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DETECTING A CHANGE IN REGRESSION:
FIRST-ORDER OPTIMALITY

By Benjamin Yakir,1 Abba M. Krieger and Moshe Pollak2

Hebrew University and University of Pennsylvania

Observations are generated according to a regression with normal er-
ror as a function of time, when the process is in control. The process po-
tentially changes at some unknown point of time and then the ensuing
observations are normal with the same mean function plus an arbitrary
function under suitable regularity conditions. The problem is to obtain a
stopping rule that is optimal in the sense that the rule minimizes the ex-
pected delay in detecting a change subject to a constraint on the average
run length to a false alarm. A bound on the expected delay is first obtained.
It is then shown that the cusum and Shiryayev–Roberts procedures achieve
this bound to first order.

1. Introduction. A new product has entered the market recently (e.g.,
cellular phones). Industry sales are measured monthly. If the product catches
on, one may anticipate a sharp and sustained increase in the growth of
monthly sales. For a variety of reasons (e.g., production, inventory control
and advertising strategy), it is important to determine as soon as possible
that a marked increase has occurred in the growth of monthly sales. For sim-
ilar reasons, it is costly to claim that such a change has occurred when it has
not.

The problem can be modeled by a sequence of independent, homoscedastic,
normally distributed observations Yi (where i indexes time). Initially, the
mean grows according to a function β�i�. If a change occurs at time ν, then
the mean of Yi, i ≥ ν, grows according to β�i� + γ�i− ν + 1�.

In the first part of this paper, it is assumed that the variance σ2 of Yi
is known and that β�i� and γ�i� are also known. (Without loss of generality,
β�i� can be assumed to be 0 and σ2 can be assumed to be 1. Some regularity
conditions on γ will be imposed.) In the latter part of the paper, the case of
unknown parameters is studied.

In formal terms, a detection scheme is characterized by a stopping time N
at which an alarm is raised. The problem addressed in this paper is that of
minimizing the expected delay until detection, E�ν��N− ν+ 1 �N ≥ ν�, subject
to a lower bound on the average run length (ARL) to false alarm E�∞�N. The
expectation E�∞� corresponds to ν = ∞, or, in other words, the case of no
change.

Received December 1996; revised May 1999.
1Supported by a grant from the Israel Science Foundation.
2Supported by a grant from the Israel Science Foundation.
AMS 1991 subject classifications. 62L10, 62N10.
Key words and phrases. Change point detection, regression, stopping rules, information bound.

1896



DETECTING A CHANGE IN REGRESSION 1897

Much has been written on this problem in the context of a change from one
fixed distribution to another fixed distribution. In that context, Lorden (1971)
found an asymptotic lower bound on the expected delay to detection as a
function of the ARL to false alarm (as the latter tends to ∞). Other and
more precise optimality results were obtained later [Pollak (1985), Pollak
and Siegmund (1985), Moustakides (1986), Ritov (1990), Lai (1995), Yakir
(1997)]. Yao (1993) extended Lorden’s results to detecting a change in re-
gression in the case of bounded information per observation (i.e., essentially
sup1≤i<∞E�1� log
dP�1��Yi�/dP�∞��Yi�� <∞). Here we study the case of possi-
bly unbounded information, which includes the problem of detecting a change
of a slope with respect to time.

There are two basic approaches to proving optimality statements. One ap-
proach is Bayesian or decision theoretic [cf. Pollak (1985), Ritov (1990), Yakir
(1997)]. The other approach is classical and uses the theory of optimal stop-
ping [cf. Lorden (1971), Moustakides (1986), Yao (1993), Lai (1995)]. It is this
latter approach that is employed here, though our method of proof is different.
[See also Lai (1993) and Yakir (1996).]

This paper has three main results. In Section 2 a lower bound on the ex-
pected delay is developed. In Section 3, it is shown that, asymptotically, the
cusum and the Shiryayev–Roberts procedures achieve this bound and are
therefore asymptotically optimal (to first order). In Section 4, a procedure
which asymptotically attains these bounds is developed for the more practical
case where baseline and post-change parameters are unknown. The paper is
concluded with remarks and a discussion of extensions.

2. A lower bound. Our main concern in this section is the investigation
of the optimal rate of detection for various post-change structures, and it will
be assumed that it is known that σ2 = 1 and β�·� ≡ 0. The distribution of the
sequence of observations is denoted by P�ν�. If ν = k, then

Yi ∼N�γ�i− k+ 1���i ≥ k��1�
for some given function γ�·�.

Denote by l�k��i� the log-likelihood ratio of the observation Yi for the P�k�

relative to the P�∞� measures when ν = k. It follows that if i < k, then
l�k��i� = 0, and if i ≥ k, then

l�k��i� = γ�i− k+ 1�Yi − γ2�i− k+ 1�/2�
Let S�k��n� =∑n

i=k l
�k��i� be the log-likelihood ratio of the first n observations.

Let N be any change point detection policy. In the following theorem the
rate of detection ofN, E�k��N−k+1 �N ≥ k�, is related to the information on
γ�·� carried by the sequence of observations. The Kullback–Leibler information
function is E�k�S�k��n� = ∑n

i=k γ
2�i − k + 1�/2. In particular, when k = 1, the

information becomes

I�n� =
n∑
i=1

γ2�i�
2
�
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For the sake of convenience, regard I�x� as a piecewise linear continuous
function of real x. Moreover, for the sake of clarity of exposition, we will assume
that I�x� is strictly increasing in x. We show that if I�n� behaves as a power
function in n and if the ARL to false alarm of N is not less than A, then
the rate of detection is bounded from below by the inverse of the information
function, calculated at logA.

Theorem 1. Assume that I�n� is of the form L�n�nr, for some r > 0 and
some slowly changing function L. Then

inf
�N: E�∞�N≥A�

sup
1≤k<∞

E�k��N− k+ 1 �N ≥ k� ≥ I−1�logA��1+ o�1���(2.1)

where o�1� → 0 as A→∞.

Note that I�n� must be monotone in n. Recall that L�n� is slowly changing
if limn→∞L�bn�/L�n� = 1, for all b > 0.

A key ingredient in the proof of the theorem is a lemma that relates the
distribution of the detection policyN to the distribution of the stopping time of
a one-sided sequential probability ratio test (SPRT). Given a boundary b > 0,
the one-sided SPRT of H0: ν = ∞ versus H1: ν = k is defined by

M
�k�
b = inf

{
n:S�k��n� ≥ b}�

Lemma 1. Let A, c and t be positive numbers such that a = logA > 2c. If
N is a stopping time for which E�∞�N ≥ A, then there exists an integer k such
that

P�k�
(
N− k+ 1 <M�k�

a−2c − k+ 1 �N ≥ k) ≤ P�1�
(
M
�1�
a−2c > t

)+ �8t+ 9�e−c�

Proof. Define the (truncated) Shiryayev–Roberts statistics by

R�n� t�m� =
n∑

k=�n−t�∨m
exp

{
S�k��n�}�

For any j ≥ 0,

P�∞��N ≥ jA/2� =
∞∑

n=jA/2
P�∞��N = n�

=
∞∑

n=jA/2

n∑
k=�n−t�∨jA/2

E�k�
[

��N = n�
R�n� t� jA/2�

]

=
∞∑

k=jA/2

k+t∑
n=k

E�k�
[

��N = n�
R�n� t� jA/2�

]

=
∞∑

k=jA/2
E�k�

[
��k ≤N ≤ k+ t�
R�N� t� jA/2�

]
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≥
�j+1�A/2∑
k=jA/2

E�k�
[

��N ≤ k+ t�
R�N� t� jA/2�

∣∣∣∣N ≥ k
]
P�∞��N ≥ k�

≥ P�∞��N ≥ �j+ 1�A/2�

×
�j+1�A/2∑
k=jA/2

E�k�
[

��N ≤ k+ t�
R�N� t� jA/2�

∣∣∣∣N ≥ k
]
�

Define, for A, the given N and all 0 ≤ j <∞, the conditional probability

γj = P�∞��N ≥ �j+ 1�A/2 �N ≥ jA/2� = P�∞��N ≥ �j+ 1�A/2�
P�∞��N ≥ jA/2� �

It follows that

1
γj
≥ A

2
min

jA/2≤k≤�j+1�A/2
E�k�

[
��N ≤ k+ t�
R�N� t� jA/2�

∣∣∣∣N ≥ k
]
�(2.2)

Since A ≤ E�∞�N ≤ 
A/2�∑∞n=0
∏n−1
j=0 γj (with

∏−1
j=0 γj = 1) it can be con-

cluded that there must exist j for which γj ≥ 1/2. Hence, there must exist k,
jA/2 ≤ k ≤ �j+ 1�A/2, such that

E�k�
[

��N ≤ k+ t�
R�N� t� jA�

∣∣∣∣N ≥ k
]
≤ 4/A�(2.3)

In the rest of the proof we fix these j and k.
Let c > 0 be given and consider the log-likelihood ratio S�k��N�. It is

straightforward to show that

P�k��S�k��N� < logA− 2c�N ≤ k+ t �N ≥ k�
≤ P�k��R�N� t� jA/2� ≤ e−cA/4�N ≤ k+ t �N ≥ k�

(2.4)

+P�k�
(
R�N� t� jA/2� exp�−S�k��N��
≥ ec/4�N ≤ k+ t �N ≥ k)�(2.5)

Inequality (2.3) can be used to show for (2.4) that

P�k��R�N� t� jA� ≤ e−cA/4�N ≤ k+ t �N ≥ k� ≤ e−c�
In order to bound the term in (2.5) notice that over the event �k ≤N ≤ k+ t�,

R�N� t� jA/2� exp�−S�k��N�� ≤ max
k≤n≤k+t

n∑
i=�k−t�∨jA/2

exp�S�i��n� −S�k��n���

Hence,

P�k��R�N� t� jA/2� exp�−S�k��N�� ≥ ec/4�N ≤ k+ t �N ≥ k�

≤ P�k�
(

max
k≤n≤k+t

n∑
i=�k−t�∨jA/2

exp�S�i��n� −S�k��n�� ≥ ec/4 �N ≥ k
)
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≤ P�k�
(

max
k≤n≤k+t

n∑
i=�k−t�∨jA/2

exp�S�i��n� −S�k��n�� ≥ ec/4 �N ≥ jA/2
)

×P�∞��N ≥ jA/2�/P�∞��N ≥ �j+ 1�A/2�

= 1
γj

P�k�
(

max
k≤n≤k+t

n∑
i=�k−t�∨jA/2

exp�S�i��n� −S�k��n�� ≥ ec/4
)

≤ 8�t+ 1�e−c�
since γj ≥ 1/2 and since Doob’s inequality can be applied to the P�k�-sub-
martingale

n∑
i=�k−t�∨jA

exp�S�i��n� −S�k��n��� k ≤ n ≤ k+ t�

To conclude the above discussion,

P�k��S�k��N� < a− 2c� N ≤ k+ t �N ≥ k� ≤ �8t+ 9�e−c�(2.6)

It follows from (2.6) that

P�k�
(
N <M

�k�
a−2c� N ≤ k+ t �N ≥ k

) ≤ �8t+ 9�e−c�
Therefore,

P�k�
(
N <M

�k�
a−2c� M�k�

a−2c ≤ k+ t �N ≥ k
) ≤ �8t+ 9�e−c�

The event �N ≥ k� is independent of the stopping time M�k�
a−2c and the P�k�-

distribution of M�k�
a−2c − k+ 1 is independent of k. Hence

P�k�
(
N <M

�k�
a−2c �N ≥ k

) ≤ P�k�
(
M
�k�
a−2c − k+ 1 > t

)+ �8t+ 9�e−c

= P�1�
(
M
�1�
a−2c > t

)+ �8t+ 9�e−c� ✷

Proof of Theorem 1. Let I−1 be the inverse function of I. Observe first
that for b fixed, b > 0, and for a, a→∞,

I�bI−1�a�� = abrL�bI
−1�a��

L�I−1�a�� ∼ ab
r�

since L is slowly changing. It follows that I−1�ba� ∼ b1/rI−1�a�.
Let ε > 0 be given. It will be shown that for any A large,

inf
�N: E�∞�N≥A�

sup
1≤ν<∞

E�ν��N− ν + 1 �N ≥ ν� ≥ e−εI−1�logA��(2.7)

Define t = �I−1�logA�� = �I−1�a��, and for a small, but positive ε1, define
c = ε1a. It follows from Lemma 1 and from Chebyshev’s inequality that for
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any stopping rule N, for which E�∞�N ≥ A, there exists an integer k such
that

P�k�
(
N− k+ 1 <M�k�

�1−2ε1�a − k+ 1 �N ≥ k)
≤ P�1�

(
M
�1�
�1−2ε1�a > t

)+ �8t+ 9� exp�−ε1a�
≤ P�1�

(
S�1��t� < �1− 2ε1�a

)+ �8I−1�a� + 9� exp�−ε1a�

≤ 1

2ε2
1a
+ �8I−1�a� + 9� exp�−ε1a��

since E�1�
(
S�1��t�) = I�t� ∼ a and Var�1�

(
S�1��t�) = 2I�t�. This expression

converges to zero as a→∞.
Moreover,

P�k�
(
M
�k�
�1−2ε1�a − k+ 1 < exp�−ε1�I−1��1− 2ε1�a�

)
≤ P�1�

(
sup

n≤exp�−ε1�I−1��1−2ε1�a�
S�1��n� > �1− 2ε1�a

)
�

However, from Doob’s inequality, the monotonicity of I�·� and for a1, such that
a1 = �1− 2ε1�a,

P�1�
(

sup
n≤exp�−ε1�I−1�a1�

S�1��n� > a1

)

≤ P�1�
(

sup
n≤exp�−ε1�I−1�a1�

�S�1��n� − I�n��2 > �a1 − I�exp�−ε1�I−1�a1��2
)

≤ 2I�exp�−ε1�I−1�a1��
�a1 − I�exp�−ε1�I−1�a1��2

�

which, again, converges to zero as a→∞.
Therefore,

P�k�
(
N− k+ 1 ≥ exp�−ε1�I−1��1− 2ε1�a� �N ≥ k

) ≥ exp�−ε/2��
provided that a is large. A choice of a small enough ε1 would lead to inequal-
ity (2.7) since exp�−ε1�I−1��1−2ε1�a� ∼ exp�−ε1��1−2ε1�1/rI−1�a�. The proof
of the theorem thus follows. ✷

3. Asymptotically optimal detection policies. In this section we relax
the assumption that γ is known and consider the construction of asymptoti-
cally optimal detection stopping times. Natural candidates, such as the cusum
or the Shiryayev–Roberts procedure, are based on log-likelihood ratios. These
log-likelihood ratios, however, involve unknowns—the function γ—which can
be estimated. Martingale consideration would suggest estimation which is
based only on observations which are prior to the current one. A simple esti-
mate of γ�i− k+ 1�, which is the P�k�-mean of the observation Yi, is Yi−1 (or
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0 if i = k). Substituting estimates leads to the (approximated) log-likelihood
ratios

S̃�k��n� =
n∑

i=k+1

(
Yi−1Yi −Y2

i−1/2
)
�

Note that S̃�k��n� is itself a log-likelihood ratio.
Consider the Shiryayev–Roberts stopping rule

NSR = inf
{
n:

n∑
k=1

exp�S̃�k��n�� ≥ A
}
�

and the cusum stopping rule

NCS = inf
{
n: max

k≤n
S̃�k��n� ≥ logA

}
�

Theorem 2. Let N be either NSR or NCS.

(i) E�∞�N ≥ A.
(ii) If γ�·� is a positive and increasing function and if I�n� = L�n�nr for

some r > 1 and some slowly changing function L, then

sup
1≤k<∞

E�k��N− k+ 1 �N ≥ k� = I−1�logA��1+ o�1���

where o�1� → 0 as A→∞.

Remark. Note that γ�n� → ∞, γ�n�/γ�n−1� → 1 andYn/γ�n−k+1� →p 1
under P�k� as n→∞, providing for intuitive plausibility of the success ofNSR
and NCS.

Proof of Theorem 2(i). The stopping time NCS dominates the stopping
time NSR. Hence it is sufficient to prove the claim for N =NSR.

If limm→∞ P�∞��N < m� < 1, then E�∞�N = ∞ and the claim is trivial.
Assume that the probability converges to 1. Obviously, E�∞�N ≥ E�∞��N∧m�,
for 1 ≤m <∞. The process

∑n
k=1 exp�S̃�k��n��−n is a P�∞�-martingale. Hence,

by the optional sampling theorem,

E�∞��N ∧m� = E�∞�
N∧m∑
k=1

exp�S̃�k��N ∧m���

The statistic
∑N∧m
k=1 exp�S̃�k��N ∧m�� is positive and is larger than A on the

event �N < m�. Therefore,

E�∞�N ≥ AP�∞��N < m��
The proof follows since P�∞��N < m� −→m→∞ 1 by assumption. ✷
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Proof of Theorem 2(ii). LetN be eitherNSR orNCS. For any k, 1 ≤ k <
∞, letM�k�

logA be the SPRT stopping time as in the previous section with S�k��n�
replaced by S̃�k��n�. It is easy to see that

E�k��N− k+ 1 �N ≥ k� ≤ E�k�
(
M
�k�
logA − k+ 1 �N ≥ k)

= E�1�M�1�
logA�

In the sequel we bound this last expectation.
From the definition of M�1�

logA =M it follows that

logA ≥
M−1∑
i=2

(
Yi−1Yi −Y2

i−1/2
)

= I�M− 1� +
M−1∑
i=2

(
Yi−1Yi −Y2

i−1/2− γ2�i�/2)− γ2�1�
2
�

(3.1)

The expectation of the second term in the last line of (3.1) can be bounded
from below by

E�1�
M−1∑
i=2

(
Yi−1Yi −Y2

i−1/2− γ2�i�/2)

= E�1�
∞∑
i=2

(
Yi−1Yi −Y2

i−1/2− γ2�i�/2)��M ≥ i+ 1�

≥ −E�1�
∞∑
i=2

∣∣Yi−1Yi −Y2
i−1/2− γ2�i�/2∣∣��M ≥ i+ 1�

≥ −E�1�
∞∑
i=2

∣∣Yi−1Yi −Y2
i−1/2− γ2�i�/2∣∣��M ≥ i− 1�

= −
∞∑
i=2

E�1�
∣∣Yi−1Yi −Y2

i−1/2− γ2�i�/2∣∣P�1��M ≥ i− 1�

= −E�1�
M+1∑
i=2

E�1�
∣∣Yi−1Yi −Y2

i−1/2− γ2�i�/2∣∣�
Straightforward calculations and the assumptions of the theorem show that

γ2�n�/2 = o�I�n��, implying I�n− 1� = �1+ o�1��I�n�, and that∣∣Yi−1Yi −Y2
i−1/2− γ2�i�/2∣∣

≤ ∣∣Yi−1 − γ�i− 1�∣∣∣∣Yi − γ�i�∣∣+ γ�i�∣∣Yi − γ�i�∣∣
+ �Yi − γ�i− 1��2/2+ �γ2�i� − γ2�i− 1��/2�

so that
n+1∑
i=2

E�1�
∣∣Yi−1Yi −Y2

i−1/2− γ2�i�/2∣∣ = o�I�n���



1904 B. YAKIR, A. KRIEGER AND M. POLLAK

Therefore, for any ε > 0 a constant C can be found such that

I�n− 1� −
n+1∑
i=2

E�1�
∣∣∣Yi−1Yi −Y2

i−1/2− γ2�i�/2
∣∣∣− γ2�1�

2
≥ �1− ε�I�n� −C�

for all n ≥ 1. Moreover, the function I�n� is convex since the function γ�·� is
increasing. It can be concluded that

logA ≥ �1− ε�E�1�I�M� −C
≥ �1− ε�I�E�1�M� −C�

The proof of the theorem thus follows. ✷

4. A case of unknown baseline parameters. Often, β and σ2 are un-
known and need to be estimated from the data. In this section, we construct
a first-order asymptotically optimal procedure for this case. In order for the
change point problem to be well defined, β should be structured, since γ is not.
In this section we assume that β�i� = β0 + iβ1 for some unknown scalars β0
and β1. Given the first n observations, the standard estimators of �β0� β1� σ

2�
are (when all observations are prechange)

β̂1 =
∑n
i=1 iYi − ��n+ 1�/2�∑ni=1Yi

n�n2 − 1�/12

β̂0 =
∑n
i=1Yi
n

− β̂1
n+ 1

2

σ̂2 = 1
n− 2

n∑
i=1

�Yi − β̂0 − β̂1i�2�

Note that β̂ = �β̂0� β̂1� and σ̂2 implicitly depend on n, the number of observa-
tions at the current inspection period. Define l̂�k��i� n� = Ŷi−1� nŶi� n−Ŷ2

i−1� n/2,
for all 3 < k < i ≤ n, with Ŷi� n = �Yi − β̂0 − β̂1i�/σ̂ . Consider the pseudo-log-
likelihood ratio

Ŝ�k��n� =
n∑

i=k+1

l̂�k��i� n��(4.1)

and define the (window truncated) Shiryayev–Roberts stopping rule,

NSR = inf

{
n:

n∑
k=n−t

exp�Ŝ�k��n�� ≥ dA
}
�

and the (window truncated) cusum stopping rule,

NCS = inf
{
n: max
n−t≤k≤n

Ŝ�k��n� ≥ log�dA�
}
�



DETECTING A CHANGE IN REGRESSION 1905

for some t = t�A�, t = o�A�, t/ logA → ∞, and d > 2. This d, together with
c > 1, solves the equation

A = 1/2+ 
1/4− �2t�/�dA��1/2
1− ��cA− 1�/�cA��{1/2+ 
1/4− �2t�/�dA��1/2}1/t �

Note that c = c�A� and d = d�A� can be taken to be bounded. Let G be a
geometric random variable, independent of everything else, such that E�G� =
cA and denote N =NSR ∧G or N =NCS ∧G.

It will be shown below that, under mild regularity conditions,N attains the
optimal rate of detection, at least when the change does not occur too soon after
initiation of the monitoring. (This restriction is unavoidable; for example, if
the change is a change of slope, the state �no change� is indistinguishable from
the state �change from the very beginning�.) Before considering the rate of
detection of a policyN, however, one needs to demonstrate that E�∞�N ≥ A. It
should be noted that Ŝ�k��n� is no longer a log-likelihood ratio, hence standard
martingale results cannot be applied. Nonetheless, as shown in the proof of the
following lemma, Ŝ�k��n� is smaller than another (true) log-likelihood ratio. It
follows that the expectation constraint on the rate of false alarms is satisfied
for the proposed procedure.

Lemma 2. Let N be defined as above. Then E�∞�N ≥ A.

The optimality claim is stated next as a theorem. The proof of both this
theorem and of Lemma 2 is relegated to the Appendix.

Theorem 3. Let N be defined as above. If I�n� = L�n�nr for some r > 1
and some slowly changing function L and if

∑n
i=1
γ�i� − γ�i− 1��2 = o�I�n��,

then there exists a constant η such that

sup
η logA≤k<∞

E�k��N− k+ 1 �N ≥ k� = I−1�logA��1+ o�1���

Remark. Note that one need not know the value of r to apply this proce-
dure and that this procedure is first-order asymptotically optimal whatever
the value of r > 1 is.

5. Comments and extensions. In the first part of this paper, the first-
order optimality of the cusum and the Shiryayev–Roberts procedures was es-
tablished. This result is in a regression context where the observations are in-
dependent and normally distributed with known variance and the mean level
grows according to a known function of time before a change has taken place
and according to another unknown function once a change has occurred. It is
interesting to note that an optimal procedure is still based on the likelihood
ratio’s crossing of a constant boundary. We conjecture that this may be the
case in a wide variety of contexts, as hinted by the following considerations.

Regard a sequential hypothesis testing problem of a simple H0 versus a
simple H1 based on a sequence of (not necessarily independent) observations
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Y1�Y2� � � � . Without loss of generality, regard procedures based on L1�L2� � � �,
where Ln is the likelihood ratio of the first n observations. Note that Ln
equals the likelihood ratio of �L1� � � � �Ln�. Letting fn be the density of Ln,
one can rephrase H0 and H1 as H0: fn = f0

n; n = 1�2� � � � and H1: fn = f1
n;

n = 1�2� � � � . Note that f1
n�y�/f0

n�y� = y. For a power one test, the operating
characteristics of interest are α = P0�N <∞� and E1N, whereN is a stopping
time at which (if N < ∞) one stops and rejects H0. The optimal stopping
problem is to minimize E1N subject to a given α.

Consider stopping times of the form N = min�n: Ln ≥ Cn� (N = ∞ if no
such n exists), where �Cn� is a sequence of constants. Regard the surrogate
problem of minimizing theH1-expected number of times Ln is below Cn, sub-
ject to a fixed value δ of the H0-expected number of visits of Ln above Cn.
Intuitively, theH1-expected number of times Ln is below Cn differs from E1N
by an additive constant, and δ differs from α by a multiplicative constant,
so that an optimal procedure for the surrogate problem is almost (asymptot-
ically, α → 0) optimal for the original one. Now use a Lagrangian multiplier
argument to solve the surrogate problem,

∂

∂Cj

[ ∞∑
n=1

P1�Ln ≤ Cn� + λ
( ∞∑
n=1

P0�Ln > Cn� − δ
)]
= f1

j�Cj� − λf0
j�Cj�

which equal zero iff f1
n�Cn�/f0

n�Cn� = λ for each n. Since f1
n�Cn�/f0

n�Cn� = Cn,
it follows that the rule which calls for stopping the first time that the likeli-
hood ratio exceeds a constant is optimal for the surrogate problem. The close
relationship between power one tests and change point problems leads one to
conjecture that the analogous rule (cusum, or Shiryayev–Roberts) is asymp-
totically almost optimal. [Actually, these considerations lead one to suspect
that the optimality is much stronger than that claimed in Sections 2 and 3;
I−1�logA��1+ o�1�� may perhaps turn out to be I−1�logA� +O�1�. However,
we have so far been unable to provide a full proof along these lines.]

The results of this paper apply to cases where the information contained
in the first n observations increases according to L�n�nr. Note that a change
in a linear trend can be related to r = 3. The example of the success of a
new product (mentioned in the introduction) may correspond to r > 3. The
classical change point problem (change from one constant mean to another
constant mean level) corresponds to r = 1 and the case r < 1 corresponds to a
situation where the mean tends to revert back to its original prechange level
(at not too fast a rate), and the results of Section 2 apply, although those of
Section 3 and 4 do not. The results of this paper, however, do not apply to
regression problems where the information accumulates exponentially.

Parallel results can be obtained when the errors are not normally dis-
tributed. It is important to note that the main lemma in Section 2 is not
based on normality. In this context it is useful to compare our results with
the results in Robbins and Zhang (1993). They considered a change point de-
tection problem in an exponential family context with a probability constraint
imposed on the rate of false alarm. Mixture-type stopping rules were inves-
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tigated in terms of their ARL to detection. It can be shown, however, that
mixture-type stopping rule are suboptimal when r > 1.

APPENDIX

This Appendix contains the proofs of Lemma 2 and Theorem 3.
The basic idea in proving Lemma 2 is to show that Ŝ�k��n� is dominated by

a true log-likelihood. This is done in five steps:

1. A true log-likelihood ratio, which involves invariant statistics, is defined.
The likelihood ratio is formed by dividing the joint density of these statistics
under P�k� by their joint density under P�∞�.

2. It is shown that the true log-likelihood ratio is greater than a computable
expression.

3. The above computable expression is presented as a sum of Ŝ�k��n� and an
additional term.

4. The additional term in (3) is proven to be positive.
5. The stopping time involving the true log-likelihood ratio of (1) is shown to

satisfy the constraint on false alarms.

Step 1. Initially, let Yi, i ≥ 1, be independent homoscedastic normally dis-
tributed observations. It will be convenient to use vector and matrix notation.
Let m be the number of observations that is known to be before the change
has taken place. (Note that in the paper m is assumed to be 3.) Let

Y′ = �Y−1�Y0�Y1�′ = ��Y1� � � � �Ym�� �Ym+1� � � � �Yk−1�� �Yk� � � � �Yn��
and let X = �X−1�X0�X1�, where

X′ =
(

1 1 1 · · · 1
1 2 3 · · · n

)
�

is the associated design matrix. Note that in the text m = 3 observations are
assumed to be prechange. Let b̂ and v̂ be estimates of �β0� β1�′ and σ2, based
on Y−1,

b̂ = �X′−1X−1�−1X′−1Y−1�

v̂ = Y′−1
I− X−1�X′−1X−1�−1X′−1�Y−1/�m− 2��
Define the statistics

T = �T0�T1� = v̂−1/2(�Y0�Y1� − �X0�X1�b̂
)
�(A.1)

Regard Y−1 as a learning sample, taken from the prechange distribution.
A change of the regression parameters, if it occurs at all, is assumed to occur
at some (unknown) time ν = k > m, in which case � �Yi �Y1� � � � �Yi−1� =
N�Yi−1� σ

2� for i ≥ k + 1. (If there is no change at all, denote ν = ∞.) Moni-
toring for a change will be based on the the invariant sequence of �T�’s (where
�T� is the vector of absolute values of the coordinates of T). Let S�k��T� be the
marginal log-likelihood ratio of the sequence of invariant statistics.
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The distributions of both Ŝ�k��n� and S�k��T� are invariant with respect to
an affine transformation of time and multiplication by a positive scalar. Hence,
one may assume, without loss of generality, that β0 = β1 = 0 and σ2 = 1.

Step 2. Denote: / = �b̂� v̂�. Let S�k��T �/� be the conditional log-likelihood
ratio of T, for �ν = k� versus �ν = ∞�. Let fk denote the density under ν = k.
Now,

S�k��t� def= log
fk�t�
f∞�t�

= log

∫
fk�t� θ�dθ∫
f∞�t� θ�dθ

= log
∫ fk�t� θ�
f∞�t� θ�

[
f∞�t� θ�∫
f∞�t� u�du

]
dθ

= log
∫ fk�t�θ�
f∞�t�θ�

f∞�θ�t�dθ

≥
∫

log
[
fk�t�θ�
f∞�t�θ�

]
f∞�θ�t�dθ� ✷

It follows that S̃�k��T� = E∞
S�k��T �/� �T� is smaller than the (true) log-
likelihood ratio S�k��T�.

Step 3. Here it is shown that

S̃�k��T� = σ̂−2�Y1 − X1β̂�′A�Y1 − X1β̂� + trace�X′1AX1�X′X�−1��(A.2)

with

β̂ = �X′X�−1X′Y�

σ̂2 = Y
′Y − Y′X�X′X�−1X′Y

n− 2
�

Note that the first term on the right-hand side of (A.2) is what is denoted by
Ŝ�k��n�. Throughout this step the superscript k is omitted in order to simplify
the notation.

Observe that

b̂ ∼N�0� �X′−1X−1�−1��
v̂ ∼ 2(�m− 2�/2� �m− 2�/2)

are independent. Furthermore,

� �T � θ� = � �T � b̂� v̂� =N�−v̂−1/2�X0�X1�b̂� v̂−1I��
Standard Bayesian arguments can be used to show that

� �b̂ � v̂�T� =N�−v̂1/2�X′X�−1�X0�X1�′T� �X′X�−1��(A.3)

� �v̂ �T� = 2
(
n− 2

2
�
T′T +m− 2− T′�X0�X1��X′X�−1�X0�X1�′T

2

)
�(A.4)
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Let A = Ak�n be, for general k and n, an �n− k+ 1� by �n− k+ 1� matrix
of the following form (demonstrated for n− k+ 1 = 5):

A =



−0�5 1 0 0 0

0 −0�5 1 0 0
0 0 −0�5 1 0
0 0 0 −0�5 1
0 0 0 0 0


 �

Recall that if a change occurs at time ν = k, then � �Yi �Y1� � � �Yi−1� =
N�Yi−1�1� for i ≥ k+ 1. Thus the log-likelihood ratio of Y for �ν = k� versus
�ν = ∞� is

∑n
i=k+1�YiYi−1 −Y2

i−1/2� = Y1
′AY1.

The term S�T � b̂� v̂� is the conditional log-likelihood ratio of T for ν = k
versus ν = ∞. From (A.1) it follows that S�T � b̂� v̂� equals the conditional
log-likelihood ratio of Y1 = v̂1/2T1 + X1b̂, so that

S�T � b̂� v̂� = 
v̂1/2T1 + X1b̂�′A
v̂1/2T1 + X1b̂��
Regarding this as a function of b̂, obtain from (A.3) that

E∞
S�T � b̂� v̂� � v̂�T� = v̂�T1 − X1β̃�′A�T1 − X1β̃� + trace�X′1AX1�X′X�−1��
where β̃ = �X′X�−1�X0�X1�′T. Therefore,

S̃�T� = E∞
S�T � b̂� v̂� �T� = E∞
E∞�S�T � b̂� v̂� � v̂�T� �T�(A.5)

= σ̃−2�T1 − X1β̃�′A�T1 − X1β̃� + trace�X′1AX1�X′X�−1��(A.6)

where

σ̃2 = T
′T +m− 2− T′�X0�X1��X′X�−1�X0�X1�′T

n− 2
�

However, from

�T1 − X1β̃� =
Y1 − X1b̂
v̂1/2

− X1�X′X�−1�X0�X1�′
�Y0�Y1� − �X0�X1�b̂�
v̂1/2

obtain that [since �X′−1X−1�b̂ = X′−1Y−1]

v̂1/2�T1 − X1β̃�
= Y1 − X1��X′X�−1�X−1�X0�X1�′�Y−1�Y0�Y1��
+ X1��X′X�−1�X0�X1�′�X0�X1�b̂+ �X′X�−1X′−1Y−1 − b̂�

= Y1 − X1��X′X�−1X′Y�
+ X1��X′X�−1�X0�X1�′�X0�X1�b̂+ �X′X�−1X′−1Y−1 − b̂�

= Y1 − X1β̂+ X1��X′X�−1�X′X�b̂− b̂�
= Y1 − X1β̂
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and likewise

v̂1/2�T0 − X0β̃� = Y0 − X0β̂�

Therefore, this step will be completed if it can be shown that v̂σ̃2 = σ̂2. Indeed,

�n− 2�σ̃2 = T′0�T0 − X0β̃� + T′1�T1 − X1β̃� + v̂−1v̂�m− 2�
= v̂−1�Y0 − X0b̂�′�Y0 − X0β̂� + v̂−1�Y1 − X1b̂�′�Y1 − X1β̂�
+ v̂−1�Y′−1Y−1 − Y′−1X−1b̂�

so that 
sinceY′−1X−1 = b̂′�X′−1X−1��
v̂�n− 2�σ̃2

= Y′Y − Y′Xβ̂− �b̂′X′Y − b̂′X′0X0β̂− b̂′X′1X1β̂− Y′−1X−1β̂�
= �n− 2�σ̂2 − �b̂′X′Y − b̂′X′Xβ̂�
= �n− 2�σ̂2� ✷

Step 4. trace�X′1AX1�X′X�−1� > 0. Straightforward calculations yield

X′1AX1 =




n− k
2

�n− k��n+ k+ 3�
4

�n− k��n+ k− 1�
4

n− k
12
�2n2 + 2kn+ 2k2 + 3n+ 3k− 5�




and

�X′X�−1 =



n�n+ 1��2n+ 1�

6
−n�n+ 1�

2

−n�n+ 1�
2

n


 1
Q
�

where Q = n2�n+ 1��2n+ 1�/6− n2�n+ 1�2/4. Algebra yields (for n ≥ k ≥ 2)

trace�X′1AX1�X′X�−1� = �n− k�n
12Q


n2 − nk+ 2k2 − 7� > 0� ✷

Step 5. Now the proof of Lemma 2 is complete. From Steps 3 and 4 obtain
that S�k��T� ≥ Ŝ�k��n�� Let NSSR be defined as NSR with S�k��T� instead of
Ŝ�k��n�. It follows from the above thatNSSR is stochastically smaller thanNSR.

We turn to the investigation of the P�∞�-distribution of NSSR. For any j ≥ 2,

P�∞���j− 1�t < NSSR ≤ jt�
(A.7)

= P�∞�
(
�j− 1�t < NSSR� max

�j−1�t<n≤jt

n∑
k=n−t

exp�S�k��n�� ≥ dA
)
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≤ P�∞�
(
�j− 2�t < NSSR� max

�j−1�t<n≤jt

n∑
k=�j−2�t+1

exp�S�k��n�� ≥ dA
)

(A.8)

≤ 2t
dA

P�∞���j− 2�t < NSSR��(A.9)

where the last inequality follows from Doob’s inequality, after noticing that

exp�S�k��T�� = fk�T4� � � � �Tn�/fk�T4� � � � �T�j−2�t�
f∞�T4� � � � �Tn�/f∞�T4� � � � �T�j−2�t�

is a likelihood ratio (conditional on T4� � � � �T�j−2�t), making the sum in (A.8)
a conditional submartingale.

For all 1 ≤ n ≤ t, note that P�∞��NSSR > n� ≥ 1 − n/dA. Divide (A.7)
and (A.9) by P�∞��NSSR > �j− 1�t�. Apply induction to get the bound

P�∞��NSSR > jt �NSSR > �j− 1�t� ≥ 1/2+ 
1/4− �2t�/�dA��1/2 ≈ 1− �2t�/�dA��
which leads to the relation

P�∞��NSSR > n� ≥
{
1/2+ 
1/4− �2t�/�dA��1/2}n/t+1

�(A.10)

It follows from the definition of c and d that E�∞�N ≥ E�∞��G ∧NSSR� ≥ A�
This completes the proof of Lemma 2. ✷

Proof of Theorem 3. The distribution of Ŝ�k��n� is invariant with respect
to an affine transformation of time and multiplication by a positive scalar.
Hence, one may assume, without loss of generality, that β0 = β1 = 0 and
σ2 = 1.

Fix k. Consider the statistic Zk = �
∑k−1
i=1 Yi�

∑k−1
i=1 iYi�

∑k−1
i=1 Y

2
i � and define

the event Bk as{∣∣∣∣
k−1∑
i=1

Yi

∣∣∣∣ ≤ ε�k− 1��
∣∣∣∣
k−1∑
i=1

iYi

∣∣∣∣ ≤ ε�k− 1�2�
∣∣∣∣
k−1∑
i=1

Y2
i − �k− 1�

∣∣∣∣ ≤ ε�k− 1�
}
�

Note that P�k��B̄k� ≤ exp�−τ�k − 1��, for some τ > 0, where B̄k is the com-
plement of Bk. Let k < n and consider Ŝ�k��n�. Note that given Zk, the event
�N ≥ k� and the statistic Ŝ�k��n� are independent.

Let n1 = k − 1 + ��1 + ε�I−1�logA�� and n2 = k + �c1I−1�logA�� for some
small ε and some large c1 (to be determined later). It follows that

E�k��N− k+ 1 �N ≥ k�
≤ �1+ ε�I−1�logA� + c1I−1�logA�max

Zk∈Bk
P�k��Ŝ�k��n1� < logA �Zk�

+ E�G� P�∞��B̄k�
P�∞��N ≥ k� + E�G�max

Zk∈Bk
P�k��Ŝ�k��n2� < logA �Zk��

The proof will be complete when, on the right-hand side of this inequality, all
terms but the first will be shown to be negligible.
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Begin with the term E�G�P�∞��B̄k�/P�∞��N ≥ k�. Note that the ratio of the
probabilities is less than exp�t/A− �k− 1�
τ − �ζ + 1/c�/A��, for some ζ > 0.
Thus, if k �1/τ� logA then this term is o�1/A�, as A→∞.

For the other two terms we need to investigate Ŝ�k��n�, both when n = n1
and when n = n2. However, it can be shown that

Ŝ�k��n� = 1
2σ̂2

[ n∑
i=k+1

�Yi − �β̂0 + iβ̂1��2 −
n∑

i=k+1

�Yi −Yi−1 − β̂1��2
]
�

The distribution of Ŝ�k��n� depends on Zk only via �β̂0� β̂1� σ̂
2�. We first show

that the conditional probability of the event

Ck�n = �σ̂2 > 1+ 2ε� ∪ �β̂0 + �nβ̂1� > 2ε�
is o�1� when n = n1 and is o�1/A� when n = n2. It is then straightforward
to see that the probability of the event �Ŝ�k��n� < logA� ∩ C̄k�n, is o�1� when
n = n1 and is o�1/A� when n = n2, which is all that is needed in order to
prove that the terms in question are small. Indeed,

P�k��σ̂2 > 1+ 2ε �Zk� ≤ P�k�
(∑k−1

i=1 Y
2
i +

∑n
i=k Y

2
i

n− 2
> 1+ ε �Zk

)

≤ P�k��∑ni=k Y2
i ≥ ε�n− 2���

since Zk ∈ Bk. The P�k�- distribution of
∑n
i=k Y

2
i is a noncentral χ2 with n−k+1

degrees of freedom and 2I�n − k + 1� as the parameter of noncentrality. An
exponential Markov inequality can be used in order to establish the necessary
bounds. Similar arguments can be used for the conditional probability of the
event �β̂0 + �nβ̂1� > ε�. ✷
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