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In this paper D-optimal designs for the weighted polynomial regres-

Ž 2 .�nsion model of degree p with efficiency function 1 � x are presented.
Interest in these designs stems from the fact that they are equivalent to
locally D-optimal designs for inverse quadratic polynomial models. For the
unrestricted design space � and p � n, the D-optimal designs put equal
masses on p � 1 points which coincide with the zeros of an ultraspherical
polynomial, while for p � n they are equivalent to D-optimal designs for
certain trigonometric regression models and exhibit all the curious and
interesting features of those designs. For the restricted design space
� ��1, 1 sufficient, but not necessary, conditions for the D-optimal designs
to be based on p � 1 points are developed. In this case the problem of

Ž .constructing p � 1 -point D-optimal designs is equivalent to an eigen-
value problem and the designs can be found numerically. For n � 1 and 2,
the problem is solved analytically and, specifically, the D-optimal designs
put equal masses at the points �1 and at the p � 1 zeros of a sum of
n � 1 ultraspherical polynomials. A conjecture which extends these ana-
lytical results to cases with n an integer greater than 2 is given and is
examined empirically.

1. Introduction. Weighted polynomial regression models with variance
functions which depend on the explanatory variable have played, and con-
tinue to play, an important role in the development of classical optimal
design theory. The reasons for this are essentially twofold. First, there is a
wealth of elegant mathematics associated with the construction of D-optimal
designs for many of these models. In particular for certain classes of variance
functions, it is possible to show that the D-optimal designs put equal masses
on p � 1 points of support, where p is the degree of the polynomial embed-
ded in the model, and, furthermore, it is possible to use tools from the theory
of differential equations and of canonical moments in order to establish that
these support points coincide with the zeros of classical orthogonal polynomi-

� Ž . Ž .als see, e.g., Fedorov 1972 , pages 85�91; Studden 1980 ; Dette and Stud-
Ž . �den 1997 , Section 5.5 . Second, there are certain regression models, both

linear and nonlinear, which are particularly important in practice and for
which the problem of constructing D-optimal and locally D-optimal designs,
respectively, can be recast as that of finding D-optimal designs for specific
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weighted polynomial regression models. In such cases the optimal designs
can be readily obtained numerically but analytic results are, at least in
general, difficult to derive and this is clearly demonstrated in the papers of

Ž . Ž .Huang, Chang and Wong 1995 , He, Studden and Sun 1996 Chang and Lin
Ž . Ž . Ž .1997 , Ortiz and Rodrıguez 1998 or Imhof, Krafft and Schaefer 1998 .´

The problem of constructing locally D-optimal designs for rational or
inverse polynomial models with constant error terms was shown by He,

Ž .Studden and Sun 1996 to be equivalent to that of finding D-optimal designs
for weighted polynomial regression models with variance functions which are
polynomials in the explanatory variable, and some general results for these
designs were also presented in that paper. As a counterpoint to this, explicit
algebraic expressions for the support points of the D-optimal designs for a

Ž .particular inverse quadratic model were derived by Haines 1992 , following
Ž .the numerical results of Cobby, Chapman and Pike 1986 . The aim of the

present study is to draw these two strands of research together and in
particular to search for analytic solutions to the problem of constructing
D-optimal designs for inverse quadratic models and their weighted polyno-
mial regression model counterparts.

This paper is organized in the following way. In Section 2 the problem of
constructing D-optimal designs for a polynomial regression model of degree p

Ž 2 .�nwith efficiency function of the form 1 � x , where x is the explanatory
variable, n � � and the efficiency function is the reciprocal of the variance
function, is introduced and is shown to be equivalent to that of finding
D-optimal designs for inverse quadratic models. Some results relating to
numbers of support points for these D-optimal designs are also presented
there. The construction of D-optimal designs for this weighted polynomial
regression model with an unrestricted design space � and p � n are con-

� �sidered in Section 3 and those for a restricted design space �1, 1 in Sec-
tion 4. Some broad conclusions and pointers for future research are given in
Section 5.

2. Preliminary remarks.

2.1. The design problem. Consider the polynomial regression model of
degree p defined by

2.1 y � � � � x � ��� �� x p � � ,Ž . 0 1 p

where y is the response corresponding to an explanatory variable x, with x
Ž .taken from the design space XX , � � � , . . . , � is a vector of unknown0 p

parameters, and the term � represents a random error with mean 0 and
2 Ž . Ž .variance � �� x , where � x is an efficiency function of the form

�n22.2 1 � x , n � �.Ž . Ž .

Then for an approximate design � , which is a probability measure on the
design space XX , the Fisher information matrix for the parameters � can be
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expressed as

2.3 M � � � x f x f T x d� x ,Ž . Ž . Ž . Ž . Ž . Ž .H p p
XX

Ž . Ž .where f x denotes the vector of monomials up to order p, that is, f x �p p
Ž p.T1, x, . . . , x . The problem addressed in the present study is that of con-

Ž .structing D-optimal designs for the polynomial regression model 2.1 with
Ž .independent heteroscedastic error terms specified by 2.2 and thus of finding

Ž .designs which maximize the determinant of the information matrix 2.3 .

2.2. A related locally D-optimal design problem for rational models. Con-
sider a rational model with homoscedastic error terms and with an expected
response given by

� � � u � ��� �� uq
0 1 q

2.4 	 u , � � ,Ž . Ž . m
21 � � u � � uŽ .q�1 q�2

where the explanatory variable u is taken from a design space UU 	 �,
Ž .T� � � , . . . , � denotes a vector of unknown parameters, and the polyno-0 q�2

Ž . 2mial Q u � 1 � � u � � u is assumed to be bounded away from 0 andq�1 q�2
Ž .positive. Then, following He, Studden and Sun 1996 , it is readily shown that

the Fisher information matrix for � at the point u can be expressed as

1
T T2.5 I u , � � B � f u f u B � ,Ž . Ž . Ž . Ž . Ž . Ž .q�2 q�22 m�2Q uŽ .

Ž . Ž . Ž .where B � is the q � 3 � q � 3 -matrix defined by

1 � � 0 0 ��� 0 0 0q� 1 q�2

0 1 � � 0 ��� 0 0 0q� 1 q�2
. . . . . . . .. . . . . . . .. . . . . . . .2.6 B � � .Ž .Ž .
0 0 0 0 0 ��� 1 � �q� 1 q�2

0 �m� �m� �m� �m� ��� �m� �m� 00 1 2 3 q�1 q

0 0 �m� �m� �m� ��� �m� �m� �m�0 1 2 q�2 q�1 q

Ž .The information matrix 2.5 depends on the unknown parameters � and a
locally optimal design 
 on the design space UU maximizes a concave function
of the information matrix

2.7 M 
 , � � I u , � d
 uŽ . Ž . Ž . Ž .H
UU

� Ž .�for a fixed value or ‘‘best guess’’ of � see Chernoff 1953 . Now it is
Ž .immediately clear that maximizing the determinant of the matrix 2.7 with

respect to the design measure 
 is equivalent to maximizing the determinant
of the information matrix for a weighted polynomial regression model of

Ž .degree p � q � 2 with efficiency function of the form 2.2 and n � 2m � 2,
and hence that the problem of constructing D-optimal designs for the two
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models is the same. Moreover, the support points of the locally D-optimal
design for the rational model are independent of the parameters in the

Ž .numerator of the rational function 2.4 and can be obtained from those for
the D-optimal design of the corresponding weighted regression model by the
linear transformation

1�22
 �1 � �q�1 q�1� 2.8 x � u � t x � x 1 � � .Ž . Ž . � �ž /4�� 2 �' 'q�2q�2 q�2

For m � q�2 locally D-optimal designs for the rational model with design
Ž .space UU equal to � exist and the transformation 2.8 is thus a straightfor-

� Ž .�ward one see, e.g. Haines 1992 . However, for m � q�2, the locally D-opti-
mal designs exist only for design spaces which are bounded intervals, say
� �a, b , and some care is therefore needed when invoking the transformation
Ž .2.8 in that the endpoints of the interval have to be transformed from those

� �1Ž . �1Ž .�relating to the weighted polynomial regression model to give t a , t b .

2.3. The number of support points. Consider again the weighted polyno-
Ž . Ž .mial regression model 2.1 with efficiency function 2.2 . The results of this

section give a partial solution to the problem of determining the number of
support points of the D-optimal designs for these models.

LEMMA 2.1. A D-optimal design for the weighted polynomial regression
Ž . Ž .model 2.1 with efficiency function 2.2 has exactly p � 1 points of support if

any one of the conditions:

Ž .i p � n;
Ž .ii n � 0, 1, . . . , p � 1 with XX a bounded interval;
Ž . Ž . Ž .iii p � n and n n � 1 ��� n � p � 0 with XX a bounded interval symmet-

ric about zero, holds.

Ž . Ž .Moreover, in the cases ii and iii the support of the optimal design
contains the boundary points of the design space.

Ž . Ž .PROOF. The proof for condition i follows that of Haines 1992 . In partic-
Ž .ular the Kiefer�Wolfowitz equivalence theorem 1960 states that a design � *

Ž .is D-optimal if and only if the directional derivative d x, � * at any point x
in the design space XX is less than or equal to zero, with equality holding at
the support points of � *. In the present case the directional derivative at x
for any design � is given by

f T x M�1 � f xŽ . Ž . Ž .p p
2.9 d x , � � � p � 1Ž . Ž . Ž .n21 � xŽ .

and thus has the form
P xŽ .2 p � p � 1 ,Ž .n21 � xŽ .
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Ž .where P x is a polynomial of degree 2 p. A simple calculation shows that2 p

d 1 � x 2 P� x � 2nxP xŽ . Ž . Ž .2 p 2 p
d x , � �Ž . n�12dx 1 � xŽ .

Ž .and hence that d x, � has no more than 2 p � 1 stationary points. Now for
Ž . Ž . Ž .n � p, lim d x, � � � p � 1 and as a consequence the function d x, �� x � ��

has at most p � 1 maxima and p minima. Thus since the directional
Ž .derivative d x, � * of the D-optimal design has maxima at the support points

it follows that the optimal design has at most p � 1 such points and
Ž .furthermore, since the information matrix M � * is necessarily nonsingular,

that the design � * is in fact based on exactly p � 1 points of support.
Ž .For the proof under assumption ii consider the necessary and sufficient
Ž .condition for � * to be D-optimal, d x, � * � 0, rewritten as

nT �1 22.10 g x � f x M � * f x � p � 1 1 � x � 0Ž . Ž . Ž . Ž . Ž . Ž . Ž .p p

� �for all x � XX � a, b , where �� � a � b � �, with equality holding at the
support points of � *. Then for n a nonnegative integer strictly less than p,

Ž .the function g x is a polynomial of exact degree 2 p and it follows immedi-
Ž .ately that g x has at most p � 1 zeros and further that, if it does indeed

have p � 1 zeros, then these include the two endpoints, a and b. Thus, since
Ž .M � * is necessarily nonsingular, it is clear that � * has exactly p � 1 points

of support including the endpoints.
Ž .The proof assuming that condition iii holds is more intricate. Suppose

� �that p is odd, the case for p even being similar. Let XX � �b, b , 0 � b � �.
Then the elements of the information matrix of a D-optimal design � * must

� Ž .� � �1Ž .�satisfy M � * � 0 for i � j odd. Hence M � * � 0 for i � j odd, andi j i j
Ž . Ž . Ž 2 .it follows that the function g x is even, that is, g x � h x , where

Ž . p i Ž .Ž .n Ž . Ž .h t � Ý a t � p � 1 1 � t . Now let H t � h t for t � 0, and leti�0 i
Ž . Ž .H t be equal to the Taylor expansion of h t about 0 up to degree p � 1 for

Ž . � 2 � Ž .t � 0. Then H t � 0 for all t � 0, b and the function H t has as many
� 2 � Ž . � �zeros in 0, b as the function g x in 0, b . Let q denote the number of
Ž .zeros of H t in � counted according to their multiplicities. Then the assump-
Ž . Ž . Ž p�1.Ž .tion that n n � 1 ��� n � p � 0 ensures that H t � 0 for all t � �

and it therefore follows from Rolle’s theorem that q � p � 1. Furthermore,
Ž .for t � 0 H t is equal to a polynomial of even degree p � 1 and the leading

Ž .coefficient of this polynomial is negative. Thus lim H t � ��. On thet ���

Ž .other hand, lim H t � �, since n � p. Hence q must be odd, and sot ��

Ž . Ž 2 . Ž .q � p. Since every zero of H t in 0, b is at least a double zero, H t
Ž . Ž 2 . Ž .vanishes at most p � 1 �2 times in 0, b and at most p � 1 �2 times in

� 2 � Ž . Ž . Ž .0, b . Therefore, g x has at most p � 1 distinct zeros in �b, 0 � 0, b
� � Ž .and at most p � 1 distinct zeros in �b, b . Thus g x has exactly p � 1

� �zeros in �b, b and the zeros must include the endpoints. �

Ž .Thus D-optimal designs for the weighted polynomial model 2.1 with
Ž .efficiency function 2.2 and p � n are based on exactly p � 1 points. For
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p � n, the problem of determining the number of support points for the
D-optimal designs is inextricably associated with the nature of those points
and is thus discussed in detail in the ensuing section. In particular it is
shown there that for p � n there exists an infinite number of D-optimal
designs with p � 1 and with more than p � 1 points of support. If p � n and

Ž . Ž .n � � , neither of the assumptions ii or iii of Lemma 2.1 are necessarily0
satisfied, but the following result shows that in such cases the D-optimal
designs are based on at most p � 2 support points.

LEMMA 2.2. If p � n, the D-optimal design for the weighted polynomial
Ž . Ž .regression model 2.1 with efficiency function 2.2 and design space XX a

bounded interval has at most p � 2 support points.

PROOF. For p � n it is clear from the proof of Lemma 2.1 that the
Ž .directional derivative d x, � * has no more than 2 p � 1 stationary points
Ž . Ž .and also that lim d x, � * � �. Thus because there is equality in 2.10� x � ��

Ž .for all p � p � 1 support points of the D-optimal design, d x, � * has either0
Ž .p � 1 or p zeros in the interval a, b . The first case corresponds to p � 1

� �and the second to p � 2 points of support in a, b . �

The following example illustrates the fact that D-optimal designs based on
Ž .p � 2 points do exist but that condition iii of Lemma 2.1 is not a necessary

one.

Ž .EXAMPLE 2.3. Consider the polynomial regression model 2.1 with effi-
Ž . � �ciency function 2.2 and design space XX � �1, 1 . Suppose further that the

regression is quadratic, that is, p � 2, and consider values of n � p for which
Ž .condition iii of Lemma 2.1 is violated. Then for n � �2, the D-optimal

design comprises four points of support and, specifically, puts masses of
0.1675 on each of the points �0.1895 and of 0.3325 on each of the points �1.

3In contrast, the D-optimal design for n � puts equal masses on the three2

support points, �1, 0 and 1. In fact empirical evidence suggests that there is
a cut-off value for n satisfying the equation 2n�1 � n � 2, that is, n �
�1.8625, below which the requisite D-optimal design is based on four points
and above which it is based on three points of support.

3. Unrestricted design spaces. Consider the weighted polynomial re-
Ž . Ž .gression model 2.1 with efficiency function 2.2 and unrestricted design

space �. Then for p � n, D-optimal designs exist and can be determined
explicitly. This is explored in the following series of results.

THEOREM 3.1. Let p � n and XX � �. Then the D-optimal design for the
Ž . Ž .polynomial regression model 2.1 with efficiency function 2.2 puts equal

masses at the p � 1 zeros of the polynomial

Ž�n�1�2. 2'C � x ,Ž .p�1
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Ž� .Ž .where C u denotes the mth ultraspherical polynomial defined by them
Ž� .Ž . Ž� .Ž .recursive relations C u � 0, C u � 1 and�1 0

3.1 mC Ž� . u � 2 m � � � 1 uC Ž� . u � m � 2� � 2 C Ž� . uŽ . Ž . Ž . Ž . Ž . Ž .m m�1 m�2

for m � 1.

PROOF. Observe first that by Lemma 2.1 the required D-optimal design
has exactly p � 1 support points, say �� � x � ��� � x � �. Then it fol-0 p

�lows from a standard argument in design theory see, e.g., Karlin and
Ž . Ž . �Studden 1966 , page 329; Silvey 1980 , page 43 that the D-optimal design

� * puts equal masses at these points and that the determinant of the
Ž .information matrix M � * is given by

p �nŽ . 2� p�1 2� �3.2 M � * � p � 1 1 � x x � x .Ž . Ž . Ž . Ž .Ž .Ł Łj i j
j�0 0�i�j�p

Furthermore by invoking arguments similar to those presented in Szegö
Ž . Ž . p Ž .1975 , page 141, it is clear that the polynomial k x � Ł x � x whichj�0 j
has roots equal to the support points of the D-optimal design � * satisfies the
differential equation

3.3 1 � x 2 k x � 2nxk� x � c k x � 0,Ž . Ž . Ž . Ž . Ž .0

Ž . Ž .where the term c � p � 1 � 2n � p is obtained by comparing the coeffi-0
cients of x p on both sides of the equation. For ease of reference the polyno-

Ž .mial k x is termed the support polynomial.
Ž .The differential equation 3.3 is second order and has a fundamental set of

Ž Ž .solutions comprising the two hypergeometric functions F � p � 1 �2, �n2 1
2 . Ž Ž . 2 . �� p�2, 1�2; �x and x F �p�2, �n � p � 1 �2, 3�2; �x see Boyce2 1

Ž . �and DiPrima 1997 , page 135 . For p a nonnegative integer, it now fol-
lows that exactly one of these solutions is a polynomial of degree p � 1
and, moreover, that it coincides with the ultraspherical polynomial

Ž�n�1�2. 2'Ž . � Ž . Ž .C � x of degree p � 1 see Szego 1975 , equations 4.7.29 and¨p�1
Ž .�4.7.30 . This result is further corroborated by comparing the differential

Ž . Ž . Ž .equation 3.3 with equation 4.7.5 of Szego 1975 . �¨

1Ž�n�1�2. 2'Ž .The polynomial C � x , with superscripted parameter � � �p�1 2

and an imaginary argument, is a generalized form of an ultraspherical
polynomial and as a consequence enjoys some, but not necessarily all, of the

� Ž . �properties of its classical counterparts Szego 1975 , page 63 . Thus, for¨
example, the Rodrıgues’ formula for ultraspherical polynomials as given in´

�Ž . Ž .�Abramowitz and Stegun 1964 , page 785, 22.11.2 holds and, specifically,
Ž�n�1�2. 2'Ž .the polynomial C � x is proportional top�1

d p�1 1n�121 � x .Ž . n�pp�1 2dx 1 � xŽ .
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Note that this result was also obtained in the context of optimal design by
Ž .Antille 1977 . In contrast, the orthogonality properties of the classical ultra-

spherical polynomials and also results pertaining to the location of their zeros
� Ž . �see, e.g., Szego 1975 , page 145 do not extend to the polynomials of the form¨

Ž�n�1�2. 2'Ž .C � x . It is interesting to note however that the family of polyno-p�1
Ž�n�1�2. 2'Ž .mials of the form C � x with n fixed and p � n are orthogonalp�1

Ž 2 .n�1 Ž .with respect to the weight function 1� 1 � x on the interval ��, � , a
property which is unrelated to the orthogonality property of the classical
ultraspherical polynomials. Finally it is observed, as an unexpected byprod-
uct of Theorem 3.1, that the roots of the ultraspherical polynomials of the

Ž�n�1�2.Ž .form C u are all imaginary.p�1
The following result gives the limiting form of the D-optimal designs

� �derived in Theorem 3.1 for the case of p � cn with 0 � c � 1 as n tends to
infinity.

THEOREM 3.2. The D-optimal design for the weighted polynomial regres-
Ž . Ž .sion model 2.1 with efficiency function 2.2 , design space � and p � p �n

� �cn , where 0 � c � 1, converges weakly to the distribution with density

2 2' '1 c 2 � c � 1 � c x c 2 � cŽ . Ž . Ž .
� �3.4 g x � I x �Ž . Ž . 2 ½ 5c� 1 � c1 � x

as n � �.

PROOF. Recurrence formulas for the moments of the uniform distribution
Ž�n�1�2. 2'Ž .on the zeros of the ultraspherical polynomial C � x follow imme-p �1n�Ž . Ž .�diately from the results of Dette and Wong 1995 , Theorem 3.1 b . In

particular, let � denote the kth moment of this distribution for given nk , n
� �and let p � cn . Then, for r � 1, 2, . . . , the odd moments satisfy � � 0n 2 r�1, n

and the even moments can be expressed as

r�11
� � p � 1 � �Ž . Ý2 r , n n 2 r�2�2 j , n 2 j , n½2n � 2 p � 1 � 2rn j�0

r�1

� p � 1 � � � 2r � 1 � .Ž . Ž .Ýn 2 r�2 j , n 2 j , n 2 r�2, n 5
j�1

3.5Ž .

Thus, in the limit as n tends to infinity, the ratio p �n tends to c and then
limiting moments � � lim � are described by � � 0 and by thek n�� k , n 2 r�1
recursive relation

r�1 r�1c
3.6 � � � � � � �Ž . Ý Ý2 r 2 r�2 j�2 2 j 2 r�2 j 2 j½ 52 1 � cŽ . j�0 j�1
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for r � 1, 2, . . . . It now follows that the Stieltjes transform of the limiting
distribution � , defined by

d� xŽ .
S z �Ž . H z � x�

3.7Ž .
� '� c 2 � cŽ .2 r

� �� for z � � � � and z � ,Ý 2 r�1 1 � czr�0

can be readily derived from these moments. More precisely, observe that the
identities

� r�1
�2 r�2 2 2� � z � z S z ,Ž .Ý Ý 2 r�2�2 j 2 j

r�1 j�0

� r�1
�2 r�2 4 2 3 2� � z � z S z � 2 z S z � z ,Ž . Ž .Ý Ý 2 r�2 j 2 j

r�1 j�1

�
�2 r�2 3 2� z � z S z � zŽ .Ý 2 r

r�1

Ž . �2 r�2hold and hence, on multiplying expression 3.6 by z , summing and
rearranging, that

2 2 � c
2 21 � z S z � zS z � � 0.Ž . Ž . Ž .

c c
Thus the Stieltjes transform is given by

2 2'z � 1 � c z � c 2 � cŽ . Ž .
S z � ,Ž . 2c 1 � zŽ .

Ž .where the branch of the square root is defined such that lim S z � 0� z � ��

and the required limiting distribution is obtained by invoking an inversion
Ž .formula of Chihara 1978 , page 90. �

Ž .It is interesting to observe that for c � 1 the limiting distribution 3.4 is
Cauchy. This result suggests that the Cauchy distribution plays a particular
role in describing D-optimal designs for the case of p � n and this idea is
made more precise in the following theorem.

Ž .THEOREM 3.3. Consider the weighted polynomial regression model 2.1
Ž .with efficiency function 2.2 , p � n and XX � �. Then every design which puts

equal masses at the support points
� �

3.8 x � tan � � j � � , j � 0, . . . , k � 1,Ž . j ž /2 k
Ž .where � � 0, ��k and k � p � 1, is D-optimal. Moreover, the design with

Ž . � Ž 2 .4continuous support described by the Cauchy density g x � 1� � 1 � x is
also D-optimal.



OPTIMAL DESIGN FOR RATIONAL MODELS 1281

PROOF. A straightforward calculation shows that the information matrix
Ž .2.3 of the design � for the weighted polynomial regression model in x can
be expressed as

��2 TM � � r t r t d� t ,Ž . Ž . Ž . Ž .H
���2

Ž .where � denotes the measure on ���2, ��2 induced from � by the
Ž .transformation x � tan t and the vector r t is given by

Tp p�1 p�1 pr t � cos t , cos t sin t , . . . , cos t sin t , sin tŽ . Ž .
3.9Ž .

T� r t , . . . , r t .Ž . Ž .Ž .0 p

Now it follows from Euler’s identities, which relate trigonometric functions to
complex exponential functions, that

span r t , . . . , r tŽ . Ž .� 40 p

� 4span 1, sin 2 t , cos 2 t , . . . , sin pt , cos pt , if p is even,
� ½ � 4span sin t , cos t , sin 3t , cos 3t , . . . , sin pt cos pt , if p is odd.

3.10Ž .

Thus, since D-optimal designs are invariant with respect to the choice of the
basis spanned by the regression functions, it is clear that the D-optimal
designs for the model of interest are equivalent to those for homoscedastic

Ž .trigonometric regression involving the functions 3.10 . Specifically, the D-
optimal designs associated with these trigonometric regression models com-
prise k � p � 1 equally spaced and equally weighted points on the interval
Ž . � Ž . ����2, ��2 see, e.g., Pukelsheim 1993 , Section 9.16 and the required
designs in terms of the x variables are obtained by invoking the transforma-
tion x � tan t.

The information matrix of any D-optimal design associated with the
Ž .trigonometric regression functions of the form 3.10 is given by

1 0
10 Iž /p2

1for p even and by I for p odd, where I denotes the identity matrix ofp�1 d2

order d, and it is easily shown that the information matrix for a design with
continuous support described by the uniform distribution on the interval
Ž . � Ž . ����2, ��2 is the same Fedorov 1972 , page 94�95 . Thus the second
assertion of the theorem follows by again invoking the transformation x �
tan t. �

It should be noted that all the curious and interesting features of D-opti-
mal designs for trigonometric regression hold in the present case and, in
particular, that the directional derivatives are equal to zero for all x in the
design space �. The following example illustrates some of the above findings.
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EXAMPLE 3.4. Consider a rational model with deterministic component

� � � u � � u2
0 1 2

3.11 	 u , � � , u � �,Ž . Ž . 21 � � u � � u3 4

where � 2 � 4� . Then the problem of constructing a locally D-optimal design3 4
for this model is equivalent to that of finding a D-optimal design for the

Ž .weighted polynomial regression model 2.1 of degree 4 with efficiency func-
Ž . Ž 2 .�4tion � x � 1 � x and XX � �. It now follows immediately from Theorem

3.3 that there exists an infinite number of D-optimal designs for this weighted
Ž .polynomial regression model and, by applying the transformation 2.8 , that

there exists an infinite number of locally D-optimal designs for the rational
Ž .model 3.11 . Thus, for example, a symmetric five-point D-optimal design for

the weighted polynomial regression model puts equal masses at

2� � � 2�
� 4�tan , �tan , 0, tan , tan � �3.078, �0.727, 0, 0.727, 3.078½ 55 5 5 5

and the D-optimal design with infinite support is described by the Cauchy
� Ž 2 .4distribution with density 1� � 1 � x for x � �. For the rational model

Ž .3.11 with � � 1 and � � 1, the corresponding five-point locally D-optimal3 4
1design puts equal masses at the support point �3.165, �1.129, � , 0.1292

and 2.165 and the D-optimal design with infinite support is given by the
Cauchy distribution with density function

2 1
g u � for u � �.Ž . 2'3� 1 � 2u � 1 �3Ž .� 4

Ž .REMARK 3.5. For the weighted polynomial model 2.1 with efficiency
Ž .function 2.2 and p � n, the D-optimal designs based on p � 1 points and

given in Theorem 3.3 can also be derived by invoking arguments related to
those in Theorem 3.1. To be precise, for p � n the fundamental set of

Ž .solutions to the differential equation 3.3 comprises the two ultraspherical
Ž�p�1�2. 2 Ž�p�1�2. 2' 'Ž . Ž .polynomials C � x and C � x of degrees p and p � 1,p p�1

Ž �respectively see the discussion in the proof of Theorem 3.1 . It thus follows
that every linear combination,

3.12 k x � C Ž�p�1�2. ix � icC Ž�p�1�2. ix for c � �Ž . Ž . Ž . Ž .c p�1 p

Ž .satisfies the differential equation 3.3 and furthermore, since such a combi-
nation is a polynomial of degree p � 1, that its zeros yield the support points
of the required D-optimal designs. Now observe that for x � tan t,

C Ž�p�1�2. i tan tŽ .p�1

�
Ž�p�1�2.� C i cot � tp�1 ž /ž /2
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p�1 1 �Ž . �p�1 �22 i �Ž . Ž . p � 1m2� �1Ž .Ý1 ž /2m� p � 2 � �p �Ž . Ž .2 m�0

p�1�2 m 2 m�p�1� �
� cos � t sin � tž / ž /ž / ž /2 2

1p�12 i � �Ž .2� cos p � 1 � t ,Ž .1 ž /ž /ž /cos t � p � 2 � �p � 2Ž . Ž .2

where the second equality follows from the explicit representation of the
� Ž .ultraspherical polynomials see, e.g., Abramowitz and Stegun 1964 , page

Ž .�775 22.3.4 and the third equality is a consequence of certain basic proper-
� Ž . Ž .�ties of trigonometric functions see, e.g., Jolley 1961 , 643 . Similarly

p 12 i � � �Ž . Ž .2Ž�p�1�2.C i tan t � sin p � 1 � t .Ž . Ž .p 1p�1 ž /ž /� p � 2 � �p � 2Ž . Ž .cos tŽ . 2

Ž .Thus finding the zeros of the polynomial 3.12 is equivalent, through the
transformation x � tan t, to solving the trigonometric equation

�
3.13 tan p � 1 � t � c*,Ž . Ž . ž /ž /2

Ž . Ž .where t � ���2, ��2 and c* � �. Furthermore it is readily seen that 3.13
Ž .has exactly p � 1 solutions equally spaced in the interval ���2, ��2 , and

thus that these solutions, transformed according to the relation x � tan t,
Ž .are precisely the support points of the p � 1 -point D-optimal designs

described in Theorem 3.3.

4. Optimal designs on restricted design spaces. Consider the
Ž . Ž .weighted polynomial regression model 2.1 with efficiency function 2.2 and

� �constrained design space XX � �1, 1 . Assume also that one of the conditions
of Lemma 2.1 is satisfied and hence that the D-optimal designs for this model
setting are supported on exactly p � 1 points. Then the first result presented
in this section provides a partial solution to the problem of constructing such
designs for the particular case of p � n.

Ž .THEOREM 4.1. Let x p, n denote the largest root of the ultraspherical0
Ž�n�1�2. 2'Ž . Ž .polynomial C � x . Then if x p, n � 1, the D-optimal design forp�1 0

Ž . Ž .the polynomial regression model 2.1 with efficiency function 2.2 , p � n
� �where n � �, and XX � �1, 1 puts equal masses on the zeros of that polyno-

Ž .mial. Moreover, a sufficient condition for x p, n � 1 is given by0

1 2'n � �2 � 3 p � 1 � 3 p .ž /2

PROOF. The first part of the theorem follows immediately from Theorem
3.1. To prove the second part, observe that the recurrence relation for the
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Žmonic version of an ultraspherical polynomial i.e., the form with leading
.coefficient equal to 1 is given from the results in the Appendix of Chihara

Ž̂�n�1�2. Ž̂�n�1�2.Ž . Ž . Ž .1978 by C u � 0, C u � 1 and�1 0

Ž̂�n�1�2. Ž̂n�1�2. Ž̂�n�1�2.C u � xC u � � C u for j � 1,Ž . Ž . Ž .j j�1 j j�2

where

j � 1 j � 3 � 2nŽ . Ž .
� � .j 4 j � n � 5�2 j � n � 3�2Ž . Ž .

Ž .Moreover by Proposition 10.6 of Lorentzen and Waadeland 1991 , page 461,
Ž̂�n�1�2.Ž . � � �all zeros of the polynomial C u are located within the disc z: z �p�1

4 p�1 � � � �2 M where M � max � . Now it is readily shown that � is an increas-j�2 j j
ing function of j for 1 � j � p � 1 with p � n and hence that

p 2n � 2 � pŽ .
� �M � � � .p�1 2n � 2 p � 3 2n � 2 p � 1Ž . Ž .

1Ž . ŽThus x p, n � 1 provided M � 1�2 and thus provided n � �2 � 3 p0 2
2 .'� 1 � 3 p . �

Ž .Furthermore if p � n and x p, n � 1 the support of the D-optimal0
design must include the boundary points �1 and �1 since, if this were not
the case, a second D-optimal design on the design space XX � � with p � 1
support points would be obtained and Theorem 3.1 contradicted. In addition
it is clear from Lemma 2.2 that for p � n the required D-optimal design
contains the end-points of the design space in its support.

For p � 0, 1, . . . , 4 explicit expressions for the support points of D-optimal
designs based on p � 1 points can be readily obtained by using the above
proposition and by invoking symmetry arguments, and this is illustrated in
the following example.

EXAMPLE 4.2. Suppose that p � 4. Then the largest root of the ultra-
Ž�n�1�2. 2'Ž .spherical polynomial C � x is given byp�1

1�2
1 n � 1'x 4, n � 5 � 2 5Ž . (0 ½ 5ž /2n � 7 2n � 5

Ž .and is strictly decreasing with increasing n. It thus follows that x 4, n � 10
1 'Ž .for n � 11 � 21 and hence that for such values of n the support points of2

� �the D-optimal designs on �1, 1 coincide with the zeros of the polynomial
Ž�n�1�2. 2'Ž .C � x . The bound from Theorem 4.1 is given by n � 17�2. For5

1 'Ž . Ž .Ž .Ž .Ž .values of n � 11 � 21 with n n � 1 n � 2 n � 3 n � 4 � 0, condi-2
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Ž . � �tion iii of Lemma 2.1 holds and the D-optimal design on �1, 1 is symmet-
ric and puts equal masses on the support points 0, �a, �1, where 0 � a � 1
and a is obtained algebraically by maximizing the determinant of the infor-
mation matrix as

1�2
2'n � 2 � n � 2n � 25Ž .

a � .½ 52n � 7

More generally D-optimal designs for the weighted polynomial regression
Ž . Ž . � �model 2.1 with efficiency function 2.2 and design space XX � �1, 1 which

are based on p � 1 points of support can be obtained as follows. The
determinant of the information matrix of a design with x � �1, interior0
points �1 � x � x � ��� � x � 1, and x � 1 is given by1 2 p�1 p

22p�1 1 � xŽ .jŽ . 2� p�12�2 n� �4.1 M � � 2 p � 1 x � x .Ž . Ž . Ž . Ž .Ł Łn i j2j�1 1�i�j�p�11 � xŽ .j

On differentiating this expression with respect to x , i � 1, . . . , p � 1, andi
Ž .invoking arguments similar to those of Szego 1975 , page 141, it is immedi-¨

Ž . p�1Žately clear that the support polynomial for the interior points k x � Ł xj�1
.� x is a solution to the second-order differential equationj

1 � x 4 k x � 2 x n � 2 x 2 � n � 2 k� x� 4Ž . Ž . Ž . Ž . Ž .
4.2Ž .

� c x 2 � c k x � 0,Ž .Ž .1 2

Ž .Ž .where the terms c and c are constants with c � p � 1 p � 2 � 2n . This1 2 1
equation can in turn be written in Sturm�Liouville form as

22 2d 1 � x d 1 � xŽ .
2k x � c � c x k x � 0Ž . Ž .Ž .n 2 1n�12 2dx dx1 � xŽ . 1 � xŽ .

� Ž . �see Birkhoff and Rota 1989 , page 256 . It then follows immediately from
Ž .arguments similar to those of Huang, Chang and Wong 1995 and Chang

Ž .and Lin 1997 that the support polynomial has the form

Ž .p�1 �2

2 ja x , for p odd,Ý 2 j

j�0�4.3 k x �Ž . Ž . p�2�1
2 j�1a x , for p evenÝ 2 j�1�

j�0
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with coefficients given by the elements of the eigenvector corresponding to the
smallest eigenvalue satisfying the equation

4.4 Aa � �c a,Ž . Ž .2

where

T
 a , a , . . . , a , for p odd,Ž .0 2 p�1�4.5 a �Ž . T� a , a , . . . , a , for p even,Ž .1 3 p�1

� � 0 0 ��� 0 0 00 0

� � � 0 ��� 0 0 01 1 1

0 � � � ��� 0 0 02 2 2
. . . . . . . .4.6 A � ,Ž . . . . . . . . .. . . . . . . .
0 0 0 0 ��� � � �q�1 q�1 q�1

0 0 0 0 ��� 0 � �q q

p � 2 j � 1 p � 2n � 2 j , for p odd,Ž . Ž .
4.7 � �Ž . j ½ p � 2 j p � 1 � 2n � 2 j , for p even,Ž . Ž .

�4 n � 2 j, for p odd,Ž .
4.8 � �Ž . j ½ �2 n � 2 2 j � 1 , for p even,Ž . Ž .

2 j � 1 2 j � 2 , for p odd,Ž . Ž .
4.9 � �Ž . j ½ 2 j � 2 2 j � 3 , for p even,Ž . Ž .

�Ž . �where q � p � 1 �2 . The above formulation provides a complete, albeit
Ž .numeric, solution to the problem of finding p � 1 -point D-optimal designs

Ž .for the weighted polynomial regression model 2.1 with efficiency function
Ž . � �2.2 on the design space �1, 1 . Furthermore, it is readily extended to any
design space which is a symmetric, compact interval. Analytic solutions to
this type of optimal design problem are, however, elusive. It is therefore
particularly interesting that for the present model setting with n � 1 and

Ž .n � 2 the eigenvalue problem 4.4 can be solved explicitly. The remainder of
this section is devoted to these special cases.

Observe firstly that by Descartes’ rule of signs all coefficients of the
Ž .support polynomial defined in 4.3 , and hence all elements of the correspond-

ing eigenvector of the matrix A, are nonzero and must alternate in sign. The
following result shows that for any n and p sufficiently large there is in fact
exactly one eigenvector of A with this property.

LEMMA 4.3. Assume that

2 n � 1 , if p � 2 q � 1 is odd,Ž .
p � ½ 2 n � 1 � 1, if p � 2 q � 2 is even.Ž .
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Ž .Then there exists exactly one eigenvector of the matrix A defined in 4.5 with
components which have precisely q changes of sign. Furthermore, this eigen-
vector corresponds to the smallest eigenvalue of A.

Ž . Ž . Ž .PROOF. Recall the definition of the matrix A in 4.5 , 4.7 � 4.9 and
choose � � � sufficiently large so that every principal minor of the matrix
B � �I � A is positive. It then follows from this choice of � and from the fact
that � , . . . , � and � , . . . , � are positive that B is an oscillatory matrix1 q 0 q�1
� Ž . �see Gantmacher 1959 , page 103 . The assertion now follows from Theorem

Ž .XIII.13 in Gantmacher 1959 . �

For n � 1 and 2 with p � n, the eigenvector of A with alternating
components described in Lemma 4.3, and hence the associated D-optimal
design, can be derived explicitly as follows.

Ž .THEOREM 4.4. a The D-optimal design for the weighted polynomial re-
Ž . Ž . Ž 2 .�1gression model 2.1 with efficiency function � x � 1 � x and p � 1

Ž .puts equal masses 1� p � 1 at the p � 1 zeros of the polynomial

p p � 1Ž .
2 Ž3�2. Ž1�2.4.10 1 � x xC x � C x ,Ž . Ž . Ž . Ž .(p�2 p�1½ 52

Ž� .Ž . Ž .where C x denotes the kth ultraspherical polynomial defined in 3.1 .k
Ž .b The D-optimal design for the weighted polynomial regression model

Ž . Ž . Ž 2 .�22.1 with efficiency function � x � 1 � x and p � 2 puts equal masses
Ž .1� p � 1 at the p � 1 zeros of the polynomial

x
2 2 Ž3�2. Ž1�2.'1 � x x C x � 8 p � 1 p � 2 � 1 � 1 C xŽ . Ž . Ž . Ž . Ž .ž /p�3 p�2½ 2

4.11Ž . p � 1 p � 2Ž . Ž .
Ž�1�2.� C x .Ž .p�1 52

Ž . Ž .PROOF. The proofs for parts a and b of the theorem are similar and
Ž .only that for the more complicated part b is therefore presented here. It

follows from Lemma 2.1 that the D-optimal design has p � 1 support points
including both endpoints. Furthermore, since p � 2, it follows from Lemma
4.3 that there exists exactly one eigenvector of the matrix A with precisely
�Ž . �p � 1 �2 sign changes. For definiteness, assume that p is even with
p � 2 q � 2. Then it is not hard to verify that

'4.12 c � 6 � p � 1 p � 2 � 2 8 p � 1 p � 2 � 1Ž . Ž . Ž . Ž . Ž .2

Ž . Ž 	is a solution to 4.4 and that the corresponding eigenvector a ,1
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	 	 .Ta , . . . , a has components which have alternating signs and are given3 2 q�1
by

p�1 p�2Ž . Ž .i�1	 'a � �1 4 i� � 8 p�1 p�2 �1 �1Ž . Ž . Ž .2 i�1 ½ 52 i � 1Ž .
4.13Ž . i 2 q � 2 j � 1q 	 Ž1. 	 Ž2. 	 Ž3.� � a � a � aŁ 2 i�1 2 i�1 2 i�1ž /i 2 j � 1j�1

for i � 0, . . . , q. Note the exact correspondence between the three terms
specified algebraically in the two summations. Consequently, it now suffices

Ž 2 . q 	 2 i�1 Ž .to show that the polynomial 1 � x Ý a x is proportional to 4.11 .i�0 2 i�1
To this end observe that

1q1 � q � i �Ž .2q� i 2 iŽ1�2.C x � �1 2 xŽ . Ž . Ž .Ý2 q 12 � � 2 i � 1 � q � i � 1Ž . Ž .Ž .2i�0

1 q i� q � 2 q � 2 j � 1Ž . q2 q� i 2 i� �1 x ,Ž .Ý Ł1 ž /i� � q � 1 2 j � iŽ .Ž . j�12 i�0

4.14Ž .

Ž .where the first equality follows from equation 22.3.4 in Abramowitz and
Ž .Stegen 1964 and the second equality is obtained by straightforward but

tedious computation. This immediately implies that
q

	 Ž3. 2 i�1 Ž1�2.'4.15 a x � q 8 p � 1 p � 2 � 1 � 1 xC x ,Ž . Ž . Ž . Ž .½ 5Ý 2 i�1 0 2 q
i�0

1 1q�1Ž . Ž . Ž . Ž .where q � �1 � � q � 1 �� q � . Furthermore, by differentiating0 2 2
Ž . Ž .and integrating 4.14 , and in so doing invoking formula 4.7.14 in Szegö

Ž .1975 , it follows that
q

	 Ž1. 2 i�1 2 Ž3�2.4.16 a x � 2 q x C xŽ . Ž .Ý 2 i�1 0 2 q�1
i�0

and that
q

	 Ž2. 2 i�1 Ž�1�2.4.17 a x � �q p � 1 p � 2 C ,Ž . Ž . Ž .Ý 2 i�1 0 2 q�1
i�0

respectively. Thus the assertion for p � 2 q � 2 follows by adding
Ž . Ž .4.15 � 4.17 . The proof for the case of p odd with p � 2 q � 1 is similar, with

Ž . Ž 	 	 .Tthe eigenvector corresponding to 4.12 being given by a , . . . , a where0 2 q

p � 1 p � 2Ž . Ž .i	 'a � �1 i 4 i � 1 � 8 p � 1 p � 2 � 1 �Ž . Ž . Ž .ž /2 i ½ 52
i 2 q � 2 j � 3q

� Łž /i 2 j � 1j�1

for i � 0, . . . , q. �
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Ž .REMARK 4.5. Hoel 1958 has shown that the D-optimal design for the
homoscedastic polynomial regression model of degree p puts equal masses at

Ž 2 . � Ž . Ž .the p � 1 zeros of the polynomial 1 � x P x where P x is the pthp p
Legendre polynomial. Now this model corresponds to the weighted polyno-

Ž . Ž .mial regression model 2.1 with efficiency function 2.2 and n � 0 and
� Ž .furthermore it is well known that P x is proportional to the ultrasphericalp

Ž3�2.Ž . � Ž . �polynomial C x see Szego 1975 , page 81 . Thus the result of Hoel¨p�1
Ž . Ž .1958 for efficiency function 2.2 with n � 0 and the results of Theorem 4.4
for n � 1 and 2 lead naturally to the following conjecture.

CONJECTURE. There exist constants � , . . . , � such that the D-optimal0 n
Ž .design for the weighted polynomial regression model 2.1 with efficiency

Ž . � �function 2.2 , where n � � with n � p and XX � �1, 1 , puts equal masses0
Ž 2 . Ž .at the p � 1 zeros of the polynomial 1 � x k x , where

n
j Ž3�2�n�j.4.18 k x � � x C x .Ž . Ž . Ž .Ý j p�1�j

j�0

A proof of this general conjecture requires the explicit determination of the
Ž .smallest eigenvalue of the matrix A in order to find the coefficients in 4.18

and this would seem to be intractable for all n greater than 2. There is,
however, numerical evidence to suggest that the conjecture is indeed correct.
In particular for given n and p it is possible to find the smallest eigenvalue
of the matrix A numerically, to substitute the sum of ultraspherical polyno-

Ž . Ž . Ž .mials 4.18 for k x in the differential equation 4.2 and to solve for the
coefficients � , . . . , � , either by equating coefficients of powers of x or by0 n

Ž .evaluating 4.2 at selected values of x. In all cases examined, the resultant
Ž . Ž .expression for k x was verified as a solution to the differential equation 4.2

and was further shown to have coefficients with alternating signs. Thus, for p
sufficiently large, it follows immediately from Lemma 4.3 that the design
which puts equal masses on support points given by the zeros of the polyno-

Ž 2 . Ž .mial 1 � x k x is indeed D-optimal. Otherwise for p � n the D-optimality
of this latter design can be established by invoking the Kiefer�Wolfowitz

Ž .equivalence theorem 1960 . The following example illustrates these ideas.

Ž .EXAMPLE 4.6. Consider the weighted polynomial regression model 2.1 of
Ž .degree p � 9 with efficiency function 2.2 and n � 3. Then the differential

Ž .equation 4.18 is given by

4.19 1 � x 4 k x � 2 x x 2 � 5 k� x � 40 x 2 � c k x � 0Ž . Ž . Ž . Ž . Ž . Ž .Ž .2

and the term c , which is equal to minus the smallest eigenvalue of the2
matrix A, is computed as 113.1363. Substituting the sum of four ultraspheri-

Ž . Ž .cal polynomials defined by 4.18 for k x into this differential equation,
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setting � � 1 for definiteness, evaluating the resultant expression at x � 0.2,3
0.4 and 0.6, and solving for � , � and � yields the polynomial0 1 2

k x � 31.1023C Ž�3�2. x � 70.0175xC Ž�1�2. xŽ . Ž . Ž .8 7

� 15.2841 x 2C Ž1�2. x � x 3C Ž3�2. xŽ . Ž .6 5

��0.007942�0.449276 x 2 �0.346052 x 4 �0.780734x6 �0.518347x8 .

It is straightforward to verify by direct substitution that this expression does
Ž .indeed satisfy the differential equation 4.19 for all x. Furthermore, since

Lemma 4.3 holds for n � 3 and p � 9, the D-optimal design is based on 10
Žpoints and puts equal masses on the zeros of the support polynomial 1 �

2 . Ž .x k x , that is, on the points �0.1445, �0.4308, �0.6969, �0.9022 and �1.
It is also interesting to note that for n � 3 and p � 5 and 6, the coefficient �3
can be taken to be 0 and the required support polynomials expressed as

Ž�3�2.Ž . Ž�1�2.Ž . 2 Ž1�2.Ž . Ž�3�2.Ž .0.1289C x � 0.8921 xC x � x C x and as 0.6235C x4 3 2 5
Ž�1�2.Ž . 2 Ž1�2.Ž .� 0.4564 xC x � x C x , respectively, while for p � 4 the coeffi-4 3

Ž .cients � and � can both be taken to be 0 and k x is simply proportional to2 3
Ž�3�2.Ž . Ž�1�2.Ž .0.2616C x � xC x .3 2

REMARK 4.7. The D-optimal designs derived in Theorem 4.4 converge
� �weakly to the arcsine distribution on the interval �1, 1 as p approaches

infinity. The proof of this result follows closely that of Theorem 3.2 and is
therefore only outlined here. In particular by invoking arguments similar to

Ž .those presented in Dette and Wong 1995 and by observing that

c2
4.20 lim � 1 for n � 1, 2Ž . 2p�� p � 1Ž .

it can be shown that the moments � of the required limiting distribution arer
given by � � 0, � � 1�2 and2 r�1 2

r�1 r
1� � � � � � �Ý Ý2 r�2 2 r�2�2 u 2 u 2 r�2�2 u 2 u2 ½ 5

u�0 u�1

for all r � 1. It now follows by simple induction that these moments are
� �precisely the moments of the arcsine distribution on the interval �1, 1 , that

�2 r 2ris, � � 2 for r � 1. Finally note that the result also holds for thež /2 r r

general case with n � p provided the D-optimal design is supported at p � 1
Ž .points and provided condition 4.20 relating to the smallest eigenvalue of the

matrix A can be established.

5. Conclusions. The main aim of the present study has been to develop
a cohesive approach to the problem of constructing D-optimal designs for the
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weighted polynomial regression model with efficiency function of the form
Ž 2 .�n1 � x and thus, equivalently, to the problem of constructing locally
D-optimal designs for inverse quadratic models. The results have been de-
rived using tools from the theory of differential equations and are both
powerful and interesting. For the unrestricted design space � and p � n,
the problem of finding D-optimal designs can be completely solved analyti-
cally. Thus for p � n, the D-optimal designs put equal masses on p � 1
points which coincide with the zeros of the ultraspherical polynomial

Ž�n�1�2. 2'Ž . � �C � x and also exhibit an attractive limiting form for p � cnp�1
with 0 � c � 1 as n approaches infinity. The case of p � n is particularly
interesting in that a full gamut of unusual D-optimal designs based on p � 1
and more than p � 1 points and on a continuous support base can be derived
from the simple but elegant insight that these designs are equivalent to
D-optimal designs for certain trigonometric regression models. For the

� �weighted polynomial regression model with restricted design space �1, 1 ,
D-optimal designs exist for all values of p and n but the problem of deriving
analytical results for the construction these designs has proved to be a
particularly challenging one. Thus if n and p satisfy one of the conditions
specified in Lemma 2.1, then the D-optimal designs are based on p � 1
points of support and can be constructed elegantly and effectively by solving a
specific eigenvalue problem. This procedure is nevertheless a numerical one
and indeed the required D-optimal designs can be obtained straightforwardly
by using an optimization routine to maximize the determinant of the appro-
priate information matrix. Thus a key feature of the present study is the
development of analytical results for constructing D-optimal designs for the
cases of n � 1 and 2 and, in particular, the proof that these designs put equal
masses on the p � 1 points of support given by �1 and the p � 1 zeros of a
sum of n � 1 ultraspherical polynomials.

A number of open problems emerge immediately and naturally from the
present study. Thus, for example, it would be worthwhile to attempt to
sharpen the conditions derived in Lemma 2.1 concerning the number of
support points for the D-optimal designs of interest with p � n and in
addition, and in a related context, to derive explicit expressions for D-optimal
designs based on p � 2 points of support. Both of these problems are,
however, difficult ones to solve and this is further demonstrated in a different

Ž .model setting by the work of Huang, Chang and Wong 1995 . The conjecture
that the support points of D-optimal designs for the restricted design space
� ��1, 1 and p � n with n � � are based on the zeros of a sum of ultraspher-0
ical polynomials is an extremely powerful and far-reaching one and it would
clearly be particularly satisfying to find a general proof for it. Such a proof,
while seeming to be tantalizingly close, has not as yet been found. In a
broader context it would be interesting to develop D-optimal designs for
design spaces which are not symmetric about zero and, more importantly, to
extend the current methodology to accommodate rational models other than
inverse quadratic polynomials and to derive analytic results for the construc-
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tion of Bayesian D-optimal designs for those models. Such ideas are, how-
ever, beyond the scope of the present paper.
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