approaches presented in
the literature have several weaknesses. First, plug-in approaches, through
the specification of tuning parameters for pilot estimates, effectively make
substantial prior assumptions about the required bandwidth and will fail if
this information is wrong. Second, the plug-in approaches obtain much of their
information from the data through the use of higher order pilot estimates; if
classical approaches are also allowed to consider higher order methods, better
estimates result. Third, plug-in methods are not rescued by asymptotic anal-
ysis showing better rates of convergence; assumptions about the underlying
function make the resulting estimate asymptotically inefficient, regardless of
how good the bandwidth selector is.

We have emphasized the importance of not relying blindly on any band-
width selector to produce the right bandwidth automatically. If one just ap-
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plies a bandwidth selector plots the fit, one gets a very one-sided view of the
bias-variance trade-off, seeing variance, but not bias. It is extremely impor-
tant to use appropriate residual diagnostics to look for lack of fit. Likewise,
plotting the cross validation or AIC criteria provides valuable diagnostic in-
formation as to how difficult the bandwidth selection is; a flat plot suggests
that different features of the data may be competing for attention at dif-
ferent bandwidths. Plug-in approaches, which arbitrarily impose an Ah4 +
B/�nh� profile on the integrated squared error in such cases, discard this
information.

The importance of using carefully designed graphical displays in conjunc-
tion with bandwidth selectors cannot be overemphasized. Even relatively mun-
dane points, such as showing the data along with the fit, are of considerable
importance. For example, the oversmoothing of the left peak by SJPI and BCV
can be seen in Figure 4, but is quite invisible in Figure 6.17 of Scott (1992) or
Figure 2.2 of Sheather (1992).

We conclude by mentioning some important issues that have not been dis-
cussed in this paper, since they have little bearing on the points discussed.

1. Is ISE the right loss function? Our almost exclusive use of ISE and MISE
should not be considered an endorsement, but rather a reflection of the
literature. Most bandwidth selectors target these measures, so it is these
measures by which bandwidth selectors are judged.

2. Bandwidth schemes: fixed versus nearest neighbor versus locally adaptive
choices? Most bandwidth selection literature centers on the single fixed
bandwidth, and so this paper is restricted to that setting. Often a fixed
bandwidth is inadequate, and both classical and plug-in selectors have lo-
cally adaptive variants, where the bandwidth is chosen separately for each
fitting point x. Most of the issues in this paper also arise in the locally
adaptive setting; however, this adds little to the comparison of classical
versus plug-in approaches.
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