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EMPIRICAL LIKELIHOOD RATIO BASED CONFIDENCE
INTERVALS FOR MIXTURE PROPORTIONS

BY JING QIN

University of Maryland and Memorial Sloan�Kettering Cancer Center

We consider the problem of estimating a mixture proportion using
data from two different distributions as well as from a mixture of them.
Under the model assumption that the log-likelihood ratio of the two
densities is linear in the observations, we develop an empirical likelihood
ratio based statistic for constructing confidence intervals for the mixture
proportion. Under some regularity conditions, it is shown that this statis-
tic converges to a chi-squared random variable. Simulation results indi-
cate that the performance of this statistic is satisfactory. As a by-product,
we give estimators for the two distribution functions. Connections with
case-control studies and discrimination analysis are pointed out.

1. Introduction. Consider three independent data sets:

x , . . . , x , iid with distribution F x ,Ž .1 n0

y , . . . , y , iid with distribution G y ,Ž .1.1Ž . 1 n1

z , . . . , z , iid with distribution H z � �F z � 1 � � G z .Ž . Ž . Ž . Ž .1 n2

Ž . Ž . Ž .Denote the corresponding density functions by f x � dF x �dx, g y �
Ž . Ž . Ž .dG y �dy and h z � dH z �dz, respectively. The goal is to make inference

on the mixing parameter �, treating F and G as nuisance functions. The
Ž .problem was studied by Hosmer 1973 , assuming normality of F and G. He

estimated the proportion of male and female fish in a population of halibut
from univariate data. Subsequently, maximum likelihood, Bayesian paramet-
ric techniques and various approaches using distribution-free kernel methods
were summarized in a comprehensive paper by Murray and Titterington
Ž .1978 . Without any parametric assumptions on F and G, Hall and Tittering-

Ž .ton 1984 constructed a sequence of multinomial approximations and related
maximum likelihood estimators of the mixture proportions by grouping data.
They obtained a Cramer�Rao lower bound for their nonparametric estima-´
tors.

Ž .A different approach was proposed by Anderson 1979 . He postulated a
semiparametric modeling assumption

g xŽ .
1.2 log � � � x� ,Ž . 0 1f xŽ .
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or equivalently

g x � exp � � x� f x ,Ž . Ž . Ž .0 1

Ž . Ž .where f x is an arbitrary density function. The data in 1.1 then come from
distributions

dF x , exp � � x� dF x ,Ž . Ž . Ž .0 1

� � 1 � � exp � � x� dF x ,Ž . Ž . Ž .0 1

1.3Ž .

respectively.
Ž . Ž .We can see easily that if g x and f x are normal densities with common

Ž .variance or exponential densities, then 1.2 is satisfied. The attractive fea-
Ž .ture of 1.2 , compared with the normal mixture model, is that the distribu-

tions are modeled nonparametrically except for a parametric ‘‘exponential
tilt’’ that is used to relate one distribution to the other. This is very similar to
Cox’s proportional hazards models and Lehmann’s two sample models in
which it is the ratio of two hazard functions that is assumed to have a known
parametric form.

The assumption that the ratio of two densities is a known form is very
popular in the logistic regression discrimination and case-control studies.

Ž . Ž .Among others, see the papers by Efron 1975 , O’Neill 1980 , Prentice and
Ž . Ž . Ž .Pyke 1979 and books by Breslow and Day 1980 and Cox and Snell 1989 .

Ž . Ž .In fact, if we let D be the indicator of data from F D � 0 and G D � 1 ,
Ž .respectively, then the assumption 1.2 is equivalent to the logistic model

assumption that

�P D � 1 P z D � 1Ž . Ž .
�P D � 1 z �Ž .

� �P D � 1 P z D � 1 � P D � 0 P z D � 0Ž . Ž . Ž . Ž .
exp � � � z�Ž .0 1� ,�1 � exp � � z�Ž .0 1

� �Ž . 4 Ž .where � � � � log 1 � � �� , P D � 1 � 1 � � and the marginal distri-0 0
Ž .bution of z is not specified. When n � 0 in 1.1 , we have a case-control2

� Ž .�problem Prentice and Pyke 1979 . When n � 0 or n � 0, we have a0 1
so-called case-control problem with contaminated controls discussed recently

Ž .by Lancaster and Imbens 1996 . If either n � � or n � �, that is, we know0 1
F or G completely, then we end up with a fully parametric mixture model.

Ž . Ž .Efron and Tibshirani 1996 have used model 1.2 to estimate the underlying
Ž .densities for F and G. Model 1.3 also can be treated as a biased sampling

problem with weights

w x � 1, w x � w x � exp � � x� ,Ž . Ž . Ž . Ž .0 1 0 1

w x � � � 1 � � w x .Ž . Ž . Ž .2

1.4Ž .

� ŽEmpirical likelihood is a nonparametric method of inference Owen 1988,
.�1990 . It has sampling properties similar to the bootstrap, but instead of
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using resampling, empirical likelihood profiles a multinominal likelihood
with support on the sample data values. Properties of empirical likelihood

Ž .have been discussed by Chen and Hall 1993 , DiCiccio, Hall and Romano
Ž . Ž . Ž . Ž .1989 , Hall 1990 , Qin 1993 and Qin and Lawless 1994 , among others.

Ž .For more references, see the review paper by Hall and La Scala 1990 .
Ž . Ž .Based on the observed data 1.1 and the semiparametric model 1.2 , the

likelihood function can be written as

n n n0 1 2

1.5 LL �, � , F � dF x w y dF y w z dF z ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ł Ł Łi 1 j j 2 k k
i�1 j�1 k�1

Ž .� Ž .where � � � , � . By maximizing LL �, �, F under the assumption that F0 1
Ž .is a discrete distribution function, Anderson 1979 obtained point estimators

Ž .of �, � . The properties of those estimates, however, were not discussed in
his paper. He also pointed out the possibility that his method might be
extended to the continuous case by subdividing the range of each continuous
variate to make it discrete.

Ž .Our objective in this paper is fourfold: first, to develop Anderson’s 1979
Ž .methodology for estimating the parameters �, � without the assumption

Žthat F is a discrete distribution function; second, to extend Owen’s 1988,
. Ž .1990 empirical likelihood to the semiparametric model 1.3 ; third, to esti-

mate the underlying distribution functions and to test the model assumption;
Ž .finally, to explore the possible applications of the semiparametric model 1.2

to more general exponential tilt models. The organization of this paper is as
follows. In Section 2 we present our methodology and main results. We give
the asymptotic variance formula for the maximum semiparametric likelihood
estimation. We show that the likelihood based test statistic converges in
distribution to a chi-squared random variable. Section 3 discusses estimating
the underlying distribution functions and model diagnostics. Section 4 pre-
sents some simulation results. Concluding remarks are given in Section 5.
Proofs are relegated to the Appendix.

Ž .2. Main results. In this section we maximize LL �, �, F , the semipara-
Ž . Ž .metric likelihood 1.5 , jointly with respect to �, � and F. To do this, we only

need to concentrate on those distribution functions with jumps at observed
points. Let n � n � n � n and t , i � 1, 2, . . . , n, be the combined sample0 1 2 i

Ž . Ž .and let p � dF t , i � 1, 2, . . . , n, be the jump sizes nonnegative such thati i
Ž .the total mass is unity. The likelihood LL �, �, F can be written as

n n n0 1 2

LL �, � , F � dF x w y dF y w z dF zŽ . Ž . Ž . Ž . Ž . Ž .Ł Ł Łi 1 j j 2 k k
i�1 j�1 k�1

n nn 1 2

� p w y w z ,Ž . Ž .Ł Ł Łi j 2 k½ 5 ½ 5½ 5
i�1 j�1 k�1

2.1Ž .
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Ž .with w, w and w as in 1.4 . We will maximize the likelihood in two steps,1 2
as follows:

Ž .STEP 1. For fixed �, � , maximize
n

pŁ i
i�1

subject to the constraints
n n

p � 1, p w t � 1 � 0, p � 0.� 4Ž .Ý Ýi i i i
i�1 i�1

Ž . t ŽNote that the second constraint comes from the fact that G t � H exp � ��� 0
. Ž . t Ž . Ž .x� dF x � H w x dF x is a cumulative distribution function. Therefore,1 ��

� Ž .4 �E w x � 1. After maximizing over the p ’s, we have Qin and LawlessF i
Ž .�1994

1 1
p � , i � 1, 2, . . . , n ,i n 1 � � w t � 1Ž .i

where � is the Lagrange multiplier, which is determined by
n1 w t � 1Ž .i � 0.Ýn 1 � � w t � 1Ž .ii�1

Ž . Ž .We change the variables �, �, � to �, �, � , where � � � � n �n �1
Ž .Ž .n �n 1 � � . Then p can be written as2 i

1 1�� tŽ .i
p � ,i n 1 � � w t � 1 �� tŽ . Ž .Ž .i i

where
n n n n0 2 1 2

� t � � � � w t � 1 � � .Ž . Ž . Ž .i in n n n

The constraint equation becomes
n1 g t ; �, �Ž .i

2.2 � 0,Ž . Ýn 1 � � g t ; �, �Ž .ii�1

where
g t ; �, � � w t � 1 �� t .Ž . Ž . Ž .Ž .i i i

The advantage of changing variables is the fact that
n1 1

E g t ; �, � � n � n w t � n � � 1 � � w t� 4Ž . Ž . Ž . Ž .Ý Hi 0 1 2½ 5n ni�1

�g t ; �, � dF tŽ . Ž .

� w t � 1 dF t � 0Ž . Ž .H
Ž .and the constraint has the same form as in Owen 1988, 1990 .
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Ž .By using Qin and Lawless’ 1994 Lemma 1, we know that under certain
conditions the constraint equation determines uniquely an implicit function

Ž . Ž . Ž .� � � �, � , in a neighborhood of � , � , where � , � is the true value of˜ T T T T
Ž . Ž .�, � . Plugging the p ’s in 2.1 , therefore, we have the profile log-likelihoodi

2.3 l �, � , � �, � � l �, � , � �, � � l �, � ,Ž . Ž . Ž . Ž .Ž . Ž .˜ ˜1 2

where
n

l �, � , � �, � � � log 1 � � �, � g t ; �, � ,� 4Ž . Ž . Ž .Ž .˜ ˜Ý1 i
i�1

nn 1

l �, � � � log � t ; �, � � log w y ; �Ž . Ž . Ž .Ý Ý2 i j
i�1 j�1

n2

� log w z ; � , � .Ž .Ý 2 k
k�1

Ž Ž .. Ž . Ž .STEP 2. Maximize l �, �, � �, � , where � �, � satisfies 2.2 , with˜ ˜
Ž .respect to �, � . Differentiating l, we have

n	 l 	 l � �, � 	 g t ; �, � �	� � 	� �, � �	� g t ; �, �Ž . Ž . Ž . Ž .˜ ˜2 i i� � � 0,Ý
	� 	� 1 � � �, � g t ; �, �Ž . Ž .˜ ii�1

n	 l 	 l � �, � 	 g t ; �, � �	� � 	� �, � �	� g t ; �, �Ž . Ž . Ž . Ž .˜ ˜2 i i� � � 0.Ý
	� 	� 1 � � �, � g t ; �, �Ž . Ž .˜ ii�1

Equivalently
n	 l 	 l � �, � 	 g t ; �, � �	�Ž . Ž .˜2 i

2.4 � � � 0,Ž . Ý
	� 	� 1 � � �, � g t ; �, �Ž . Ž .˜ ii�1

n	 l 	 l � �, � 	 g t ; �, � �	�Ž . Ž .˜2 i
2.5 � � � 0,Ž . Ý

	� 	� 1 � � �, � g t ; �, �Ž . Ž .˜ ii�1

Ž .by using 2.2 .

˜ ˜Ž . Ž . Ž .Let �, � be a solution of 2.4 and 2.5 in the neighborhood of the true
˜ ˜Ž . Ž .value of � , � . We call �, � a maximum semiparametric likelihoodT T

Ž .estimator of �, � .
Now we present our main results; proofs are given in the Appendix.

THEOREM 1. Suppose that:

� � 3 � �1. The distribution function F is nondegenerate and g , 	 g�	� and
� �	 g�	� are bounded by some integrable function in a neighborhood of the

Ž .true value of � , � , whereT T

�1n n n n0 2 1 2
g t ; �, � � w t � 1 � � � w t � 1 � �Ž . Ž . Ž . Ž .Ž .i i½ 5n n n n

� �and 
 denotes Euclidean norm.
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2. As n � n � n � n � �, n �n � � � 0, i � 0, 1, 2.0 1 2 i i
3. 0 � � � 1.T

Ž . Ž . Ž Ž ..Under assumptions 1 � 3 , with probability 1, l �, �, � �, � has a local˜
Ž �1�3. Ž .maximum in an O n neighborhood of � , � . Moreover, the maximizerT T

˜ ˜ ˜ ˜Ž . Ž . Ž .�, � and � � � �, � satisfy the constraint equation 2.2 and score equa-˜ ˜
Ž . Ž .tions 2.4 and 2.5 , and

�̃ � �T

'2.6 n � N 0, U ,Ž . Ž .�̃ � �T� 0
� � 0˜

Ž .where U is defined in A.5 in the Appendix.

Ž .Confidence intervals for �, � can be constructed by using the normal
approximation theory. A more straightforward method is to use the semipara-
metric generalized likelihood ratio test statistic

sup LL �, � , FŽ .�, � , F
R � � 2 logŽ . ½ 5sup LL �, � , FŽ .� , F2.7Ž .

� 2 sup l �, � , � �, � � sup l �, � , � �, � ,Ž . Ž .Ž . Ž .˜ ˜½ 5
�, � �

Ž Ž .. Ž .where l �, �, � �, � is defined in 2.3 .˜

THEOREM 2. Under the same regularity conditions specified in Theorem 1,
if H : � � � is true, then0 T

R � � � 2 .Ž .T Ž1.

Therefore the 90 and 95% confidence intervals for � are

2.8 � � R � 	 2.706 and � � R � 	 3.841 ,� 4 � 4Ž . Ž . Ž .
respectively.

If we are interested in the odds ratio parameter � , similarly we can prove1
the following result:

THEOREM 3. Under the regularity conditions of Theorem 1, for testing
H � : � � � , the likelihood ratio statistic0 1 1T

sup LL �, � , � , FŽ .�, � , � , F 0 10 1 22.9 R � � 2 log � �Ž . Ž .1T Ž1.½ 5sup LL �, � , � , FŽ .�, � , F 0 1T0

if H � is true.0

3. Distribution function estimations and model diagnostics. Al-
Ž .though this paper is mainly concerned with estimation of �, � , an auxiliary

result is the estimation of the underlying distribution functions.
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Ž . Ž .Based on the observed data sets 1.1 and the model 1.2 , the distribution
Ž . Ž . Ž .functions F x , G y and H z can be estimated by

n

SF x � p I t 	 xŽ . Ž .˜Ýn i i
i�1

n ˜ ˜1�� t ; �, �1 ž /i� I t 	 x ,Ž .Ý in ˜ ˜ ˜1 � � w t ; � � 1 �� t ; �, �˜i�1 Ž .½ 5 ž /i i3.1Ž .
n

˜ ˜SG y � p exp � � � t I t 	 y ,Ž . Ž .˜Ý ž /n i 0 1 i i
i�1

n
˜ ˜ ˜ ˜SH z � p � � 1 � � exp � � � t I t 	 z ,Ž . Ž .Ž .˜Ý ½ 5ž /n i 0 1 i i

i�1

respectively. We will prove the following theorem in the Appendix.

THEOREM 4. Under the regularity conditions of Theorem 1,

'3.2 n SF x � F x � B x ,� 4Ž . Ž . Ž . Ž .n

Ž .where B x is a mean zero Gaussian process with continuous paths and
Ž .covariance structure specified in A.7 in the Appendix.

If we define the empirical distribution estimators
n01

EF x � I x 	 x ,Ž . Ž .Ýn i0 n0 i�1
n11

EG y � I y 	 y ,Ž . Ž .Ýn j1 n1 j�1
3.3Ž .

n21
EH z � I z 	 z ,Ž . Ž .Ýn k2 n2 k�1

then a natural diagnostic is to plot

SF x , EF x , SG y , EG y and SH z , EH z .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .n n n n n n0 1 2

Ž .Substantial differences would indicate that the model 1.2 is inadequate.

4. An example and some simulation results. To test the performance
of the proposed method with small sample sizes, we consider an example used

Ž .by Anderson 1979 and some simulation results in this section. For compari-
son, we also consider a fully parametric approach. Assume the density

Ž . Ž .function of x is parametrized as f x � f x;  , where  is a q � 1 parame-
Ž .ter. Then the log-likelihood based on the data 1.1 is

n nn 1 2

4.1 l � log f t ;  � log w y ; � � log w z ; � , � .Ž . Ž . Ž .Ž .Ý Ý ÝF i j 2 k
i�1 j�1 k�1
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The resulting likelihood ratio statistic is defined by

4.2 R � � 2 sup l �, � ,  � sup l �, � ,  .Ž . Ž . Ž . Ž .F F F½ 5
�, � ,  � , 

Ž . 2By the standard large sample theory, we have R � � � when H : � �F T Ž1. 0
� is correct. Hence the 90 and 95% fully parametric likelihood basedT
confidence intervals are

� �4.3 � R � 	 2.706 and � R � 	 3.841 ,� 4 � 4Ž . Ž . Ž .F F

respectively.
Ž . Ž .First we consider Anderson’s 1979 example. Corresponding to 1.1 we

have the following data:

Population X : 1.15, 0.25, 2.31, 2.44, 3.28, 3.34;
Population Y : 0.74, �0.50, 1.08, 1.34, �0.74, 0.15;
Population Z : �0.23, 0.71, 0.92, �0.53, �0.68, 1.04,

0.61, �0.88, �0.61, 0.59, 2.96, 2.59.

Here the random variables x, y and z were randomly generated from
Ž . Ž . Ž . Ž . Ž .N 2, 1 , N 0, 1 and �N 2, 1 � 1 � � N 0, 1 , respectively, with � � 0.25, by

Ž . Ž . Ž .Anderson 1979 . Of course, with these data, 1.1 and 1.2 are satisfied. The
maximum semiparametric and fully parametric likelihood estimators of � are
0.189 and 0.187, respectively. The 90 and 95% semiparametric confidence

Ž . Ž . Ž .intervals 2.8 are 0, 0.569 and 0, 0.658 and the 90 and 95% fully paramet-
Ž . Ž . Ž .ric confidence intervals 4.3 are 0, 0.470 and 0, 0.538 , respectively. Fig-

Ž .ure 1 is the semiparametric likelihood ratio R � and fully parametric
Ž .likelihood ratio R � plot based on these data. Figure 2 displays the fittedF

Ž .semiparametric cumulative distribution functions 3.1 for the Anderson data
Ž .and the corresponding empirical cumulative distribution functions 3.3 . They

match pretty well.
Next we describe some simulations. We still consider the model used by

Ž .Anderson 1979 . We generated 1000 samples by using Numerical recipes
�subroutines ran1 and gasdev Press, Teukolsky, Vetterling and Flannery´

Ž .� Ž . Ž . Ž .1992 . We assume that x is N 2, 1 , y is N 0, 1 and z is �N 2, 1 �
Ž . Ž . Ž . Ž .1 � � N 0, 1 . Therefore, w x � exp � � � x with � � 2, � � �2. For0 1 0 1
comparison we also consider fully parametric likelihood based inferences,

Ž 2 . Ž 2 .where F and G are N � , � and N � , � , respectively. Confidence1 2
intervals were calculated for the proportion parameter � based on the semi-

Ž .parametric likelihood confidence intervals 2.8 and the fully parametric
Ž .likelihood confidence intervals 4.3 , respectively. In Table 1, we report the

estimated true coverage, mean length and mean value of the midpoint of
those confidence intervals. Each value in the table is the average of 1000
simulations, and S and P denote the semiparametric and fully parametric
approaches, respectively. From the table we can see that the performance of
the semiparametric likelihood ratio confidence intervals is satisfactory. All
empirical coverage levels are close to the nominal levels. The lengths of



J. QIN1376

FIG. 1. Likelihood ratio plot

confidence intervals are almost the same based on the semiparametric model
Ž .1.2 or fully parametric normal mixture model. Therefore, the loss of effi-
ciency when the true distribution is a mean mixture of normals is negligible

Ž .by using model 1.2 . The coverage levels are highest for � � 0.5 compared
Ž .with small and large �. When � is small � � 0.25 , the mean values of the

midpoints of those confidence intervals are a little bit larger than the true
values. This is because we considered only � between 0 and 1 such that
� Ž . 4� : R � � 2.706 or 3.841 , modifying those confidence intervals with nega-
tive left endpoints to have left endpoints 0. Similar changes were made for

Ž .� � 0.75. Figure 3 is the Q-Q plot for the 1000 replications of R � at the true
Ž . 2value � � 0.5 n � n � 30, n � 60 versus standard � . The approxima-0 1 2 Ž1.

tion appears satisfactory.

5. Concluding remarks. Estimating mixture proportions under data
Ž . Ž .structures 1.1 is formulated in the semiparametric model 1.2 . The distribu-

tions are modeled nonparametrically, but are assumed to be related through
an ‘‘exponential tilt.’’ Based on our limited simulation studies, the loss of
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TABLE 1
Empirical average length, midpoint and coverage from 1000 samples

90% CD 95% CD
( ) ( )Model � Cov. % Av. Length Av. Midpt. Cov. % Av. Length Av. Midpt.

n � 30, n � 30, n � 600 1 2
S 0.25 87.5 0.3063 0.2625 92.8 0.3607 0.2687
P 0.25 90.0 0.2922 0.2629 94.9 0.3456 0.2679
S 0.50 88.7 0.3413 0.4994 93.8 0.4082 0.4954
P 0.50 90.3 0.3258 0.5007 94.9 0.3880 0.5007

n � 20, n � 20, n � 400 1 2
S 0.50 89.6 0.4168 0.4958 94.2 0.4941 0.4959
P 0.50 89.5 0.3980 0.4975 95.3 0.4732 0.4981
S 0.75 87.4 0.3710 0.7224 92.7 0.4345 0.7127
P 0.75 86.8 0.3458 0.7294 93.9 0.4079 0.7205

FIG. 3. Q-Q plot



ESTIMATION OF MIXTURE PROPORTIONS 1379

information by using a semiparametric approach is insignificant, even when
the forms of f and g are available.

Ž .The linear log ratio structure 1.2 is not essential to the development
given here, which can readily be extended to the more general model

g xŽ .
� exp � � � x , � ,� 4Ž .0f xŽ .

where � is a continuous differentiable function. A variety of problems with
two or more unknown distribution functions could be tackled with the same
essential methodology.

APPENDIX

In this section we give the proofs of the theorems in Sections 2 and 3. Note
Ž . Ž Ž ..the log-likelihood 2.3 , l �, �, � �, � , contains two terms. The first term,˜

Ž Ž .. � Ž .�l �, �, � �, � , is the empirical likelihood Qin and Lawless 1994 .˜1

PROOF OF THEOREM 1. Note that when � � � and � � � ,T T
n1

E g t ; � , � � w t � 1 dF t � 0.Ž . Ž . Ž .Ž .Ý Hi T T½ 5n i�1

Ž . Ž Ž ..As in Lemmas 1 and 2 in Qin 1993 , we can prove that l �, �, � �, � has a
Ž �1�3. Ž . Ž .local maximum in a O n neighborhood of � , � . Also when �, � fallsT T
� Ž .� Ž �1�3.in this neighborhood, � �, � � O n .˜ p

For notational convenience, we write
n	 l g t ; �, �Ž .i� � .Ý

	� 1 � � g t ; �, �Ž .ii�1

˜ ˜Ž . Ž .Then the constraint equation 2.2 is equivalent to 	 l�	� � 0 and �, �, �̃
satisfies 	 l�	� � 0, 	 l�	� � 0 and 	 l�	� � 0. To show the asymptotic

˜ ˜ ˜ ˜ ˜ ˜Ž . Ž . Ž .normality of �, �, � , we expand 	 l �, �, � �	�, 	 l �, �, � �	� and˜ ˜ ˜
˜ ˜Ž . Ž .	 l �, �, � �	� at � , � , 0 . We can see easily that˜ T T

�̃ � �T
�1 �1�2A.1 � �S Q � o nŽ . Ž .˜ ˜ n n p� � �T� 0

� � 0˜
where

�1
2 2 2
 �1 	 l 1 	 l 1 	 l

�n 	� 	� n 	� 	� n 	� 	�
2 2 21 	 l 1 	 l 1 	 l�1S � �n �n 	� 	� n 	� 	� n 	� 	�
2 2 21 	 l 1 	 l 1 	 l

�� n 	� 	� n 	� 	� n 	� 	� Ž .� , � , 0T T
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and

 �1 	 l � , � , 0Ž .T T

n 	�

1 	 l � , � , 0Ž .T T �1�2Q � � o nŽ .n pn 	�

1 	 l � , � , 0Ž .T T� n 	�

After long algebraic calculations, we have

s s s11 12 13 e e11 12�s s sS �S � � ,12 22 23 �n ž /e s12 33� �� 0s s s13 23 33A.2Ž .
s s �11 12 � � �e � , e � e � s , s ,Ž .�11 12 21 13 23ž /s s12 22

where

s � � 2 � �  , s � � � � � � , s � ��  ,11 2 1 2 2 12 2 1 2 1 13 2 1

s � �ab� � � 1 � � � � , s � �� , s �  ,Ž .22 2 T T 2 2 23 1 33 1

� t � a � bw t , a � � � � � , b � � � � 1 � � ,Ž . Ž . Ž . Ž .0 2 T 1 2 T

22 2� � � b � � a � � � � a ,Ž .0 1 2 T

2 21 � w t 1 � w t� 4 � 4Ž . Ž .
 � dF t ,  � dF t ,Ž . Ž .H H1 2� t w tŽ . Ž .2

	 w t 1 	 2 w t 1Ž . Ž .
� � dF t , � � dF t ,Ž . Ž .H H1 2 �	� � t 	� 	� � tŽ . Ž .

	 w t 1 	 2 w t 1Ž . Ž .
� � dF t , � � dF t .Ž . Ž .H H1 2 �	� w t 	� 	� w tŽ . Ž .2 2

Note that
n n n0 1 21

A.3 Q � q x � q y � q z ,Ž . Ž . Ž . Ž .Ý Ý Ýn 0 i 1 j 2 k½ 5n i�1 j�1 k�1

where

� 1 � w x � 1 � w yŽ . Ž .Ž . Ž .2 2

� x � yŽ . Ž .
b 	 w x �	� b 	 w y �	� 	 w y �	�Ž . Ž . Ž .q x � � , q y � �Ž . Ž .0 1 �

� x � y w yŽ . Ž . Ž .� 0 � 0
g x ; � , � g y ; � , �Ž . Ž .T T T T
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and

� 1 � w z 1 � w zŽ . Ž .Ž . Ž .2 �
� z w zŽ . Ž .2

b 	 w z �	� 1 � � 	 w z �	�Ž . Ž . Ž .q z � � .Ž . T2 �
� z w zŽ . Ž .2� 0

g z ; � , �Ž .T T

By the central limit theorem we have
'n Q � N 0, V ,Ž .n

where
�e � �e e� ��e s11 12 12 12 33

A.4 V � .Ž . � 2ž /��e s s � �s12 33 33 33

Therefore

�̃ � �T u 011�1 �1'A.5 n � N 0, U , U � S VS � ,Ž . Ž .�̃ � �T ž /0 u22� 0
� � 0˜

where
�1�1 � �1 �s � s s s s � s s s11 13 33 13 12 13 33 23u � � ,11 � �1 � �1 �ž /s � s s s s � s s s12 23 33 13 22 23 33 23

u � �s�1e� u e s�1 � s�1 � � .22 33 12 11 12 33 33

˜ ˜Ž .Because the off-diagonal elements of U are zero, �, � and � are asymptoti-˜
cally independent. �

Ž .PROOF OF THEOREM 2. To prove that R � converges to a chi-squaredT
˜ ˜ �Ž . Ž .variable, we write � � � � � , � � 0 . By A.1 we have˜T

�1
2 21 	 l 1 	 l

� �˜ n 	� � n 	� 	� Q� � � 1nT �1�2� � � o nŽ .p2 2 ž /Qž /˜ 1 	 l 1 	 l 2 n� � 0� �n 	� 	� n 	� 	�

�1 Qs c 1n11 12 �1�2� � � o n ,Ž .pc cž / ž /Q21 22 2 n

where
s s22 23�c � c � s , s , c � ,Ž .12 21 12 13 22 s sž /32 33

�
1 	 l � , � , 0 1 	 l � , � , 0 1 	 l � , � , 0Ž . Ž . Ž .T T T T T T

Q � , Q � , .1n 2 n ž /n 	� n 	� n 	�
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ˆ Ž Ž ..Let � maximize l � , �, � � , � with � fixed at � . It satisfies˜T T T

ˆ ˆ	 l � , � , � 	 l � , � , �ˆ ˆž / ž /T T
A.6 � 0, � 0,Ž .

	� 	�

ˆ ˆ ˆŽ . Ž Ž .. Ž Ž ..where � � � � , � . Expanding 	 l 	 , �, � �	� and 	 l � , �, � �	� atˆ ˜ ˆ ˆT T T
Ž .the point � , � , 0 , we haveT T

�̂ � � �1 �1�2T�̂ � � �c Q � o n .Ž .22 2 n pž /� � 0ˆ
Hence

�1˜� � � Q Q0 0 s cT 1n 1n11 12 �1�2� � � � o nŽ .�1 pc cž /ž /0 c ž / ž /Q Q21 22ž / 22ˆ ˜ 2 n 2 n� � �

�̃ � �0 0 s c TI 011 12 �1�2� � � o nŽ .�1 pž /½ 5c cž /ž /0 �c 0 I ž /21 22 ˜22 �

I �1�2˜� � � � � � o n .Ž .Ž .�1 T pž /�c c22 21

ˆ ˜ ˜Ž . Ž .Expanding l � , �, � at �, �, � , we have˜ ˜T

˜� � �s c T1 11 12ˆ ˜ ˜ ˜ ˆ ˜l � , � , � � l �, � , � � n � � �, � � � � o 1Ž .ˆ ˜ž /ž / ž /T T p2 c cž /21 22 ž /ˆ ˜� � �

1 �1˜ ˜� n � � � s � c c c � � � � o 1Ž .Ž .Ž . Ž .T 11 12 22 21 T p2

1 2� � � ,Ž1.2

�1 �1˜'Ž . Ž . Ž .since by A.5 the asymptotic variance of n � � � is � s � c c c .T 11 12 22 21
�

The proof of Theorem 3 is similar to the proof of Theorem 2, hence it is
omitted.

PROOF OF THEOREM 4. Denote

˜ ˜1�� t ; �, �ž /i˜r t ; � � ,Ž .i ˜ ˜ ˜1 � � w t ; � � 1 �� t ; �, �˜ Ž .½ 5 ž /i i

˜ ˜ ˜Ž . Ž .where � � �, �, � and denote � � � , � , 0 . Then˜ T T T

n1 ˜SF t � r t , � I t 	 t .Ž . Ž .Ž .Ýn i in i�1
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˜Ž . Ž . Ž .By expanding r t ; � at � and using A.1 and A.2 , we can prove thati T
n1

SF t � F t � r t ; � I x 	 t � F tŽ . Ž . Ž . Ž . Ž .Ýn i T in i�1

	 r t ; �Ž .i T ˜� I t 	 t � � � � R tŽ . Ž .Ž .i T 1n	�
n1 I t 	 tŽ .i �1� � F x � r t S Q � R t ,Ž . Ž . Ž .Ý 1 n 2 nn � t ; � , �Ž .i T Ti�1

Ž . � Ž . � Ž �1�2 .where R t , i � 1, 2, satisfy sup R t � o n andin ��� t �� in p
n1 	 r t ; �Ž .i T

I t 	 t �r tŽ . Ž .Ý i 1n 	�i�1

	 r u; �Ž .T� � � � w u � � w u I u 	 t du, a.s.� 4Ž . Ž . Ž .H 0 1 1 2 2 	�
Let

I x 	 t dF xŽ . Ž .ti�1r t � �r t S , � x , t � � ,Ž . Ž . Ž . H2 1 0 i � x � xŽ . Ž .��i

I y 	 t w y dF yŽ . Ž .Ž . tj 1
� y , t � � ,Ž . H1 j � y � yŽ . Ž .��j

I z 	 t w z dF zŽ . Ž . Ž .tk 2
� z , t � � .Ž . H2 k � z � zŽ . Ž .��k

Ž .Therefore, by using A.3 we have
n01'n SF t � F t � � x ; t � r t q x� 4 � 4Ž . Ž . Ž . Ž . Ž .Ýn 0 i 2 0 i'n i�1

n1

� � y ; t � r t q yŽ . Ž .� 4Ž .Ý 1 j 2 1 j
j�1

n2

� � z ; t � r t q z � o 1 .� 4Ž . Ž . Ž . Ž .Ý 2 k 2 2 k p
k�1

�Ž . �By using the criteria of Billingsley 1968 , page 128 , we can show that

'n SF t � F t � B t in distribution,� 4Ž . Ž . Ž .n

Ž .where B t is a mean zero Gaussian process with continuous paths and
covariance structure

� t , t � � cov � x , t � r t q x , � x , t � r t q x� 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .1 2 0 0 i 1 2 1 0 i 0 i 2 2 2 0 i

�� cov � y , t � r t q y , � y , t � r t q yŽ . Ž . Ž . Ž .� 4Ž . Ž .1 1 j 1 2 1 1 j 1 j 2 2 2 1 jA.7Ž .
�� cov � z , t � r t q z , � z , t � r t q z ,� 4Ž . Ž . Ž . Ž . Ž . Ž .2 2 k 1 2 1 2 k 2 k 2 2 2 2 k

t 	 t . �1 2
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