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Consider a heteroscedastic regression model Y = m�X� + σ�X�ε,
where the functions m and σ are “smooth,” and ε is independent of X.
The response variable Y is subject to random censoring, but it is assumed
that there exists a region of the covariate X where the censoring of Y is
“light.” Under this condition, it is shown that the assumed nonparametric
regression model can be used to transfer tail information from regions of
light censoring to regions of heavy censoring. Crucial for this transfer is
the estimator of the distribution of ε based on nonparametric regression
residuals, whose weak convergence is obtained. The idea of transferrring
tail information is applied to the estimation of the conditional distribution
of Y given X = x with information on the upper tail “borrowed” from the
region of light censoring, and to the estimation of the bivariate distribution
P�X ≤ x� Y ≤ y�with no regions of undefined mass. The weak convergence
of the two estimators is obtained. By-products of this investigation include
the uniform consistency of the conditional Kaplan–Meier estimator and its
derivative, the location and scale estimators and the estimators of their
derivatives.

1. Introduction. Let �X�Y� be a random vector where Y denotes a pos-
sible transformation of the variable of interest and X is a covariate. Let C be a
“censoring” random variable which is conditionally independent of Y given X,
and suppose that the observable random vector is �X�Z���, where Z = Y∧C,
and � = I�Y ≤ C�. Finally, let �Xi�Zi� �i�, i = 1� � � � � n, denote independent
replications of �X�Z���.

In this context, nonparametric estimation of the conditional distribution
F�y �x� of Y given X = x was introduced by Beran (1981), and studied by
several authors [Dabrowska (1989), McKeague and Utikal (1990), Gonzalez
Manteiga and Cadarso Suarez (1994), Akritas (1994), and Van Keilegom and
Veraverbeke (1996, 1997a, b)]. As with the ordinary Kaplan–Meier estimator,
the tails of the Beran estimator may contain little information if the cen-
soring is “heavy.” In particular, the Beran estimator cannot estimate F�y �x�
for y greater than the upper bound of the support of the conditional dis-
tribution of the censoring variable given X = x. This is due to the inher-
ent lack of information and cannot be overcome in a completely general set-
ting. Likewise all existing estimators of the bivariate distribution of �X�Y�
[e.g., Dabrowska (1988), Akritas (1994), Stute (1993, 1996), van der Laan
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(1996)] have regions of unassigned mass when censoring in the upper tails
is heavy.

In this paper we propose new estimators for F�y �x� and for the bivariate
distribution of �X�Y� which, under some additional assumptions, do not suf-
fer from the aforementioned disadvantages. In particular, the paper proposes
a method for estimating the conditional distribution F�y �x� in such a way
that tail information available in F�y �x�, with x in regions of light censoring,
is transferred to the tails of F�y �x� for x in regions of heavy censoring. The
problem of transferring tail information was posed in Section 6.1 of Akritas
(1994) in the context of estimating a bivariate distribution and extension of
the least squares estimator to censored data; see Van Keilegom (1998) for the
application to least squares estimation in the present context. To make this
transfer possible, it is necessary to assume that �X�Y� follows the nonpara-
metric regression model

Y =m�X� + σ�X�ε�(1.1)

where ε is independent of X, the function m�·� is the unknown regression
curve and σ�·� is a conditional scale functional representing possible het-
eroscedasticity. This model assures that the upper tail of F�y �x� is, up to
a scale factor, the same for all x, which is the weakest possible condition un-
der which the transfer of tail information can be accomplished. In particular,
model (1.1) implies that

F�y �x� = Fe

(
y−m�x�

σ�x�
)
�(1.2)

where Fe denotes the distribution of the error variable ε. Let m̂�x� and
σ̂�x� be nonparametric estimators for m�x� and σ�x� and F̂e be the Kaplan–
Meier estimator obtained from the censored nonparametric regression resid-
uals ��Zi − m̂�Xi��/σ̂�Xi�� �i�, i = 1� � � � � n. Then relation (1.2) suggests

F̂�y �x� = F̂e

(
y− m̂�x�

σ̂�x�
)

(1.3)

as an estimator of F�y �x�. To see why this has the aforementioned advantage
over the Beran estimator, suppose that for a certain region R of x-values the
censoring mechanism allows the right tail of F�y �x� to be “well estimated”
for all x in R. This implies that the right tail of Fe is “well estimated” by the
right tail of F̂e. In view of (1.3), it follows that the right tail of F�y �x� is “well
estimated” for any x.

The scenario of different degrees of censoring for different regions of the
covariates arises often in practice. Consider the typical case in which the co-
variate is a strong prognostic variable for the event of interest. Then, in regions
of the covariate indicating high risk, the amount of censoring is considerably
lower than in regions indicating low risk, as here extended follow-up is needed
to observe the event under study. In this situation, tail information in the high
risk region can be carried over to the low risk region.
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To estimate the bivariate distribution of �X�Y� without having regions of
unassigned mass, we use the relation

F�x�y� =
∫ x

−∞
F�y � t�dFX�t��(1.4)

where FX is the marginal distribution function of X. Relations (1.3) and (1.4)
suggest

F̂�x�y� =
∫ x

−∞
F̂e

(
y− m̂�t�

σ̂�t�
)
dF̂X�t�(1.5)

as an estimator for F�x�y�, where F̂X�t� is the empirical distribution function
of the covariate X. This method for estimating the bivariate distribution was
proposed in Akritas (1994), but with the Beran estimator replacing the present
estimator F̂�y � t�. This estimating procedure is not only reasonable, but also
efficient [Akritas (1994)].

The paper is organized as follows. In the next section we give the precise
definition of the estimators of the residual distribution, the conditional distri-
bution of Y given X and the bivariate distribution of �X�Y�, and we state the
main assumptions under which the results will be derived. Section 3 describes
the main results. A number of related results regarding the asymptotic prop-
erties of the Beran estimator, the estimators m̂�x�, σ̂�x� and their derivatives,
all of which are of independent interest and are needed for the proofs of the
main results, are stated in Section 4. The main steps of the proofs are given in
Section 5 while the detailed derivations are deferred to appendices. In partic-
ular, Appendix A contains proofs of results needed for the weak convergence of
the Kaplan–Meier process based on nonparametric regression residuals, and
results needed for the weak convergence of the bivariate distribution of �X�Y�
are proved in Appendix B. The present work is part of Van Keilegom (1998)
where more detailed derivations can be found.

2. Definitions and assumptions. Consider the random vector �X�Y�
satisfying the nonparametric regression model (1.1), where the smooth
functions m and σ are assumed to be, respectively, a location and scale
functional [as defined in, e.g., Huber (1981), pages 59, 202]. Let C, Z and
� be as defined in Section 1 and let F�y �x� = P�Y ≤ y �x�, G�y �x� =
P�C ≤ y �x�, H�y �x� = P�Z ≤ y �x�, H1�y �x� = P�Z ≤ y�� = 1 �x�
and FX�x� = P�X ≤ x�. The assumed independence of Y and C for
given X implies that 1 − H�y �x� = �1 − F�y �x���1 − G�y �x��. Fur-
ther, denote Fe�y� = P�ε ≤ y� = P��Y − m�X��/σ�X� ≤ y�, Ge�y� =
P��C−m�X��/σ�X� ≤ y� and for E = �Z−m�X��/σ�X� we use the notation
He�y� = P�E ≤ y�, He1�y� = P�E ≤ y�� = 1�, He�y �x� = P�E ≤ y �x�
and He1�y �x� = P�E ≤ y�� = 1 �x�. The probability density functions of the
distributions defined above will be denoted with lower case letters.

When no underlying structure is imposed on the random vector �X�Y�, non-
parametric estimation of the conditional distribution of Y given X is usually
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done by the conditional Kaplan–Meier estimator introduced by Beran (1981),

F̃�y �x� = 1− ∏
Zi≤y��i=1

{
1− Wi�x� an�∑n

j=1 I�Zj ≥ Zi�Wj�x� an�
}
�(2.1)

where Wi�x� an� are the Nadaraya–Watson weights,

Wi�x� an� =
K��x−Xi�/an�∑n

j=1 K��x−Xj�/an�
�

with K a known probability density function (kernel) and �an� a sequence of
positive constants tending to zero as n tends to infinity, called a bandwidth
sequence. This estimator reduces to the usual Kaplan–Meier (1958) estimator
when all weights Wi�x� an� equal n−1. On the other hand, in the case of no
censoring �Zi = Yi��i = 1�, the estimator equals the kernel estimator of
Stone (1977). The estimator F̃�y �x�, however, shares the same drawback as
the ordinary Kaplan–Meier estimator in that it often does not behave well
in the right tail. By imposing a slight restriction of generality in the form of
model (1.1), we propose an alternative estimator for F�y �x� which will, in
certain situations, not suffer from this drawback. This proposed estimator is
based on relation (1.2) which follows from (1.1).

The first step will be to estimate the error distribution function Fe. This
will be accomplished by estimating m and σ and using the Kaplan–Meier
estimator on the censored residuals. To estimate m and σ we will work with
the particular definitions,

m�x� =
∫ 1

0
F−1�s �x�J�s�ds� σ2�x� =

∫ 1

0
F−1�s �x�2J�s�ds−m2�x��(2.2)

where F−1�s �x� = inf�t�F�t �x� ≥ s� is the quantile function of Y given
x and J�s� is a given score function satisfying

∫ 1
0 J�s�ds = 1. Note that if

the assumed independence of ε and X holds for certain location and scale
functionals then it holds for all location and scale functionals. Hence, working
with the functionals m�x� and σ2�x� in (2.2) is no restriction of generality.
Replacing F�s �x� with the Beran estimator F̃�s �x� in these expressions yields

m̂�x� =
∫ 1

0
F̃−1�s �x�J�s�ds� σ̂2�x� =

∫ 1

0
F̃−1�s �x�2J�s�ds− m̂2�x�(2.3)

as estimators of m�x� and σ�x�. The score function J will be chosen so that
m̂�x� and σ̂�x� are consistent even if the tails of the Beran estimator are not
consistent. Set Êi = �Zi−m̂�Xi��/σ̂�Xi� for the resulting censored residuals,
and let

F̂e�y� = 1− ∏
Ê�i�≤y���i�=1

(
1− 1

n− i+ 1

)
�(2.4)

where Ê�i� is the ith order statistic of Ê1� � � � � Ên and ��i� is the corresponding
censoring indicator, denote the proposed estimator of Fe. To our knowledge,
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the asymptotic properties of the Kaplan–Meier estimator based on residuals
from nonparametric regression have not been considered in the literature.
Relation (1.2) leads to (1.3) as an estimator of F�y �x�. As was explained
in the introduction, the bivariate distribution of �X�Y� given in (1.4) is now
estimated by (1.5) where F̂X�x� = n−1∑n

i=1 I�Xi ≤ x�� Because the asymptotic
theory is based on the i.i.d. representation for F̂e which is valid up to any point
smaller than τFe

∧ τGe
(where τF = inf�y�F�y� = 1� denotes the upper bound

of the support of any distribution function F), we need to to work with a
slightly modified version of (1.5). Namely the asymptotic theory developed in
Section 3, pertains to

F̂T�x�y� =
∫ x

−∞
F̂e

(
y ∧Tt − m̂�t�

σ̂�t�
)
dF̂X�t��(2.5)

where Tt ≤ Tσ�t� + m�t� for t ∈ RX and where T < τHe
. This is actually

an estimator of FT�x�y� =
∫ x
−∞Fe��y ∧ Tt −m�t��/σ�t��dFX�t�, which can

become arbitrarily close to F�x�y� if τFe
≤ τGe

and Tt, respectively, T, is chosen
sufficiently close to Tσ�t� +m�t�, respectively, τHe

, for all t.
The primary objective of this paper is to study the asymptotic behavior of

the estimators in (2.4), (1.3) and (2.5). The following functions enter in the
asymptotic representation for these estimators, which we will establish in the
next section:

ξe�z� δ� y�= �1−Fe�y��
{
−
∫ y∧z

−∞
dHe1�s�

�1−He�s��2
+ I�z ≤ y� δ = 1�

1−He�z�
}
�

ξ�z� δ� y �x�= �1−F�y �x��
{
−
∫ y∧z

−∞
dH1�s �x�

�1−H�s �x��2 +
I�z ≤ y� δ = 1�
1−H�z �x�

}
�

η�z� δ �x�=
∫ +∞
−∞

ξ�z� δ� v �x�J�F�v �x��dvσ−1�x��

ζ�z� δ �x�=
∫ +∞
−∞

ξ�z� δ� v �x�J�F�v �x��v−m�x�
σ�x� dvσ−1�x��

γ1�y �x�=
∫ y

−∞
he�s �x�

�1−He�s��2
dHe1�s� +

∫ y

−∞
dhe1�s �x�
1−He�s�

�

γ2�y �x�=
∫ y

−∞
she�s �x�

�1−He�s��2
dHe1�s� +

∫ y

−∞
d�she1�s �x��
1−He�s�

�

Finally, He�y� and He1�y� are estimated by the empirical distribution func-
tions based on the residuals Êi,

Ĥe�y� = n−1
n∑

i=1

I�Êi ≤ y� and Ĥe1�y� = n−1
n∑

i=1

I�Êi ≤ y� �i = 1��
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H�y �x� and H1�y �x� are estimated by the conditional empirical distribution
functions [Stone (1977)],

Ĥ�y �x� =
n∑

i=1

Wi�x� an�I�Zi ≤ y�

and

Ĥ1�y �x� =
∑n

i=1 Wi�x� an�I�Zi ≤ y� �i = 1��
and the density fX�x� is estimated by f̂X�x� = �nan�−1∑n

i=1 K��x−Xi�/an�.
The assumptions we need for the proofs of the main results are listed below

for convenient reference.

(A1) (i) The sequence an satisfies na5
n�log a−1

n �−1 = O�1� and na3+2δ
n

�log a−1
n �−1→∞ for some δ > 0.

(ii) The sequence an satisfies na4
n → 0 and na3+2δ

n �log a−1
n �−1 → ∞ for

some δ > 0.
(iii) The support RX of X is bounded, convex and its interior is not empty.
(iv) The probability density function K has compact support,

∫
uK�u�du =

0 and K is twice continuously differentiable.

Let T̃x be any value less than the upper bound of the support of H�· �x� such
that inf x∈RX

�1−H�T̃x �x�� > 0.
(A2) (i) There exist 0 ≤ s0 ≤ s1 ≤ 1 such that s1 ≤ inf x F�T̃x �x�� s0 ≤

inf�s ∈ �0�1�� J�s� �= 0�� s1 ≥ sup�s ∈ �0�1�� J�s� �= 0� and inf x∈RX
inf s0≤s≤s1

f�F−1�s �x� �x� > 0.
(ii) J is twice continuously differentiable,

∫ 1
0 J�s�ds = 1 and J�s� ≥ 0 for

all 0 ≤ s ≤ 1.
(iii) The function x→ Tx�x ∈ RX� is twice continuously differentiable.

(A3) (i) The distribution FX is thrice continuously differentiable and
inf x∈RX

fX�x� > 0.
(ii) The functions m and σ are twice continuously differentiable and

inf x∈RX
σ�x� > 0.

(iii) The error variable ε has finite expectation.

(A4) (i) The functions η�z� δ �x� and ζ�z� δ �x� are twice continuously dif-
ferentiable with respect to x and their first and second derivatives (with re-
spect to x) are bounded, uniformly in x ∈ RX� z < T̃x and δ.

(ii) The first derivatives of η�z� δ �x� and ζ�z� δ �x� with respect to z are of
bounded variation and the variation norms are uniformly bounded over all x.

(A5) The function y→ P�m�X�+ eσ�X� ≤ y� �y ∈ �� is differentiable for
all e ∈ � and the derivative is uniformly bounded over all e ∈ �.

For a (sub)distribution function L�y �x� we will use the notations l�y �x� =
L′�y �x� = �∂/∂y�L�y �x�, L̇�y �x� = �∂/∂x�L�y �x� and similar notations will
be used for higher order derivatives. [In the proofs, the function L�y �x� of
assumption (A6) will be either H�y �x�, H1�y �x�, He�y �x� or He1�y �x�.]
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(A6) (i) L�y �x� is continuous.
(ii) L′�y �x�= l�y �x� exists, is continuous in �x�y� and supx�y �yL′�y �x��

<∞.
(iii) L′′�y �x� exists, is continuous in �x�y� and supx�y �y2L′′�y �x�� <∞.
(iv) L̇�y �x� exists, is continuous in �x�y� and supx�y �yL̇�y �x�� <∞.
(v) L̈�y �x� exists, is continuous in �x�y� and supx�y �y2L̈�y �x�� <∞.
(vi) L̇′�y �x� exists, is continuous in �x�y� and supx�y �yL̇′�y �x�� <∞.
(vii) L̈′�y �x� exists, is continuous in �x�y� and supx�y �yL̈′�y �x�� <∞.
(viii) L′′′�y �x� exists, is continuous in �x�y� and supx�y �y3L′′′�y �x�� <∞.

3. Main Results. The results for F̂e�y�, F̂�y �x� and F̂�x�y� are given
separately.

3.1. Asymptotics for the Kaplan–Meier estimator based on nonparametric
regression residuals. The results of this section extend the classical results
of Durbin (1973) and Loynes (1980) concerning the weak convergence of the
empirical distribution function when parameters are estimated, to the present
nonparametric regression setting with censored data. The weak convergence
of the Kaplan–Meier process n1/2�F̂e�y�−Fe�y�� follows from a Lo and Singh
(1986)-type asymptotic representation, which we give first.

Theorem 3.1. Assume (A1), (A2) (i), (ii), (A3) (i), (ii), (A4) (i), H�y �x� and
H1�y �x� satisfy (A6) (i)–(vi), andHe�y �x� andHe1�y �x� satisfy (A6) (ii), (iii),
(vi), (vii). Then,

F̂e�y� −Fe�y� = n−1
n∑

i=1

ϕ�Xi�Zi� �i� y� +Rn�y��

where sup��Rn�y��� −∞ < y ≤ T� = oP�n−1/2� and, with Se = 1−Fe,

ϕ�x� z� δ� y� = ξe

(
z−m�x�
σ�x� � δ� y

)

−Se�y�η�z� δ �x�γ1�y �x� −Se�y�ζ�z� δ �x�γ2�y �x��

Note that the i.i.d representation of the usual Kaplan–Meier estimator due
to Lo and Singh (1986) contains only the term ξe. The extra term in the rep-
resentation above is caused by the fact that we replaced �Zi −m�Xi��/σ�Xi�
with �Zi − m̂�Xi��/σ̂�Xi�. We continue with the statement of the weak con-
vergence result for the process n1/2�F̂e�·� −Fe�·��.

Corollary 3.2. Under the assumptions of Theorem 3.1, the process
n1/2�F̂e�y� −Fe�y��, −∞ < y ≤ T converges weakly to a zero-mean Gaussian
process Z�y� with covariance function

Cov�Z�y��Z�y′�� = E�ϕ�X�Z���y�ϕ�X�Z���y′���
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3.2. Asymptotics for the estimator F̂�y �x�. The results of Theorem 3.1 and
Corollary 3.2 enable us to show an asymptotic representation and the weak
convergence of F̂�y �x�.

Theorem 3.3. Assume (A1), (A2) (i), (ii), (A3) (i) (ii), (A4) (i), H�y �x� and
H1�y �x� satisfy (A6) (i)–(vi), andHe�y �x� andHe1�y �x� satisfy (A6) (ii), (iii),
(vi), (vii). Then,

F̂�y �x� −F�y �x�= F̂e

(
y− m̂�x�

σ̂�x�
)
−Fe

(
y−m�x�

σ�x�
)

=�nan�−1
n∑

i=1

K

(
x−Xi

an

)
hx�y�Zi��i� +Rn�x�y��

where sup��Rn�x�y��� �x�y� ∈ 5� = oP��nan�−1/2�, 5 = ��x�y�� x ∈ RX� �y−
m�x��/σ�x� ≤ T� and

hx�y�z� δ� =
[
η�z� δ �x� + ζ�z� δ �x�y−m�x�

σ�x�
]
fe

(
y−m�x�

σ�x�
)
f−1
X �x��

Corollary 3.4. Under the assumption of Theorem 3.3, the process �nan�1/2
�F̂�y �x�−F�y �x��, x ∈ RX fixed, �y−m�x��/σ�x� ≤ T converges weakly to a
zero-mean Gaussian process Z�y �x� with covariance function

Cov
(
Z�y �x��Z�y′ �x�)
= fX�x�

∫
K2�u�duCov

(
hx�y�Z���� hx�y′ �Z��� �X = x

)
�

Remark 3.1. Condition (A1) (ii) is needed for the proof of Theorem 3.1
which is used in the proof of Theorem 3.3. However, the proof of Theo-
rem 3.3 requires only that the remainder term in Theorem 3.1 satisfies
supy≤T �Rn�y�� = op��nan�−1/2�. This rate can be obtained by using na5

n → 0
instead of na4

n → 0 of assumption (A1) (ii).

Remark 3.2. It is easily seen that in the uncensored case and when J�s� ≡
1 [that is, m�x� = E�Y �x� and σ2�x� = Var�Y �X�], the asymptotic variance
function of the process �nan�1/2�F̂�· �x� −F�· �x�� reduces to

f−1
X �x�

∫
K2�u�duf2

e

(
y−m�x�

σ�x�
)

×
[
1
4
Var�ε2�

(
y−m�x�

σ�x�
)2

+E�ε3�y−m�x�
σ�x� + 1

]
�

while the asymptotic variance of the process �nan�1/2
∑n

i=1 Wi�x� an��I�Yi≤y�
− F�y �x��, which corresponds to the usual kernel estimator F̃�y �x�, is
f−1
X �x� ∫ K2�u�duF�y �x��1 − F�y �x��. Figure 1 illustrates that when the

error distribution is normal and there is no censoring, the present estimator
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Fig. 1. Graph of the variance of function of F̂�y �x� (full line) and F̃�y �x� (dashed line) divided
by their common factor f−1

X �x� ∫ K2�u�du for normal survival times and in case of no censoring.

is more efficient and should be used when model (1.1) can be assumed. [The
plot does not include the common component of the variance functions; i.e.,
they correspond to the variance functions divided by f−1

X �x� ∫ K2�u�du.]
However, even though the estimator F̂�y �x� is constructed under model

(1.1) whereas the estimator F̃�y �x� does not require any model assumptions,
the variance of F̂�y �x� is not always smaller than that of F̃�y �x�. This is
because F̂�y �x� involves the estimation of m�x� and σ2�x�, which introduces
extra variability in the estimator. We note that the primary consideration in
choosing the score function J is to achieve uniform consistency of m̂�x� and
σ̂2�x�, and that this objective is incompatible with efficient estimation of m�x�
and σ2�x� when the degree of censoring varies with x.

To illustrate that the variance of F̂�y �x� is not always smaller than that of
F̃�y �x� we consider the following distributions for the survival and censoring
times:

�Y �X = x� ∼ Exp�λx�� �C �X = x� ∼ Exp�µx��
for certain choices of the parameters λx and µx. We use J�s� = b−1I�0 ≤ s ≤ b�,
where b ∈ �0�1� is chosen in such a way that m�x� and σ2�x� can be estimated
consistently (see below for the actual choices). [We do realize that this indi-
cator function does not satisfy the smoothness conditions imposed in assump-
tion (A2) (i), however (a) the indicator score function greatly simplifies the
(long) calculations, and (b) it can be approximated arbitrarily well by a score
function that does satisfy the conditions, meaning that similar results can be
obtained from calculations with an appropriate score function]. In Figure 2
we show the variance of the Beran estimator F̃�y �x� and the new estimator
F̂�y �x� for λx = 1 and for µx determined in such a way that the probability
of censoring (given by µx/�λx + µx�) is, respectively, 0.2, 0.4, 0.6 and 0.8. For
determining the endpoint b of the score function J, we first note that for a
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given sample, the value of b should be smaller than (or equal to) maxy F̂�y �x�
[otherwise m̂�x� is not defined]. Therefore, we calculated this maximum for
1000 independent samples of size 50 and defined b as the average of these
maxima. In this way we obtain b = 0�98�0�93�0�81 and 0.52 for the situa-
tion where the probability of censoring is, respectively, 0.2, 0.4, 0.6 and 0.8.
Figure 2 shows the variance of F̃�y �x� and F̂�y �x� for y ∈ �0�F−1�0�99 �x��
(except for Figure 2d where we restricted to the interval [0�F−1�0�85 �x�] since,
in that case, the variance of F̃�y �x� increases extremely fast as y tends to
infinity). From the figures it follows that the variance of the new estima-
tor F̂�y �x� is not always smaller than that of the Beran estimator F̃�y �x�.
However, we can still say that F̂�y �x� behaves better than F̃�y �x� on the
average. This is especially so for cases with heavy censoring (see Figure 2c
and 2d) since in these cases the variance of the Beran estimator tends to
infinity (this is so for all cases where the probability of censoring is larger
than 0.5).

Finally we note that simulation studies comparing the finite sample perfor-
mance of F̃�y �x� and F̂�y �x� have been carried out in Van Keilegom, Akritas

Fig. 2. Graph of the variance function of F̂�y �x� (full line) and F̃�y �x� (dashed line) divided by
their common factor f−1

X �x� ∫ K2�u�du for exponential survival and censoring times.
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and Veraverbeke (1998). As these simulations indicate, the estimator F̂�y �x�
outperforms (on average) F̃�y �x� also for finite sample sizes.

3.3. Asymptotics for the estimator F̂�y�x�.

Theorem 3.5. Assume (A1)–(A5), H�y �x� and H1�y �x� satisfy (A6) (i)–
(vi), and He�y �x� and He1�y �x� satisfy (A6) (ii), (iii), (vi), (vii), (viii). Then,

F̂T�x�y� −FT�x�y� = n−1
n∑

i=1

gx�y�Xi�Zi� �i� +Rn�x�y��

where sup��Rn�x�y��� x ∈ RX� y ∈ �� = oP�n−1/2�, and gx�y�t� z� δ� =∑3
i=1 g

i
x�y�t� z� δ�, where

g1
x�y�t� z� δ� = E

{
ϕ

(
t� z� δ�

y ∧TX −m�X�
σ�X�

)
I�X ≤ x�

}
�

g2
x�y�t� z� δ� =

[
η�z� δ � t� + ζ�z� δ � t�y ∧Tt −m�t�

σ�t�
]

× fe

(
y ∧Tt −m�t�

σ�t�
)
I�t ≤ x��

g3
x�y�t� z� δ� = Fe

(
y ∧Tt −m�t�

σ�t�
)
I�t ≤ x�

−E

[
Fe

(
y ∧TX −m�X�

σ�X�
)
I�X ≤ x�

]
�

Corollary 3.6. Under the assumptions of Theorem 3.5, the process n1/2

�F̂T�x�y� −FT�x�y��, x ∈ RX� y ∈ �, converges weakly to a zero-mean Gaus-
sian process Z�x�y� with covariance function

Cov�Z�x�y��Z�x′� y′��
= E

{[
g1
x�y�X�Z���+g2

x�y�X�Z���][g1
x′� y′ �X�Z���+g2

x′� y′ �X�Z���]}

+ Cov
[
Fe

(
y ∧TX−m�X�

σ�X�
)
I�X≤x��Fe

(
y′ ∧TX−m�X�

σ�X�
)
I�X≤x′�

]
�

4. Some auxiliary results. The asymptotic representation and weak
convergence results stated in the previous section require some results con-
cerning the location estimator m̂�x� and the scale estimator σ̂�x� which are
stated below as propositions. In particular, the uniform consistency of m̂�x�,
m̂′�x� and �m̂′�x� − m̂′�x′��/�x − x′�δ and their analogues for σ̂�x� will be
established, as well as asymptotic representations for m̂�x� and σ̂�x�. In turn,
these results require the uniform (both in y and x) consistency of the Beran
estimator and its derivative. The proofs of these results can be found in Van
Keilegom and Akritas (1998) and Van Keilegom (1998).
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In the uncensored case, the consistency of derivatives of a regression func-
tion has been studied by Schuster and Yakowitz (1979), Gasser and Müller
(1984), Härdle and Gasser (1985), Mack and Müller (1989), Rychlik (1990),
among others. The uniform consistency of a regression function was the ob-
ject of study in Devroye (1978),Schuster and Yakowitz (1979), Müller and
Stadtmüller (1987) and Härdle, Janssen and Serfling (1988). In the latter
paper strong uniform consistency rates are established for kernel type esti-
mators of functionals of the conditional distribution function, under general
conditions.

Lemma 4.1. Assume (A1) (i), (iii), (iv), FX is twice continuously differen-
tiable, inf x∈RX

fX�x� > 0, and H�y �x� satisfies (A6) (i), (iv), (v). Then

sup
x∈RX

sup
−∞<y<∞

�Ĥ�y �x� −H�y �x�� = O��nan�−1/2�log a−1
n �1/2� a�s��

sup
x∈RX

sup
−∞<y<∞

� ˙̂H�y �x� − Ḣ�y �x�� = O��na3
n�−1/2�log a−1

n �1/2� a�s�

Lemma 4.2. Assume (A1) (i), (iii), (iv), FX is twice continuously differen-
tiable, inf x∈RX

fX�x� > 0, and H�y �x� satisfies (A6) (i), (iv), (v). Then,

sup
x� x′� y

∣∣ ˙̂H�y �x� − Ḣ�y �x� − ˙̂H�y �x′� + Ḣ�y �x′�∣∣
�x− x′�δ

= O
(�na3+2δ

n �−1/2�log a−1
n �1/2) a�s��

where δ > 0 is as in assumption (A1).

Proposition 4.3. Assume (A1) (i), (iii), (iv), FX is twice continuously dif-
ferentiable, inf x∈RX

fX�x� > 0, and H�y �x� and H1�y �x� satisfy (A6) (i), (iv),
(v). Then

sup
x

sup
y≤T̃x

�F̃�y �x� −F�y �x�� = O��nan�−1/2�log a−1
n �1/2� a�s��

sup
x

sup
y≤T̃x

� ˙̃F�y �x� − Ḟ�y �x�� = O��na3
n�−1/2�log a−1

n �1/2� a�s�

Proposition 4.4. Assume (A1) (i), (iii), (iv), FX is twice continuously dif-
ferentiable, inf x∈RX

fX�x� > 0, and H�y �x� and H1�y �x� satisfy (A6) (i), (iv),
(v). Then,

sup
x� x′

sup
y≤T̃x∧T̃x′

� ˙̃F�y �x� − Ḟ�y �x� − ˙̃F�y �x′� + Ḟ�y �x′��
�x− x′�δ

= O
(�na3+2δ

n �−1/2�log a−1
n �1/2) a�s��

where δ > 0 is as in assumption (A1).
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Proposition 4.5. Assume (A1) (i), (iii), (iv), (A2) (i), J is continuous,∫ 1
0 J�s�ds = 1� J�s� ≥ 0 for all 0 ≤ s ≤ 1� FX is twice continuously differen-
tiable, inf x∈RX

fX�x� > 0, and H�y �x� and H1�y �x� satisfy (A6) (i), (iv), (v).
Then,

sup
x
�m̂�x� −m�x�� = O��nan�−1/2�log a−1

n �1/2� a�s�

If in addition inf x σ�x� > 0, then,

sup
x
�σ̂�x� − σ�x�� = O��nan�−1/2�log a−1

n �1/2� a�s�

Proposition 4.6. Assume (A1) (i), (iii), (iv), (A2) (i), J is continuously dif-

ferentiable,
∫ 1
0 J�s�ds = 1, J�s� ≥ 0 for all 0 ≤ s ≤ 1, FX is twice continuously

differentiable, inf x∈RX
fX�x� > 0, and H�y �x� and H1�y �x� satisfy (A6) (i),

(iv), (v). Then,

sup
x
�m̂′�x� −m′�x�� = O��na3

n�−1/2�log a−1
n �1/2� a�s�

If in addition m and σ are continuously differentiable and inf x∈RX
σ�x� > 0,

then,

sup
x
�σ̂ ′�x� − σ ′�x�� = O��na3

n�−1/2�log a−1
n �1/2� a�s�

Proposition 4.7. Assume (A1) (i), (iii), (iv), (A2) (i), (ii), FX is twice con-
tinuously differentiable, inf x∈RX

fX�x� > 0, and H�y �x� and H1�y �x� satisfy
(A6) (i), (iv), (v). Then,

sup
x� x′

�m̂′�x� −m′�x� − m̂′�x′� +m′�x′��
�x− x′�δ = O��na3+2δ

n �−1/2�log a−1
n �1/2� a�s�

If in addition (A3) (ii) holds, then,

sup
x� x′

�σ̂ ′�x� − σ ′�x� − σ̂ ′�x′� + σ ′�x′��
�x− x′�δ = O��na3+2δ

n �−1/2�log a−1
n �1/2� a�s��

where δ > 0 is as in assumption (A1).

Proposition 4.8. Assume (A1) (i), (iii), (iv), (A2) (i), J is continuously dif-

ferentiable,
∫ 1
0 J�s�ds = 1, J�s� ≥ 0 for all 0 ≤ s ≤ 1� FX is twice continuously

differentiable, inf x∈RX
fX�x� > 0, and H�y �x� and H1�y �x� satisfy (A6) (i)–

(vi). Then,

m̂�x� −m�x� = −�nan�−1f−1
X �x�σ�x�

n∑
i=1

K

(
x−Xi

an

)
η�Zi��i �x� +Rn�x��

where sup��Rn�x���x ∈ RX� = O��nan�−3/4�log n�3/4� a.s.
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Proposition 4.9. Assume (A1) (i), (iii), (iv), (A2) (i), J is continuously dif-

ferentiable,
∫ 1
0 J�s�ds = 1� J�s� ≥ 0 for all 0 ≤ s ≤ 1� FX is twice continuously

differentiable, inf x∈RX
fX�x� > 0, inf x∈RX

σ�x� > 0 and H�y �x� and H1�y �x�
satisfy (A6) (i)–(vi). Then,

σ̂�x� − σ�x� = −�nan�−1f−1
X �x�σ�x�

n∑
i=1

K

(
x−Xi

an

)
ζ�Zi��i �x� + R̃n�x��

where sup��R̃n�x���x ∈ RX� = O��nan�−3/4�log n�3/4� a.s.

5. Proofs of main results. This section contains the proofs of the results
stated in Section 3. Some technical results needed in the proof of Theorem 3.1
are deferred to Appendix A, while results needed for showing Theorem 3.5 are
proved in Appendix B.

Proof of Theorem 3.1. We start with∫ y

−∞
dĤe1�s�
1− Ĥe�s�

−
∫ y

−∞
dHe1�s�

1−He�s�

=
∫ y

−∞

[
1

1− Ĥe�s�
− 1

1−He�s�
]
dHe1�s�

+
∫ y

−∞
1

1−He�s�
d�Ĥe1�s� −He1�s��

+
∫ y

−∞

[
1

1− Ĥe�s�
− 1

1−He�s�
]
d�Ĥe1�s� −He1�s���

The last term on the right-hand side is oP�n−1/2� by Corollary A.5. Using
Proposition A.3, the sum of the first and second term can be written as

∫ y

−∞
Ĥe�s� −He�s�
�1−He�s��2

dHe1�s� +
∫ y

−∞
1

1−He�s�
d�Ĥe1�s� −He1�s�� + oP�n−1/2�

= n−1
n∑

i=1

ϕ�Xi�Zi� �i� y��1−Fe�y��−1 + oP�n−1/2��

where the equality follows by Propositions A.2 and its analogue for Ĥe1. Now,
write (using a Taylor expansion)

log�1− F̂e�y�� +
∫ y

−∞
dĤe1�s�

1− Ĥe�s−�

= −1
2

n∑
i=1

I�Ê�i� ≤ y� ��i� = 1�
�n− i+ 1�2

1
�1−Ri�2

= O�n−1�

a.s., uniformly in y, where Ri is between 0 and 1/�n − i + 1�. The result
now follows by noting that F̂e�y� − Fe�y� = −�1 − Fe�y���log�1 − F̂e�y�� −
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log�1−Fe�y��� + oP�n−1/2�, and that

log�1−Fe�y�� = −∫ y
−∞�1−He�s��−1 dHe1�s��

Proof of Corollary 3.2. We will make use of Theorem 2.5.6 in van der
Vaart and Wellner (1996), that is, we will show that∫ ∞

0

√
logN���ε�� �L2�P��dε <∞�(5.1)

where N�� is the bracketing number, P is the probability measure corre-
sponding to the joint distribution of �X�Z���, L2�P� is the L2-norm and
� = �ϕ�X�Z���y��−∞ < y ≤ T�. Proving this entails that the class �
is Donsker and hence the weak convergence of the given process follows from
pages 81 and 82 in van der Vaart and Wellner’s book. Since the functions
x → Se�y�γi�y �x� �i = 1�2� are bounded (uniformly in y), as well as their
first derivatives, their bracketing number is O�exp�Kε−1�� by Corollary 2.7.2
of the aforementioned book. Hence, since η�z� δ �x� and ζ�z� δ �x� are uni-
formly bounded, the bracketing number of the second and third terms of
ϕ�x� z� δ� y� is O�exp�Kε−1��. For the first term, we note that the first term of
ξe��z −m�x��/σ�x�� δ� y� is decreasing in �z −m�x��/σ�x�. Hence, its brack-
eting number is m = O�exp�Kε−1�� by Theorem 2.7.5 in van der Vaart and
Wellner (1996). Also the class of functions of the form �z − m�x��/σ�x� →
�1 − Fe�y��I��z −m�x��/σ�x� ≤ y� needs m brackets by Theorem 2.7.5. Fi-
nally, we note that since I�δ = 1��1−He��z−m�x��/σ�x���−1 is bounded (for
z ≤ T) and independent of y, the second term of ξe��z−m�x��/σ�x�� δ� y� has
bracketing number m. This concludes the proof, since the integration in (5.1)
can be restricted to the interval �0�2M�, if �ϕ�x� z� δ� y�� ≤ M for all x� z� δ
and y (for ε > 2M we take N���ε�� �L2�P�� = 1). ✷

Proof of Theorem 3.3. Write

F̂�y �x� −F�y �x�

=
[
F̂e

(
y− m̂�x�

σ̂�x�
)
−Fe

(
y− m̂�x�

σ̂�x�
)]

+
[
Fe

(
y− m̂�x�

σ̂�x�
)
−Fe

(
y−m�x�

σ̂�x�
)]

+
[
Fe

(
y−m�x�

σ̂�x�
)
−Fe

(
y−m�x�

σ�x�
)]

= α1
n�x�y� + α2

n�x�y� + α3
n�x�y��

We start with α2
n�x�y�.

α2
n�x�y� = −m̂�x� −m�x�

σ̂�x� fe

(
y−m�x�

σ̂�x�
)
+ 1

2

(
m̂�x� −m�x�

σ̂�x�
)2

f′e�Ax��

for some Ax between �y−m�x��/σ̂�x� and �y− m̂�x��/σ̂�x�. The second term
of these two terms is O��nan�−1 log a−1

n � a.s. by Proposition 4.5. For the first
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term, we first replace σ̂�x� by σ�x� (using Proposition 4.5) and then apply
Proposition 4.8. For α3

n�x�y� we have

α3
n�x�y�=−

σ̂�x� − σ�x�
σ̂�x�

y−m�x�
σ�x� fe

(
y−m�x�

σ�x�
)

+1
2

(
σ̂�x� − σ�x�

σ̂�x�
)2(y−m�x�

σ�x�
)2

f′e�Bx��

where Bx is between �y − m�x��/σ�x� and �y − m�x��/σ̂�x�. The second
term above is O��nan�−1 log a−1

n � a.s. by Proposition 4.5 and the fact that
supy �y2f′e�y�� < ∞, and the first term has an asymptotic representation
given by Proposition 4.9. The above show that

α2
n�x�y� + α3

n�x�y�

= �nan�−1
n∑

i=1

K

(
x−Xi

an

)
hx�y�Zi��i�

+O��nan�−3/4�log a−1
n �3/4� a�s�

(5.2)

Next note that �nan�1/2α1
n�x�y� = oP�1�, uniformly in �x�y� ∈ 5, follows from

the order of the remainder term in Theorem 3.1, and the weak convergence
established in Corollary 3.2. This and (5.2) complete the proof of the theorem.

✷

Proof of Corollary 3.4. Let Zni�y �x� = �nan�−1/2K��x − Xi�/an�hx�y

�Zi��i�, i = 1� � � � � n, be a triangular array of random processes, with y ∈
� = �y� �y−m�x��/σ�x� ≤ T� and x fixed. We will prove that the conditions
displayed in Theorem 2.11.9 in van der Vaart and Wellner (1996) are satisfied
for

∑n
i=1 Zni. Endow � with the semimetric ρ defined by

ρ�y�y′� =max
{∣∣∣∣fe

(
y′ −m�x�

σ�x�
)
− fe

(
y−m�x�

σ�x�
)∣∣∣∣�∣∣∣∣y′ −m�x�

σ�x� fe

(
y′ −m�x�

σ�x�
)
− y−m�x�

σ�x� fe

(
y−m�x�

σ�x�
)∣∣∣∣
}
�

Since �fe�z�� and �zfe�z�� are bounded for z ∈ �, we can divide � for ev-
ery ε > 0 into Nε = O�ε−1� subintervals �εj, j = 1� � � � �Nε, such that
ρ�y�y′� ≤ Cε, C > 0 for all y�y′ ∈ �εj and hence

∑n
i=1 supy�y′∈�εj

�Zni�y′ �x�−
Zni�y �x��2 ≤ ε2 by proper choice of C, since η�z� δ �x� and ζ�z� δ �x� are
bounded as well. This shows that the bracketing number is O�ε−1� and hence
the third displayed condition is satisfied. The other two conditions are easily
seen to hold.

It remains to calculate the covariance of the limiting process. Let X =
�X1� � � � �Xn�′. Since supx�y �E�Ĥ�y �x� �X� − H�y �x�� is easily seen to be
O�a2

n�, it follows that
∑n

i=1 Wi�x� an� E�ξ�Zi� �i� y �x� �X� = O�a2
n� uni-

formly in x and y. Noting that hx�y is defined in terms of the functions η
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and ζ which include the function ξ, it can be seen that the above implies
∑n

i=1
Wi�x� an�E�hx�y �Zi��i� �X� = O�a2

n�. We will show that

�nan�−1
n∑

i=1

E

{
K2

(
x−Xi

an

)
γ�Xi�x�y�y

′�
}

(5.3)

tends to the displayed expression, where

γ�Xi�x�y�y
′� = E

{�hx�y�Zi��i� −E�hx�y�Zi��i� �Xi��
×�hx�y′ �Zi��i� −E�hx�y′ �Zi��i� �Xi�� �X

}
�

Using the fact that for all s ≤ t,

E
{�I�Zi ≤ s� −H�s �Xi���I�Zi ≤ t� −H�t �Xi�� �X

}
=H�s �x� −H�s �x�H�t �x� +O�an��

holds whenever K��Xi−x�/an� �= 0, it follows after some simple algebra that
�γ�Xi�x�y�y

′� − γ�x� x�y�y′�� = O�an� for K��Xi − x�/an� �= 0. Hence, (5.3)
equals

fX�x�
∫
K2�u�duγ�x� x�y�y′� + o�1�

= fX�x�
∫
K2�u�duCov�hx�y�Z���� hx�y′ �Z��� �X = x� + o�1��

Proof of Theorem 3.5. Write

F̂T�x�y� −FT�x�y�

=
∫ x

−∞

[
F̂e

(
y ∧Tt − m̂�t�

σ̂�t�
)
−Fe

(
y ∧Tt −m�t�

σ�t�
)]

dF̂X�t�

+
∫ x

−∞
Fe

(
y ∧Tt −m�t�

σ�t�
)
d
(
F̂X�t� −FX�t�

)
�

(5.4)

For the first term on the right-hand side of (5.4) we will make use of Theo-
rem 3.3. However, the remainder term in that representation is not oP�n−1/2�,
as is required. Let αi

n�x�y�, i = 1�2�3, be as in the proof of that representa-
tion. Then, the first term on the right-hand side of (5.4) equals

∫ x

−∞

[
α1
n�t� y ∧Tt� + α2

n�t� y ∧Tt� + α3
n�t� y ∧Tt�

]
dF̂X�t��(5.5)

Using equation (5.2), α2
n�t� y ∧ Tt� + α3

n�t� y ∧ Tt� can be expressed as the
sum of a leading term and a remainder term which is oP�n−1/2� uniformly
in �t� y�. Thus only the term α1

n�t� y ∧ Tt� needs further attention. However,
using Theorem 3.1 together with Lemma B.1, it is easily seen that this term
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can also be written as a leading term and a remainder of order oP�n−1/2�.
Combining the two leading terms, it follows that (5.5) equals

n−2
n∑

i=1

n∑
j=1

ϕ

(
Xi�Zi� �i�

y ∧TXj
−m�Xj�

σ�Xj�
)
I�Xj ≤ x�

+ n−2a−1
n

n∑
i=1

n∑
j=1

K

(
Xj −Xi

an

)
f−1
X �Xj�

×
[
η�Zi��i �Xj� + ζ�Zi��i �Xj�

y ∧TXj
−m�Xj�

σ�Xj�
]

× fe

(y ∧TXj
−m�Xj�

σ�Xj�
)
I�Xj ≤ x� + oP�n−1/2��

(5.6)

The result now follows from Propositions B.5, its analogue for ζ and B.6. ✷

Proof of Corollary 3.6. To prove the weak convergence of the given pro-
cess, we will make use of results in van der Vaart and Wellner (1996). Let
� = ��t� z� δ� → gx�y�t� z� δ�: x ∈ RX� y ∈ ��. We will show that the class �
is Donsker by showing that∫ ∞

0

√
logN���ε�� �L2�P��dε <∞(5.7)

[see page 130 in van der Vaart and Wellner (1996)] where N�� is the bracketing
number. Set eT�X� = �y ∧TX −m�X��/σ�X� and write

g1
x�y�t� z� δ� = −

∫ x

−∞

∫ �z−m�t��/σ�t�
−∞

1−Fe�eT�u��
�1−He�s��2

I�s ≤ eT�u��dHe1�s�dFX�u�

+ I�δ = 1�
1−He��z−m�t��/σ�t��

×
∫ x

−∞
�1−Fe�eT�u���I

(
z−m�t�
σ�t� ≤ eT�u�

)
dFX�u�

− η�z� δ � t�
∫ x

−∞
Se�eT�u��γ1�eT�u� � t�dFX�u�

− ζ�z� δ � t�
∫ x

−∞
Se�eT�u��γ2�eT�u� � t�dFX�u�

=
4∑

i=1

g1i
x� y�t� z� δ��

The term g11
x�y�t� z� δ� is decreasing as a function of �z − m�t��/σ�t� and

bounded and hence O�exp�Kε−1�� brackets are required by Theorem 2.7.5 in
van der Vaart and Wellner (1996). Similarly, the bracketing number for the
integral in g12

x�y�t� z� δ� is at most O�exp�Kε−1�� and hence the same holds for
g12
x�y�t� z� δ� itself since the expression in front of the integral is bounded and
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independent of x and y. Since the integrals in g13
x�y�t� z� δ� and g14

x�y�t� z� δ�
are bounded (uniformly in t), as well as their first derivatives (with respect
to t), their bracketing number is O�exp�Kε−1�� by Corollary 2.7.2. Therefore,
the terms g13

x�y�t� z� δ� and g14
x�y�t� z� δ� themselves also need O�exp�Kε−1��

brackets, because η�z� δ � t� and ζ�z� δ � t� are bounded and independent of x
and y. All together, we have O�exp�Kε−1�� brackets for g1

x�y�t� z� δ�.
For g2

x�y�t� z� δ� we first note that the bracketing number for the class
of functions of the form t→ I�t ≤ x� is O�exp�Kε−1�� by Theorem 2.7.5 in
the aforementioned book. For the functions t → fe��y ∧ Tt − m�t��/σ�t��,
we consider three cases. If y ≤ mint Tt, then Corollary 2.7.2 in van der
Vaart and Wellner’s book entails that O�exp�Kε−1��, brackets are needed.
If y ≥ maxt Tt, then fe��y ∧ Tt − m�t��/σ�t�� does not depend on y
and hence one bracket suffices. For the intermediate case, that is, for
mint Tt ≤ y ≤ maxt Tt, we apply Theorem 2.11.9 in van der Vaart and
Wellner (1996) on

∑n
i=1 Zni�y� = n−1/2∑n

i=1 fe��y ∧ TXi
− m�Xi��/σ�Xi��.

For each ε > 0, divide the interval �mint Tt�maxt Tt� into Nε = O�ε−1�
subintervals � n

εj of length not more than Kε for some K > 0. Then, for each
j = 1� � � � �Nε�

∑n
i=1 supy�y′∈� n

εj
�Zni�y� − Zni�y′��2 ≤ ε2, by proper choice of

K > 0. This shows that the bracketing number is O�ε−1� in this case. In total,
we have O�exp�Kε−1�� brackets for the class �t→ fe��y∧Tt−m�t��/σ�t���y ∈
��. Similarly, the class �t → �y ∧ Tt −m�t��/σ�t�fe��y ∧ Tt −m�t��/σ�t���
also requires O�exp�Kε−1�� brackets. This shows that the bracketing number
for g2

x�y�t� z� δ� is O�exp�Kε−1��. Finally, for the term g3
x�y�t� z� δ�, analogous

arguments as before show that also O�exp�Kε−1�� brackets are needed for
this term.

This shows that the integral in (5.7) is bounded by K
∫ 2M
o dε/ε1/2 < ∞

where M is an upper bound for �gx�y�t� z� δ�� (because for ε > 2M, one bracket
suffices to cover � ). This shows that the class � is Donsker. The result now
follows from pages 81 and 82 in van der Vaart and Wellner (1996).

APPENDIX A

A result needed for Theorem 3.1.

Lemma A.1. Assume (A1) (i), (iii), (iv), (A2) (i), (ii), (A3) (ii), FX is twice
continuously differentiable, inf x∈RX

fX�x� > 0, H�y �x� and H1�y �x� satisfy
(A6) (i), (iv), (v), and He�y �x� satisfies (A6) (ii). Then,

sup
−∞<y<+∞

∣∣∣n−1
n∑

i=1

{
I�Êi ≤ y� − I�Ei ≤ y�

−P�Ê ≤ y ��n� +P�E ≤ y�}∣∣∣ = oP�n−1/2��

where P�Ê ≤ y ��n� is the distribution of Ê = �Z−m̂�X��/σ̂�X� conditioning
on �Xj�Zj��j�, j = 1� � � � � n.
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Proof. The expression between braces equals I�Ei≤ydn2�Xi�+dn1�Xi��
− I�Ei≤y� − P�E ≤ ydn2�X�+dn1�X��+P�E ≤ y�, where dn1�x� = �m̂�x�−
m�x��/σ�x� and dn2�x� = σ̂�x�/σ�x�. The proof is based on results in van der
Vaart and Wellner (1996). Let

� = {
I�E ≤ yd2�X� + d1�X�� − I�E ≤ y�
−P�E ≤ yd2�X� + d1�X�� +P�E ≤ y��
−∞ < y < +∞� d1 ∈ C1+δ

1 �RX� and d2 ∈ C̃1+δ
2 �RX�

}
�

where C1+δ
1 �RX� is the class of all differentiable functions d defined on the

domain RX of X such that �d�1+δ ≤ 1, C̃1+δ
2 �RX� is the class of all differen-

tiable functions d defined on RX such that �d�1+δ ≤ 2, and inf x�d�x�� ≥ 1
2

and �d�1+δ = max�supx �d�x��� supx �d′�x��� + supx� x′ �d′�x� − d′�x′��/�x− x′�δ.
Note that by Propositions 4.5, 4.6 and 4.7, we have that P�dn1 ∈ C1+δ

1 �RX�
and dn2 ∈ C̃1+δ

2 �RX�� → 1 as n → ∞. In a first step we will show that the
class � is Donsker. From Theorem 2.5.6 in van der Vaart and Wellner (1996),
it follows that it suffices to show that∫ ∞

0

√
logN���ε�� �L2�P��dε <∞�(A.1)

where N�� is the bracketing number, P is the probability measure correspond-
ing to the joint distribution of �E�X�, L2�P� is the L2-norm. We will re-
strict ourselves to showing (A.1) for the class �1 = �I�E ≤ yd2�X� + d1�X���
−∞ < y < +∞, d1 ∈ C1+δ

1 �RX� and d2 ∈ C̃1+δ
2 �RX��, since the other terms

are similar, but much easier. In Corollary 2.7.2 of the aforementioned book it
is stated that m1 = N���ε2� C1+δ

1 �RX�� L2�P�� ≤ exp�Kε−2/�1+δ�� and m2 =
N���ε2� C̃1+δ

2 �RX�� L2�P�� ≤ exp�Kε−2/�1+δ��. Let dL
1 ≤ dU

1 � � � � � d
L
m1

≤ dU
m1

be

the functions defining the m1 brackets for C1+δ
1 �RX� and let d̃L

1 ≤ d̃U
1 � � � � �

d̃L
m2

≤ d̃U
m2

be the functions defining the m2 brackets for C̃1+δ
2 �RX�. Thus, for

each d1 and d2 and each fixed y,

I
(
E ≤ yd̃L

j �X� + dL
i �X�) ≤ I�E ≤ yd2�X� + d1�X��

≤ I
(
E ≤ yd̃U

j �X� + dU
i �X�)�

Define FL
ij�y� = P�E ≤ yd̃L

j �X� + dL
i �X�� and let yL

ijk, k = 1� � � � �O�ε−2�,
partition the line in segments having FL

ij-probability less than or equal to
a fraction of ε2. Similarly, define FU

ij�y� = P�E ≤ yd̃U
j �X� + dU

i �X�� and let
yU
ijk, k = 1� � � � �O�ε−2�, partition the line in segments having FU

ij-probability
less than or equal to a fraction of ε2. Now, define the following bracket for
y:yL

ijk1
≤ y ≤ yU

ijk2
, where yL

ijk1
is the largest of the yL

ijk with the property
of being less than or equal to y and yU

ijk2
is the smallest of the yU

ijk with
the property of being greater than or equal to y. We will now show that the
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brackets for our function are given by

I
(
E ≤ yL

ijk1
d̃L
j �X� + dL

i �X�) ≤ I
(
E ≤ yd2�X� + d1�X�)

≤ I
(
E ≤ yU

ijk2
d̃U
j �X� + dU

i �X�)�
Let us calculate∥∥∥I(E ≤ yU

ijk2
d̃U
j �X� + dU

i �X�)− I
(
E ≤ yL

ijk1
d̃L
j �X� + dL

i �X�)∥∥∥2

2

= FU
ij�yU

ijk2
� −FL

ij�yL
ijk1
� = FU

ij�y� −FL
ij�y� +Kε2�

Applying a Taylor expansion to the function He, yields

FU
ij�y� −FL

ij�y�

=
∫ [

He�yd̃U
j �x� + dU

i �x� �x� −He�yd̃L
j �x� + dL

i �x� �x�
]
dFX�x�

=
∫
he

(
yξ̃j�x� + ξi�x� �x

)
× [y�d̃U

j �x� − d̃L
j �x�� + �dU

i �x� − dL
i �x��

]
dFX�x�

=
∫
he

(
yξ̃j�x� + ξi�x� �x

)(
yξ̃j�x� + ξi�x�

)(
ξ̃j�x�

)−1(A.2)

× (d̃U
j �x� − d̃L

j �x�
)
dFX�x�

−
∫
he

(
yξ̃j�x� + ξi�x� �x

)
ξi�x��ξ̃j�x��−1

× �d̃U
j �x� − d̃L

j �x��dFX�x�

+
∫
he

(
yξ̃j�x� + ξi�x� �x

)�dU
i �x� − dL

i �x��dFX�x��

Here, ξi�x� is between dL
i �x� and dU

i �x� and ξ̃j�x� is between d̃L
j �x� and d̃U

j �x�.
Since we can choose the brackets di and d̃j such that supx �dU

i �x�� ≤ 1 and
inf x �d̃L

j �x�� ≥ 1
2 (for all i and j) and since supx�y �yhe�y �x� � < ∞, (A.2) is

bounded in absolute value by

K1

∥∥d̃U
j − d̃L

j

∥∥
P�1 +K2

∥∥dU
i − dL

i

∥∥
P�1 ≤ �K1 +K2�ε2

(since �d�P�1 ≤ �d�P�2 for any function d, where �d�P�1, respectively, �d�P�2 is
the L1�P�-norm, respectively, L2�P�-norm of d). Hence, for the class �1 and for
each ε > 0, we have at most O�ε−2 exp�Kε−2/�1+δ��� brackets in total. However,

for ε > 1, one bracket suffices. So we have
∫∞
0

√
logN���ε��1�L2�P��dε <∞.

This shows that the class �1 (and hence � ) is Donsker.
Next, let us calculate

Var
(
I�E ≤ ydn2�X� + dn1�X�� − I�E ≤ y�

−P
(
E ≤ ydn2�X� + dn1�X�)+P�E ≤ y�)
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= Var
(
I�E ≤ ydn2�X� + dn1�X�� − I�E ≤ y�)

≤ E
[
E��I�E ≤ ydn2�X� + dn1�X�� − I�E ≤ y��2 �X�](A.3)

= E
[
He�ydn2�X� + dn1�X� �X�

−He�min�y�ydn2�X� + dn1�X�� �X�]
+E

[
He�y �X� −He�min�y�ydn2�X� + dn1�X�� �X�]

= E
[
he�yan2�X� + an1�X� �X�∣∣y�dn2�X� − 1� + dn1�X�∣∣]�

for some an1�X� between 0 and dn1�X� and some an2�X� between 1 and
dn2�X�. Since

sup
x

∣∣yhe�yan2�x� + an1�x��x�
∣∣

≤ sup
x

∣∣{∣∣yan2�x� + an1�x�
∣∣an2�x�−1 + ∣∣an1�x�

∣∣an2�x�−1}
× he�yan2�x� + an1�x� �x�

∣∣
≤K1 �say�

[by Proposition 4.5, because supx�y he�y �x� < ∞, supx�y �yhe�y �x�� < ∞ and
inf x σ�x� > 0], (A.3) is bounded by

K1E�dn2�X� − 1� + sup
x�y

he�y �x�E�dn1�X��

≤K1 sup
x

∣∣∣ σ̂�x�
σ�x� − 1

∣∣∣+K2 sup
x
�m̂�x� −m�x�� → 0 a�s��

again by Proposition 4.5. Since the class � is Donsker, it follows from Corol-
lary 2.3.12 in van der Vaart and Wellner (1996) that

lim
α↓0

lim sup
n→∞

P

(
sup

f∈� �Var�f�<α

n−1/2

∣∣∣∣
n∑

i=1

f�Xi�
∣∣∣∣ > ε

)
= 0�

for each ε > 0. By restricting the supremum inside this probability to the
elements in � corresponding to d1�X� = dn1�X� and d2�X� = dn2�X� as
defined above, the result follows.

Proposition A.2. Assume (A1), (A2) (i), (ii), (A3) (i), (ii), (A4) (i), H�y �x�
andH1�y �x� satisfy (A6) (i)–(vi), andHe�y �x� satisfies (A6) (ii), (iii), (vi), (vii).
Then,

Ĥe�y� −He�y�

= n−1
n∑

i=1

[−{η�Zi��i �Xi� + ζ�Zi��i �Xi�y
}
he�y �Xi�

+I�Ei ≤ y� −He�y�
]+Rn�y��

where sup��Rn�y��� −∞ < y < +∞� = oP�n−1/2�.
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Proof. Using Lemma A.1 and the notation in the statement of that
lemma,

Ĥe�y� −He�y�

=
∫ {

He

(
yσ̂�x� + m̂�x� −m�x�

σ�x�

∣∣∣∣x
)
−He�y �x�

}
dFX�x�

+ n−1
n∑

i=1

{
I�Ei ≤ y� −He�y�

}+ oP�n−1/2�

=
∫
he�y �x�

y�σ̂�x� − σ�x�� + �m̂�x� −m�x��
σ�x� dFX�x�

+ 1
2

∫
h′e�yi �x�

(
y�σ̂�x� − σ�x�� + �m̂�x� −m�x��

σ�x�
)2

dFX�x�

+ n−1
n∑

i=1

{
I�Ei ≤ y� −He�y�

}+ oP�n−1/2��

(A.4)

where yi is between y and �yσ̂�Xi�+m̂�Xi�−m�Xi��/σ�Xi�. The second term
above is o�n−1/2� a.s. by Proposition 4.5 and since supx�y �y2h′e�y �x�� <∞. The
first term on the right-hand side of (A.4) splits naturally in two parts. We will
deal with the second one only. Using Proposition 4.8 it follows that

∫
he�y �x�

m̂�x� −m�x�
σ�x� dFX�x�

= −�nan�−1
n∑

i=1

∫
f−1
X �x�he�y �x�K

(
x−Xi

an

)
η�Zi��i �x�dFX�x�

+ o�n−1/2�

= −�nan�−1
n∑

i=1

∫
K

(
x−Xi

an

)
β�x�Zi� �i� y�dFX�x�

+ o�n−1/2��

(A.5)

a.s., uniformly in y, where β�x� z� δ� y� = f−1
X �x�he�y �x�η�z� δ �x�. Using a

two-term Taylor expansion of β�x�Zi� �i� y� around Xi, (A.5) can be written as

− �nan�−1
n∑

i=1

β�Xi�Zi� �i� y�
∫
K

(
x−Xi

an

)
dFX�x�

− �nan�−1
n∑

i=1

β′�Xi�Zi� �i� y�
∫
K

(
x−Xi

an

)
�x−Xi�dFX�x�

− 1
2
�nan�−1

n∑
i=1

∫
K

(
x−Xi

an

)
�x−Xi�2β′′�ξi�Zi� �i� y�dFX�x� + o�n−1/2�
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= −n−1
n∑

i=1

β�Xi�Zi� �i� y�fX�Xi� +O�a2
n� + o�n−1/2�

= −n−1
n∑

i=1

he�y �Xi�η�Zi��i �Xi� + o�n−1/2��

where ξi is between x and Xi. This completes the proof. ✷

Proposition A.3. Assume (A1) (i), (iii), (iv), (A2) (i), (ii), (A3) (ii), FX is
twice continuously differentiable, inf x∈RX

fX�x� > 0, H�y �x� and H1�y �x�
satisfy (A6) (i), (iv), (v), and He�y �x� satisfies (A6) (ii). Then,

sup
−∞<y<+∞

�Ĥe�y� −He�y�� = O��nan�−1/2�log a−1
n �1/2� a�s�

Proof. Applying Lemma A.1 and a Taylor expansion yields that

Ĥe�y� −He�y�=
∫
he�yx �x�

y�σ̂�x� − σ�x�� + �m̂�x� −m�x��
σ�x� dFX�x�

+n−1
n∑

i=1

�I�Ei ≤ y� −He�y�� + oP�n−1/2��

where yx is between y and ��yσ̂�x� + m̂�x� − m�x���/σ�x�. The first term
is O��nan�−1/2�log a−1

n �1/2� a.s. by Proposition 4.5. For the second one,
the Dvoretzky–Kiefer–Wolfowitz (1956) inequality yields O�n−1/2�log n�1/2�
a.s. ✷

Remark A.1. The representation in Proposition A.2 can also be used to
obtain a bound of OP�n−1/2�, instead of O��nan�−1/2�log a−1

n �1/2� a.s. as estab-
lished above. Note that the nature of such results is entirely different from
the case where Euclidean parameters for location and scale are estimated.
The rate of convergence of the present nonparametric estimators is slower
than n−1/2 and recovery of the root n convergence is due to the averaging
over the covariate values. Similar results can be found in Cristóbal Cristóbal,
Foraldo Roca and González Manteiga (1987) and in Akritas (1994, 1996).

Proposition A.4. Assume (A1) (i), (iii), (iv), (A2) (i), (ii), (A3) (ii), FX is
twice continuously differentiable, inf x∈RX

fX�x� > 0, H�y �x� and H1�y �x�
satisfy (A6) (i), (iv), (v), and He�y �x� satisfies (A6) (ii), (iii), (vi). Let Jc =
��y1� y2�� �He�y2� −He�y1�� ≤ c�. Then,

sup
{�Ĥe�y2� − Ĥe�y1� −He�y2� +He�y1��� �y1� y2� ∈ Jān

} = oP�n−1/2��

where ān is any sequence of positive numbers tending to zero as n tends to
infinity that satisfies āna

−1
n log a−1

n → 0.
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Proof. Consider the decomposition

Ĥe�y2� − Ĥe�y1� −He�y2� +He�y1�

=
∫ {

He

(
y2σ̂�x� + m̂�x� −m�x�

σ�x�

∣∣∣∣x
)
−He�y2 �x�

−He

(
y1σ̂�x� + m̂�x� −m�x�

σ�x�

∣∣∣∣x
)
+He�y1 �x�

}
dFX�x�

+ n−1
n∑

i=1

{
I�Ei ≤ y2� −He�y2� − I�Ei ≤ y1� +He�y1�

}+ oP�n−1/2��

(A.6)

uniformly in y1 and y2 by Lemma A.1. The second term on the right-hand
side of (A.6) is O�ā1/2

n n−1/2�log n�1/2� a.s. by Lemma 2.4 in Stute (1982). The
first term equals

∫ {m̂�x� −m�x�
σ�x� �he�y2 �x� − he�y1 �x��

+ σ̂�x� − σ�x�
σ�x� �y2he�y2 �x� − y1he�y1 �x��

}
dFX�x�

+O
(�nan�−1 log a−1

n

)
≤ sup

x
�m̂�x� −m�x��

(
inf
x

σ�x�
)−1

×
∫ ∣∣he�y2 �x� − he�y1 �x�

∣∣dFX�x�

+ sup
x

∣∣σ̂�x� − σ�x�∣∣(inf
x

σ�x�
)−1

×
∫ ∣∣y2he�y2 �x� − y1he�y1 �x�

∣∣dFX�x�

+O��nan�−1 log a−1
n ��

(A.7)

We will show that for all x ∈ RX,

�y2he�y2 �x� − y1he�y1 �x�� ≤
K

ā
1/2
n

∣∣∣He�y2 �x� −He�y1 �x�
∣∣∣+ 2ā1/2

n �(A.8)

Showing this implies that for �y1� y2� ∈ Jān
,∫ ∣∣y2he�y2 �x� − y1he�y1 �x�

∣∣dFX�x�

≤ K

ā
1/2
n

∫ ∣∣He�y2 �x� −He�y1 �x�
∣∣dFX�x� + 2ā1/2

n

= K

ā
1/2
n

∣∣He�y2� −He�y1�
∣∣+ 2ā1/2

n ≤ �K+ 2�ā1/2
n �
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This together with Proposition 4.5 and the assumption on ān implies oP�n−1/2�
for the second term of (A.7). The derivation for the first term is similar, but
easier. For the proof of (A.8), define Ax = �y� �yhe�y �x�� ≥ ā

1/2
n �. Clearly, in

the case where y1 �∈ Ax and y2 �∈ Ax there is nothing to show. Consider next
the case where y1 �∈ Ax and y2 ∈ Ax. Then there exists a y between y1 and
y2 such that �yhe�y �x�� = ā

1/2
n and u ∈ Ax for all u between y and y2. Using

this y, write∣∣y2he�y2 �x� − y1he�y1 �x�
∣∣ ≤ ∣∣y2he�y2 �x� − yhe�y �x�

∣∣
+ ∣∣yhe�y �x� − y1he�y1 �x�

∣∣�(A.9)

The second term on the right-hand side of (A.9) is clearly less than 2ā1/2
n . To

deal with the first term define ve�y �x� = yhe�y �x� and write∣∣ve�y2 �x� − ve�y �x�
∣∣

= ∣∣(ve�· �x� ◦H−1
e �· �x�)′�He�u �x��

∣∣�He�y2 �x� −He�y �x��

= �v′e�u �x��
he�u �x�

(
He�y2 �x� −He�y �x�

)

= �he�u �x� + uh′e�u �x��
he�u �x�

(
He�y2 �x� −He�y �x�

)

≤
(
1+ supu �u2h′e�u �x��

infu∈Ax
�uhe�u �x��

)(
He�y2 �x� −He�y �x�

)
≤Kā−1/2

n

(
He�y2 �x� −He�y �x�

)
�

(A.10)

where the u in the first equality is between y and y2. Finally, consider the
case where both y1� y2 ∈ Ax. If we have that y ∈ Ax for all y between y1 and
y2 then (A.10) shows that �y2he�y2 �x� − y1he�y1 �x�� ≤ Kā

−1/2
n �He�y2 �x� −

He�y1 �x��. It remains to consider the possibility that there exists a y between
y1 and y2 with y �∈ Ax. Let u1�u2� be the smallest (largest) number between y1

and y2 such that u1he�u1 �x� = ā
1/2
n (and similarly for u2). Also assume with-

out loss of generality that y1 < y2. Then �y2he�y2 �x� − y1he�y1 �x�� ≤ Kā
1/2
n

follows from the decomposition �y2he�y2 �x� − y1he�y1 �x�� ≤ �y2he�y2 �x� −
u2he�u2 �x�� + �u2he�u2 �x� − u1he�u1 �x�� + �u1he�u1 �x� − y1he�y1 �x�� and
(A.10). ✷

Corollary A.5. Assume (A1) (i), (iii), (iv), (A2) (i), (ii), (A3) (ii),FX is twice
continuously differentiable inf x∈RX

fX�x� > 0, H�y �x� and H1�y �x� satisfy
(A6) (i), (iv), (v) and He�y �x� and He1�y �x� satisfy (A6) (ii), (iii), (vi). Then,

sup
−∞<y≤T

∣∣∣∣
∫ y

−∞

[
1

1− Ĥe�s�
− 1

1−He�s�
]
d�Ĥe1�s� −He1�s��

∣∣∣∣ = oP�n−1/2��(A.11)

Proof. Partitioning the interval �−∞�T� into kn subintervals �yi� yi+1�
such that He�yi+1� − He�yi� ≤ �nan�−1/2�log a−1

n �1/2 = ān, where kn =
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O��nan�1/2�log a−1
n �−1/2�, we have that the integral in (A.11) is bounded by

kn sup
{∣∣∣∣ 1

1− Ĥe�y�
− 1

1−He�y�

∣∣∣∣� −∞ < y ≤ T

}

× sup
{
�Ĥe1�y2� − Ĥe1�y1� −He1�y2� +He1�y1��� �y1� y2� ∈ Jān

}

+2 sup
{∣∣∣∣ 1

1− Ĥe�y2�
− 1

1− Ĥe�y1�
− 1

1−He�y2�
+ 1

1−He�y1�

∣∣∣∣�
�y1� y2� ∈ Jān

∩ �−∞�T�2
}
�

where Jān
= ��y1� y2�� �He�y2�−He�y1�� ≤ ān�. Applying Proposition A.3 and

an analogue of Proposition A.4 for the distribution He1, the first term above is
easily seen to be oP�n−1/2�. Again using Proposition A.3, the expression inside
the supremum of the second term can be written as∣∣∣(1−He�y1�

)−2(
Ĥe�y1� −He�y1�

)− (1−He�y2�
)−2(

Ĥe�y2� −He�y2�
)∣∣∣

+O
(�nan�−1 log a−1

n

)
= (

1−He�y1�
)−2∣∣Ĥe�y2� − Ĥe�y1� −He�y2� +He�y1�

∣∣
+O��nan�−1 log a−1

n � a�s��

uniformly on �−∞�T�. This is oP�n−1/2� by Proposition A.4. ✷

APPENDIX B

Results needed for Theorem 3.5.

Lemma B.1. Let the assumptions imposed in Theorem 3.5 hold. Then,

n−1/2 sup
x∈RX

y∈�

∣∣∣∣
n∑

i=1

{
ϕ

(
Xi�Zi� �i�

y ∧Tx − m̂�x�
σ̂�x�

)

−ϕ
(
Xi�Zi� �i�

y ∧Tx −m�x�
σ�x�

)}∣∣∣∣→P 0�

Proof. Consider the classes �1 = �ϕ1y�X�Z���� −∞ < y ≤ T̄� and
�2 = �ϕ2y�X�Z���� −∞ < y ≤ T̄�, where ϕ1y�x� z� δ� = ξe��z −m�x��/σ�x��
δ� y�� ϕ2y�x� z� δ� = −Se�y�η�z� δ �x�γ1�y �x� − Se�y�ζ�z� δ �x�γ2�y �x� and
T < T̄ < τHe

. [Note that ϕ�x� z� δ� y� = ϕ1y�x� z� δ� + ϕ2y�x� z� δ�.] In the
proof of Corollary 3.2 it was shown that the classes �1 and �2 are Donsker.
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Hence, it follows from Theorem 2.3.12 in van der Vaart and Wellner (1996)
that for every decreasing sequence δn ↓ 0,

n−1/2sup∗
∣∣∣∣

n∑
i=1

{
ϕky2

�Xi�Zi� �i� − ϕky1
�Xi�Zi� �i�

}∣∣∣∣→P 0� k = 1�2�(B.1)

where sup∗ is the supremum over all �y1� y2� such that Var�ϕky2
− ϕky1

� ≤
δn. We will show that for n large, this condition is satisfied for all pairs of
the form �e� ê� = ��y ∧ Tx − m�x��/σ�x�� �y ∧ Tx − m̂�x��/σ̂�x��. Let δn =
�nan�−1/2�log a−1

n �1/2. First note that, by Proposition 4.5, for n large, �Fe�ê� −
Fe�e�� ≤ δn�K1 supy fe�y� + K2 supy �yfe�y��� and similarly for He1, where
K1�K2 > 0 do not depend on x or y. Using this, and Proposition 4.5, it is
easy to see that supt� z� δ �ϕ2ê�t� z� δ� − ϕ2e�t� z� δ�� ≤ C2δn for some C2 > 0,
which implies that Var�ϕ2ê − ϕ2e� ≤ C2

2δ
2
n. This argument cannot be used

for �ϕ1ê − ϕ1e��t� z� δ�, because ϕ1y is not continuous in y. Note, however,
that since the function ξe is the function ξ in the notation of Lo and Singh
(1986), it follows that for any y1� y2, Cov�ϕ1y1

� ϕ1y2
� = �1−Fe�y1���1−Fe�y2��∫ y1∧y2

−∞ dHe1�s�/�1−He�s��2, and hence Var�ϕ1ê−ϕ1e� = Var�ϕ1e� +Var�ϕ1ê� −
2Cov�ϕ1e� ϕ1ê� ≤ C1δn for some C1 > 0. The result now follows from (B.1). ✷

Lemma B.2. Let the assumptions imposed in Theorem 3.5 hold. Then

n−3/2a−1
n sup

x∈RX

y∈�

∣∣∣∣
n∑

i=1

n∑
j=1

K

(
Xj −Xi

an

)

×
[
f−1
X �Xj�η�Zi��i �Xj�fe

(y ∧TXj
−m�Xj�

σ�Xj�
)

− f−1
X �Xi�η�Zi��i �Xi�fe

(
y ∧TXi

−m�Xi�
σ�Xi�

)]
I�Xj ≤ x�

∣∣∣∣
→ 0 a�s�

Proof. Define h�x� z� δ� y� = f−1
X �x�η�z� δ �x�fe��y−m�x��/σ�x��. Then,

h
(
Xj�Zi� �i� y ∧TXj

)
= h�Xj�Zi� �i� y�I�y ≤ TXj

� + h�Xj�Zi� �i�TXj
�I�y > TXj

�
= h�Xj�Zi� �i� y�I�y ≤ TXi

� + h�Xj�Zi� �i�TXj
�I�y > TXi

�
+ [h�Xj�Zi� �i� y� − h�Xj�Zi� �i�TXj

�]
× [I�y ≤ TXj

� − I�y ≤ TXi
�]

= T
�1�
ij �y� +T

�2�
ij �y��

The term T
�2�
ij �y� differs from zero only if y is between TXi

and TXj
. Since

�TXj
−TXi

� = O�an� if K��Xj−Xi�/an� �= 0, it follows that �TXj
−y� = O�an�
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in that case. Hence, using a one-term Taylor expansion,

n−2a−1
n

n∑
i=1

n∑
j=1

K

(
Xj −Xi

an

)
T
�2�
ij �y�I�Xj ≤ x� = O�a2

n�

uniformly in x and y. It now follows that

n−2a−1
n

n∑
i� j=1

K

(
Xj −Xi

an

)

× [h�Xj�Zi� �i� y ∧TXj
� − h�Xi�Zi� �i� y ∧TXi

�]I�Xj ≤ x�

= n−2a−1
n

n∑
i� j=1

K

(
Xj −Xi

an

)

× [h�Xj�Zi� �i� y�−h�Xi�Zi� �i� y�
]
I�y≤TXi

�I�Xj≤x�

+ n−2a−1
n

n∑
i� j=1

K

(
Xj −Xi

an

)

× [h�Xj�Zi� �i�TXj
� − h�Xi�Zi� �i�TXi

�]
× I�y > TXi

�I�Xj ≤ x��

We will show that the second term above is o�n−1/2� a.s. The proof for the
first term is completely analogous. Let g�x� z� δ� = h�x� z� δ�Tx�. Writing
g�Xj�Zi� �i� − g�Xi�Zi� �i� = �Xj − Xi�g′�Xi�Zi� �i� + 1

2�Xj − Xi�2
g′′�ξij�Zi� �i� for some ξij between Xi and Xj (and where g′and g′′ denote,
respectively, the first and second derivative of g�x� z� δ� with respect to x), it
is clear that it suffices to consider

n−2a−1
n

n∑
i=1

n∑
j=1

K

(
Xj −Xi

an

)
�Xj −Xi�g′�Xi�Zi� �i�

× I�y > TXi
�I�Xj ≤ x�

= n−2a−1
n

n∑
i=1

n∑
j=1

K

(
Xj −Xi

an

)
�Xj −Xi�g′�Xi�Zi� �i�

× I�y > TXi
�I�Xi ≤ x�

+ n−2a−1
n

n∑
i=1

n∑
j=1

K

(
Xj −Xi

an

)
�Xj −Xi�g′

(
Xi�Zi� �i

)
I�y > TXi

�

× [I�Xj ≤ x� − I�Xi ≤ x�]�
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The second term above is O�a2
n�, since there are only O�nan� i’s and O�nan�

j’s involved. The first one equals

�nan�−1
n∑

i=1

∫
K

(
u−Xi

an

)
�u−Xi�d�F̂X�u� −FX�u��g′�Xi�Zi� �i�

× I�y > TXi
�I�Xi ≤ x�

+O�a2
n�

= n−3/2a−1
n

n∑
i=1

∫
K

(
u−Xi

an

)
�u−Xi�d�αn�u� − αn�x∗i��

× g′�Xi�Zi� �i�I�y > TXi
�I�Xi ≤ x� +O�a2

n��

(B.2)

where αn�u� = n1/2�F̂X�u� − FX�u�� and x∗i ∈ RX is such that K��x∗i −
Xi�/an� �= 0. Making the substitution v = �u − Xi�/an, using integration
by parts and the fact that sup�x2−x1�≤an

�αn�x2� − αn�x1�� = O�a1/2
n �log a−1

n �1/2�
a.s. [see Theorem 0.2 in Stute (1982)], (B.2) is easily seen to be o�n−1/2� a.s.
This completes the proof of Lemma B.2. ✷

Lemma B.3. Let the assumptions imposed in Theorem 3.5 hold. Then,

sup
∣∣∣∣
∫ z

−∞

∫ x

−∞
�F̂X�x1 − van� −FX�x1 − van��

× d�F̂D�x1� z1� δ� −FD�x1� z1� δ��
∣∣∣∣ = OP�n−1��

(B.3)

where the supremum is taken over all v belonging to the support of the kernel
K, all x ∈ RX and all −∞ < z < +∞, where F̂D�x� z� δ� − FD�x� z� δ� =
n−1∑n

i=1 I�Xi ≤ x�Zi ≤ z��i = δ� −P�X ≤ x�Z ≤ z�� = δ� and where δ = 0
or 1 is fixed.

Proof. We will apply Theorem 7 in Nolan and Pollard (1988) on the de-
generate class of functions

� =
{
�v� x� z� → I�X1 ≤X2 − van�X2 ≤ x�Z2 ≤ z��2 = δ�

−FX�X2 − van�I�X2 ≤ x�Z2 ≤ z��2 = δ�

−
∫ x

−∞

∫ z

−∞
I�X1 ≤ x1 − van�dFD�x1� z1� δ�

+
∫ x

−∞

∫ z

−∞
FX�x1 − van�dFD�x1� z1� δ�

}
�

Showing that the three displayed conditions in the aforementioned theorem
are satisfied will imply the weak convergence of the process stated between
absolute values in (B.3) and hence the result will follow. In what follows we
will show that these conditions are satisfied for the class �1 = ��v� x� z� →
I�X1 ≤ X2 − van�X2 ≤ x�Z2 ≤ z��2 = δ��. The other terms are dealt with
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in an easier way. First note that the envelope function F1 equals 1. Let ε > 0
be fixed. For the first condition, we need to find a subset � ∗

1 of �1 (allowed to
depend on the given sample), such that for each f in �1, there exists a f∗ in
� ∗

1 , such that ETn
�f − f∗ � 2 ≤ ε2n2, where the measure Tn is as defined on

page 1293 in Nolan and Pollard (1988). If f (respectively, f∗) corresponds to
the triplet �v� x� z� [respectively, �v∗� x∗� z∗�], this means that

ETn

∣∣I�X1 ≤X2 − van�X2 ≤ x�Z2 ≤ z��2 = δ�
− I�X1 ≤X2 − v∗an�X2 ≤ x∗�Z2 ≤ z∗� �2 = δ�∣∣ ≤ ε2n2�

(B.4)

Partition the domain of X2−X1 into O�ε−2� subintervals �vj� vj+1� such that
the number of Xi2

−Xi1
’s between each vjan and vj+1an is less than K1ε

2n2

for some constant K1 > 0 to be specified later. Divide in a similar way RX

into O�ε−2� intervals �xk� xk+1� such that F̂X�xk+1� − F̂X�xk� ≤ K2ε
2. Fi-

nally, divide the real line into O�ε−2� subintervals �zl� zl+1�, such that the
number of Zi’s between zl and zl+1 is never more than K3ε

2n2. It is easily
seen that, by proper choice of K1, K2 and K3, for any �v� x� z� there exist j,
k and l such that (B.4) is satisfied for �v∗� x∗� z∗� = �vj� xk� zl�. This means
that the covering number for the class �1 is O�ε−6� and hence the cover-
ing integral J�1�Tn��1�F1� is 6, uniformly over all samples and over all
n. The second condition in Theorem 7 in Nolan and Pollard (1988) is satis-
fied by noting that for any γ > 0, J�γ�Tn��1�F1� = 6γ�1 − log γ�, which
equals 0 for γ = e. Finally, for the third, condition, we have to calculate both
N�ε�P×Pn��1�F1� and N�ε�Pn×P��1�F1�, since the functions of the class
�1 are not symmetric in �X1�Z1� and �X2�Z2�. For N�ε�P × Pn��1�F1�,
we can use the same partitions for x and z as before and for v we choose
O�ε−2� points vj such that �vj+1 − vj� ≤ K1ε

2 for some K1 > 0. In a similar
way as before, the class of functions corresponding to all triplets of the form
�vj� xk� zl� can be used to show that the covering number N�ε�P×Pn��1�F1�
is O�ε−6� uniformly over all samples and all n. Selecting the points vj� xk and
zl �j� k� l = 1� � � � �O�ε−2�� satisfying �vj+1 − vj� ≤ K1ε

2, �xk+1 − xk� ≤ K2ε
2

and �H�zl+1� −H�zl�� ≤K3ε
2 (where H is the distribution of Z), it is easy to

show that also N�ε�Pn ×P��1�F1� is O�ε−6�. This shows that also the third
condition of Theorem 7 in Nolan and Pollard (1988) is satisfied and hence the
result follows. ✷

The next result will be used in Proposition B.6 for establishing uniform
convergence to zero of a U-process.

Lemma B.4. Let D, D̃ be random vectors of dimension r, r̃, respectively,
and let �Di� D̃i�, i = 1� � � � � n, be a random sample drawn from the joint dis-

tribution of �D� D̃�. Let V�d1� d̃1� d2� v� be a real-valued function defined on
�r × �r̃ × �r × T, where T = �r × �s (where s can be zero) and where v =
�v1� v2� with v1 ∈ �r and v2 ∈ �s. Assume that the function V satisfies

supd1�d̃1�d2� v
�V�d1� d̃1� d2� v�� < ∞, ED1�D̃1

�V�D1� D̃1� d2� v�� = 0 for all
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d2 ∈ �r and v ∈ T, that as a process in v1, �n�d� d̃� v1� v2� = n−1/2 ∑n
j=1

V�d� d̃� Dj� v1� v2� is a pure jump process with jumps at v1 = Dj, and

that �n�d� d̃� v� converges weakly to a zero-mean Gaussian process ��d� d̃� v�,
which is continuous in all the indices d, d̃ and v. Then,

n−3/2 sup
v∈T

∣∣∣∣
n∑

i=1

n∑
j=1

V�Di� D̃i�Dj� v�
∣∣∣∣→P 0�

Proof. The continuity of the limiting Gaussian process together with the
Skorohod–Dudley–Wichura theorem [cf. Shorack and Wellner (1986), page 47],
implies the existence of versions of the processes �n�d� d̃� v� �n ≥ 1�, and
��d� d̃� v� which are defined on the same probability space and such that
supd� d̃� v ��n�d� d̃� v� −�n�d� d̃� v�� → 0, almost surely. [For simplicity, we de-
note the a.s. convergent versions of the processes by the same symbols as the
original processes. We will do the same for the versions of the random vectors
�Dj� D̃j�, j = 1� � � � � n to be defined in the new space.] Note that in this new
space �n�d� d̃� v1� v2� is also a pure jump process in v1 and the points where
it jumps define the realization of the random vectors Dj. Thus the represen-
tation �n�d� d̃� v1� v2� = n−1/2∑n

j=1 V�d� d̃�Dj� v1� v2� holds also in the new
space. Let D̃j be a random variable generated according to the conditional
distribution of D̃ given D = Dj. Assumption ED1� D̃1

�V�D1� D̃1� d2� v�� = 0
implies

ED1�D̃1

[
�n�D1� D̃1� v��ω

]
=
∫
�n�ω�d1� d̃1� v�dFD1� D̃1

�d1� d̃1� = 0�(B.5)

where conditioning on ω means conditioning on each sample path of the
process �n�d� d̃� v�, and �n�ω�d� d̃� v� denotes the sample path. Consider
now the process n−1∑n

i=1 ��Di� D̃i� v� as a process in v and write it as
n−1∑n

i=1 �v�ω�Di� D̃i� to stress the fact that Di and D̃i, i = 1� � � � � n, are
not the only sources of randomness in this process. We will show the weak
convergence of this process to the zero process. To show the convergence of
the finite dimensional distributions, it suffices to show that for a fixed v,
n−1∑n

i=1 �v�ω�Di� D̃i� as P→ 0. Write

E

[
n−1

n∑
i=1

�v�ω�Di� D̃i�
]2

= n−2 ∑
i1 �=i2

E
[
E
{
�v�ω�Di1

� D̃i1
� �ω}E{�v�ω�Di2

� D̃i2
� �ω}]

+ n−2
n∑

i=1

E
[
�2

v�ω�Di� D̃i�
]
�

(B.6)

By adding and subtracting the zero term in (B.5), it can be seen that
�E��v�ω�Di� D̃i� �ω�� ≤ supd� d̃� v ��n�ω�d� d̃� v� − ��ω�d� d̃� v�� → 0, for
almost all ω, which implies that E��v�ω�Di� D̃i� �ω� = 0 a.s. Thus, the
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first term on the right-hand side of (B.6) equals zero. The second term of
(B.6) is O�n−1�, since V is uniformly bounded over all variables. This shows
that n−1∑n

i=1 �v�ω�Di� D̃i� = oP�1� by Chebyshev’s inequality. Finally, we
consider

P

(
sup

ρ�v� v′�<δ

∣∣∣∣n−1
n∑

i=1

[
�v′ �ω�Di� D̃i� −�v�ω�Di� D̃i�

]∣∣∣∣ > ε

)

≤
(

sup
ρ�v� v′�<δ

sup
d� d̃

∣∣��d� d̃� v′� −��d� d̃� v�∣∣ > ε

)
�

Since � is a tight process, this shows the tightness of the process n−1 ·∑n
i=1 �v�ω�Di� D̃i� and completes the proof. ✷

Proposition B.5. Let the assumptions imposed in Theorem 3.5 hold. Then,

n−2a−1
n

n∑
i=1

n∑
j=1

K

(
Xj −Xi

an

)
f−1
X �Xj�η�Zi��i �Xj�

× fe

(y ∧TXj
−m�Xj�

σ�Xj�
)
I�Xj ≤ x�

= n−1
n∑

i=1

η�Zi��i �Xi�fe

(
y ∧TXi

−m�Xi�
σ�Xi�

)
I�Xi ≤ x� +Rn1�x�y��

where sup��Rn1�x�y���x ∈ RX�y ∈ �� = oP�n−1/2�.

Proof. Using Lemma B.2, it is clear that it suffices to show that

n−2a−1
n

n∑
i=1

n∑
j=1

K

(
Xj −Xi

an

)
f−1
X �Xi�η�Zi��i �Xi�

×fe

(
y ∧TXi

−m�Xi�
σ�Xi�

)
I�Xj ≤ x�

−n−1
n∑

i=1

η�Zi��i �Xi�fe

(
y ∧TXi

−m�Xi�
σ�Xi�

)
I�Xi ≤ x�

= n−1
n∑

i=1

[
f̂X�Xi� − fX�Xi�

]
f−1
X �Xi�η�Zi��i �Xi�

×fe

(
y ∧TXi

−m�Xi�
σ�Xi�

)
I�Xi ≤ x�

+n−2a−1
n

n∑
i=1

n∑
j=1

K

(
Xj −Xi

an

)
f−1
X �Xi�η�Zi��i �Xi�

×fe

(
y ∧TXi

−m�Xi�
σ�Xi�

)
×[I�Xj ≤ x� − I�Xi ≤ x�]

(B.7)
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is oP�n−1/2� uniformly in �x�y�, where f̂X�x� = �nan�−1∑n
i=1 K��x−Xi�/an�

is an estimator for the density fX�x�. We will prove that the first term on the
right-hand side of (B.7) is oP�n−1/2�. The proof for the second term is similar
and will be left to the reader. Writing

f̂X�x� − fX�x�=a−1
n

∫
K

(
x− u

an

)
d�F̂X�u� −FX�u�� +O�a2

n�

=a−1
n

∫
�F̂X�x− van� −FX�x− van��K′�v�dv+O�a2

n��

and introducing the notation F̂D�D� −FD�D� for the empirical process that
corresponds to the data Di = �Xi�Zi� �i�, i = 1� � � � � n, and the notation

hy�x1� z1� δ1� = f−1
X �x1�η�z1� δ1 �x1�fe

(
y ∧Tx1

−m�x1�
σ�x1�

)
�

the first term on the right-hand side of (B.7) can be written as

a−1
n

∫
�F̂X�x1 − van� −FX�x1 − van��hy�x1� z1� δ1�

× I�x1 ≤ x�d�F̂D�D1� −FD�D1��K′�v�dv�
Further, let

Av�x� z� =
∫ z

−∞

∫ x

−∞
n1/2(F̂X�x1 − van� −FX�x1 − van�

)
dn1/2

× (F̂D�x1� z1� δ
)−FD

(
x1� z1� δ�

)
for fixed δ = 0�1. Then, it can be easily seen that it suffices to consider

�nan�−1
∫
hy�x1� z1� δ�I�x1 ≤ x�dAv�x1� z1�K′�v�dv

= �nan�−1
∫ ∫ z1

−∞

∫ x1

xL

dhy�x2� z2� δ�I�x1 ≤ x�dAv�x1� z1�K′�v�dv

+ �nan�−1
∫
hy�xL� z1� δ�I�x1 ≤ x�dAv�x1� z1�K′�v�dv

+ �nan�−1
∫ ∫ x1

xL

dhy�x2�−∞� δ�I�x1 ≤ x�dAv�x1� z1�K′�v�dv�

(B.8)

where xL is the left endpoint of the support of RX. The first term on the
right-hand side of (B.8) can be written as

�nan�−1
∫
�Av�x�+∞� −Av�x� z2� −Av�x2�+∞� +Av�x2� z2��

× I�x2 > xL�dh′y�x2� z2� δ�dx2K
′�v�dv

[where h′y�x2� z2� δ� denotes the partial derivative of hy�x2� z2� δ� with respect
to x2] and this is bounded by [see, for example, Lemma B, page 254 in Serfling
(1980)] K�nan�−1 supx� z� v �Av�x� z�� supy�x2

�h′y�x2� z2� δ��V for some K > 0
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[where �h′y�x2� z2� δ��V is the variation norm of the function h′y�x2� z2� δ� con-
sidered as a function in z2], which is OP��nan�−1� by Lemma B.3 and assump-
tion (A4) (ii). The derivation for the second and third term of (B.8) is similar,
but easier. This completes the proof. ✷

Proposition B.6. Let the assumptions imposed in Theorem 3.5 hold. Then,

n−2
n∑

i=1

n∑
j=1

ϕ

(
Xi�Zi� �i�

y ∧TXj
−m�Xj�

σ�Xj�
)
I�Xj ≤ x�

= n−1
n∑

i=1

E

{
ϕ

(
Xi�Zi� �i�

y ∧TX −m�X�
σ�X�

)
I�X ≤ x�

∣∣∣∣Xi�Zi� �i

}

+Rn2�x�y��
where sup��Rn2�x�y���x ∈ RX�y ∈ �� = oP�n−1/2�.

Proof. We start with the second term of ϕ on which we will apply
Lemma B.4 with D =X, D̃ = �Z���, v = �x�y� and

V�d1� d̃1� d2� u� = V�x1� z1� δ1� x2� x� y�

= Se

(
y ∧Tx2

−m�x2�
σ�x2�

)
η�z1� δ1 �x1�γ1

(
y ∧Tx2

−m�x2�
σ�x2�

∣∣∣∣x1

)
I�x2 ≤ x�

−E
[
Se

(
y ∧TX2

−m�X2�
σ�X2�

)
η�z1� δ1 �x1�γ1

×
(
y ∧TX2

−m�X2�
σ�X2�

∣∣∣∣x1

)
I�X2 ≤ x�

]
�

Since E�ξ�Z���y �X� �X� = 0, we also have that E�η�Z�� �X� �X� = 0 and
hence it suffices for the second term of ϕ to show the weak convergence of
the process n−1/2∑n

j=1 V�x1� z1� δ1�Xj� x� y� to a zero-mean Gaussian process.
This will be done by showing that the class � = �x2 → V∗�x1� z1� δ1� x2� x� y��
is Donsker, where V∗ equals the first term of V [see van der Vaart and Wellner
(1996), page 81]. For this we need to show that

∫∞
0

√
logN���ε�� �L2�P��dε <

∞, where N�� denotes the bracketing number (see Theorem 2.5.6 in the same
book). Since the function x2 → Se��y−m�x2��/σ�x2�� is bounded and contin-
uously differentiable, it follows from Corollary 2.7.2 in the aforementioned
book that m = O�exp�Kε−1�� brackets are required for the class �x2 →
Se��y − m�x2��/σ�x2���. Hence, by truncating these brackets at Se��Tx2

−
m�x2��/σ�x2��, the same number is needed for the class �x2 → Se��y ∧Tx2

−
m�x2��/σ�x2���, since Se��y∧Tx2

−m�x2��/σ�x2�� = Se��y−m�x2��/σ�x2��∨
Se��Tx2

−m�x2��/σ�x2��. For γ1, we first divide RX into O�ε−1� subintervals
�ti� ti+1� such that �ti+1− ti� ≤Kε for some K > 0. For each fixed i, there exist
m brackets that cover the class �x2 → γ1��y−m�x2��/σ�x2� � ti��y ∈ ��. Trun-
cating these brackets at γ1��Tx2

−m�x2��/σ�x2� � ti� shows that the bracketing
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number for the truncated class �x2 → γ1��y ∧Tx2
−m�x2��/σ�x2� � ti��y ∈ ��

is also m. Using the (more general) definition of bracketing number stated
on page 211 in van der Vaart and Wellner (1996), it is clear that the class
�x2 → γ1��y ∧ Tx2

− m�x2��/σ�x2� �x1��x1 ∈ RX�y ∈ �� can be covered
by using all the O�ε−1 exp�Kε−1�� brackets corresponding to all the points
ti �i = 1� � � � �O�ε−1��, since for any ti ≤ x1, x

′
1 ≤ ti+1 and for any y�y′ ∈ �,

γ1

(
y′ ∧Tx2

−m�x2�
σ�x2�

∣∣∣∣x′1
)
− γ1

(
y ∧Tx2

−m�x2�
σ�x2�

∣∣∣∣x1

)

≤ γ1

(
y′ ∧Tx2

−m�x2�
σ�x2�

∣∣∣∣x′1
)
− γ1

(
y′ ∧Tx2

−m�x2�
σ�x2�

∣∣∣∣ti
)

+ γ1

(
y′ ∧Tx2

−m�x2�
σ�x2�

∣∣∣∣ti
)
− γ1

(
y ∧Tx2

−m�x2�
σ�x2�

∣∣∣∣ti
)

+ γ1

(
y ∧Tx2

−m�x2�
σ�x2�

∣∣∣∣ti
)
− γ1

(
y ∧Tx2

−m�x2�
σ�x2�

∣∣∣∣x1

)
�

The L2-norm of each of the three terms above is less than (a constant times)
ε, provided y and y′ belong to the same bracket from the class of m brack-
ets determined by ti. Finally, since η�z1� δ1 �x1�I�x2 ≤ x� is increasing in x2
and bounded, it requires O�exp�Kε−1�� brackets by Theorem 2.7.5 in van der
Vaart and Wellner (1996). This shows the weak convergence of the process
n−1/2∑

j V�x1� z1� δ1�Xj� x� y�. The third term of ϕ is dealt with in a similar
way. For the first term, we use the following decomposition of the function ξe:

ξe�E���y� = �1−Fe�y��
{
−
∫ E∧y

−∞
dHe1�s�

�1−He�s��2
+
∫ y

−∞
dHe1�s�

1−He�s�
}

+ �1−Fe�y��
{
I�E ≤ y�� = 1�

1−He�E�
−
∫ y

−∞
dHe1�s�

1−He�s�
}

= ξe1�E���y� + ξe2�E���y��

For n−2∑
i� j ξe1�Ei��i� �y∧TXj

−m�Xj��/σ�Xj��I�Xj ≤ x�, the same argu-
ments as for the second term of ϕ show that this term is asymptotically equiv-
alent to n−1∑n

i=1 E�ξe1�Ei��i� �y ∧TX −m�X��/σ�X��I�X ≤ x� �Ei��i�. To
show that the class

{
t→

(
1−Fe

(
y∧Tt−m�t�

σ�t�
)) ∫ �y∧Tt−m�t��/σ�t�

−∞
I�s ≤ E�

�1−He�s��2
dHe1�s�I�t≤x�

}

is Donsker, use similar arguments as above for Fe��y ∧Tt −m�t��/σ�t�� and
for I�t ≤ x�, and apply Corollary 2.7.2 in van der Vaart and Wellner (1996) on
the integral. On the term ξe2 we will apply Theorem 7 in Nolan and Pollard
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(1988). Let

� =
{
�x�y� → ξe2

(
Z1 −m�X1�

σ�X1�
� �1�

y ∧TX2
−m�X2�

σ�X2�
)
I�X2 ≤ x�

−E
[
ξe2

(
Z1 −m�X1�

σ�X1�
� �1�

y ∧TX2
−m�X2�

σ�X2�
)
I�X2 ≤ x�

∣∣∣∣X1�Z1� �1

]
�

x ∈ RX�y ∈ �

}
�

Note that this is a degenerate class of functions. We will restrict ourselves to
verifying the conditions in that theorem for the class:

�1 =
{
�x�y�→

(
1−Fe

(
y∧TX2

−m�X2�
σ�X2�

))(
1−He

(
Z1−m�X1�

σ�X1�
))−1

×I

(
Z1−m�X1�

σ�X1�
≤y ∧TX2

−m�X2�
σ�X2�

� �1=1
)
I�X2≤x��x∈RX�y∈�

}
�

The verification of the conditions in Theorem 7 in Nolan and Pollard (1988)
for the other terms is similar, but easier. Let F1 ≡ �1 −He�T��−1 denote the
envelope function for this class and let ε > 0. We start with showing that there
exists a partition �yi� yi+1� of the real line such that for all i, all yi ≤ y ≤ yi+1
and all x ∈ RX,

Fe

(
y ∧Tx −m�x�

σ�x�
)
−Fe

(
yi ∧Tx −m�x�

σ�x�
)
≤ ε�(B.9)

To see this, first note that for ε small enough F−1
e �ε�≥ ε−1 and F−1

e �1− ε�
≤ ε−1. Hence, all y≤−ε−1 supx σ�x� + inf x m�x� = aε satisfy Fe��y−m�x��/
σ�x�� ≤ ε (for all x) and all y ≥ ε−1 supx σ�x� + supx m�x� = bε satisfy
Fe��y −m�x��/σ�x�� ≥ 1 − ε (for all x). Now divide the interval �aε� bε� into
K = O�ε−2� subintervals �yi� yi+1� �y1 = aε� yK = bε� such that �yi+1 − yi� ≤
ε�supz fe�z��−1 inf x σ�x�. Then, if y0 = −∞ and yK+1 = +∞, it is read-
ily shown that (B.9) is satisfied. Next, let us divide the line into O�ε−2�
subintervals �ỹk� ỹk+1� such that the number of couples �i� j� for which ỹk ≤
��Zi−m�Xi��/σ�Xi��σ�Xj�+m�Xj� ≤ ỹk+1 is less than ε2n2. Finally, parti-
tion RX into O�ε−2� subintervals �xi� xi+1� such that F̂X�xi+1�− F̂X�xi� ≤ ε2.
Now let � ∗

1 be the subclass of �1 consisting of all functions for which the cor-
responding couple �x�y� equals �xi� yj� or �xi� ỹk� �i� j� k = 1� � � � �O�ε−2��. It
is readily seen that for any f in �1, there is a f∗ in � ∗

1 for which ETn
�f−f∗�2 ≤

3�1−He�T��−2ε2n2, where Tn is the measure defined on page 1293 in Nolan
and Pollard (1988). This shows that the covering number N�ε�Tn��1�F1� is
O�ε−4� uniformly over all samples and over all n and hence the covering in-
tegral J�1�Tn��1�F1� is 4. Hence, the first condition in Theorem 7 in Nolan
and Pollard (1988) is satisfied. The second one is easily verified by an ap-
plication of Chebyshev’s inequality and by noting that the covering integral
J�γ�Tn��1�F1� = 4γ�1 − log γ� equals zero for γ = e. Finally, for the third
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condition, we calculate first the covering number N�ε�P × Pn��1�F1� (note
that since the functions in the class �1 are not symmetric, we have to consider
both Pn × P and P × Pn). For this, the partitions xi �i = 1� � � � �O�ε−2�� and
yj �j = 1� � � � �O�ε−2�� constructed above can be used here as well to take care
of, respectively, the first and the last factor of the functions in �1. For the
indicator I��Z1 − m�X1��/σ�X1� ≤ �y ∧ TX2

− m�X2��/σ�X2�� �1 = 1�, we
partition the real line into O�ε−2� subintervals �ȳk� ȳk+1� such that He1��y ∧
Tx−m�x��/σ�x��−He1��ȳk ∧Tx−m�x��/σ�x�� ≤ ε for all ȳk ≤ y ≤ ȳk+1 and
for all x ∈ RX [this can be done in a similar way as for equation (B.9)]. The
subclass of �1 corresponding to all couples �xi� yj� and �xi� ȳk� can be used
to show that the covering number is not more than O�ε−4�. For the covering
number with respect to the measure Pn×P, we again use the partition yj �j =
1� � � � �O�ε−2�� for the factors 1−Fe��y∧TX2

−m�X2��/σ�X2��. For I�X2 ≤ x�
we divideRX intoO�ε−2� intervals �x̃i� x̃i+1� such thatFX�x̃i+1�−FX�x̃i� ≤ ε2.
A more complicated partition is needed for the remaining factor, for which
subintervals (say �y∗k� y∗k+1�) need to be constructed satisfying

n∑
i=1

{
P

(
Zi −m�Xi�

σ�Xi�
σ�X� +m�X� ≤ y∗k+1

∣∣∣∣Xi�Zi

)

−P
(
Zi −m�Xi�

σ�Xi�
σ�X� +m�X� ≤ y∗k

∣∣∣∣Xi�Zi

)}
≤ ε2n�

(B.10)

Let V be the number of �Zi − m�Xi��/σ�Xi� that are less than H−1
e �ε2/2�

or greater than H−1
e �1 − ε2/2�. Then V ∼ Bin�n� ε2� and hence, for n

large, V − nε2 ≤ 2�ε2�1 − ε2�n log log n�1/2 a.s. [see, e.g., Serfling (1980),
page 35]. So, we only need to consider the terms in (B.10) for which
H−1

e �ε2/2� ≤ �Zi −m�Xi��/σ�Xi� ≤ H−1
e �1 − ε2/2�. As before, we have that

�H−1
e �ε2/2��H−1

e �1−ε2/2�� ⊆ �−ε−2/2� ε−2/2� for ε small enough. Hence, it suf-
fices to consider values of y for which yL = −�ε−2/2� supx σ�x� + inf x m�x� ≤
y ≤ �ε−2/2� supx σ�x�+supx m�x� = yU. Using assumption (A5), (B.10) can be
achieved for these values of y by using at most O�ε−4� subintervals �y∗k� y∗k+1�.
This shows that also the last condition of Theorem 7 in Nolan and Pollard
(1988) is satisfied and hence

n−1 sup
x∈RX

y∈�

∣∣∣∣
n∑

i=1

n∑
j=1

{
ξe2

(
Zi−m�Xi�

σ�Xi�
� �i�

y∧TXj
−m�Xj�

σ�Xj�
)
I�Xj≤x�

−E

[
ξe2

(
Zi−m�Xi�

σ�Xi�
� �i�

y∧TXj
−m�Xj�

σ�Xj�
)
I�Xj≤x�

∣∣∣∣Xi�Zi� �i

]}∣∣∣∣
= OP�1��

This completes the proof. ✷



TRANSFER IN CENSORED REGRESSION MODELS 1783

Acknowledgments. The authors thank Professor Noël Veraverbeke and
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