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The breakdown point behavior of M-estimators in linear models with
fixed designs, arising from planned experiments or qualitative factors, is
characterized. Particularly, this behavior at fixed designs is quite differ-
ent from that at designs which can be corrupted by outliers, the situation
prevailing in the literature. For fixed designs, the breakdown points of ro-
bust M-estimators (those with bounded derivative of the score function),
depend on the design and the variation exponent (index) of the score func-
tion. This general result implies that the highest breakdown point within
all regression equivariant estimators can be attained also by certain M-
estimators: those with slowly varying score function, like the Cauchy or
slash maximum likelihood estimator. The M-estimators with variation ex-
ponent greater than 0, like the L; or Huber estimator, exhibit a consider-
ably worse breakdown point behavior.

1. Introduction. We consider a general linear model,
y=XB +e

where y = (v, Y9, ..., yn)L € RY is a vector of observations, p € R” is an
unknown parameter vector, € = (&1, &5, ..., ex)! € RN a vector of errors, and
X = (X,Xy,...,Xy)7 € RV*P is the known matrix of design points, which
together constitute a design. Let  be an estimator of B. If X is given by an
experimenter, it can rightly be assumed that the design points do not contain
any gross errors, outliers and similar phenomena; in other words, they are
without errors and, particularly, they are nonstochastic. The same can be said
for factors of linear models which are of qualitative nature (in ANOVA models,
for instance). In such a context, it is natural to define the breakdown point
s*(ﬁ,y,X) of ﬁ as [He, Jureckova, Koenker and Portnoy (1990), Ellis and
Morgenthaler (1992) or Miiller (1995, 1997)]

&'(B,y,X) = min[M:  sup_ B X)] = oo,
yeB(y, M)
where B(y, M) = {y: card{n: §, # y,} < M}. This approach to the breakdown
point (with fixed design) differs from that prevailing in the literature (with
moving design). The latter assumes that not only the y,’s, but also the design
points x; are vulnerable to errors; as a consequence, the definition of the
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breakdown point allows also for perturbations of the x;’s [see, e.g., Rousseeuw
and Leroy (1987)].

In the present paper, we support the view that for planned experiments
and models with qualitative factors, the approach with fixed design is more
appropriate. In this vein, an upper bound for the breakdown point was given
in Miiller (1995, 1997): for any regression equivariant estimator [an estimator
such that B(y + X0, X) = B(y, X) + 0 for all y, X and 0],

%LN—WZ(X)HJ

(1.1) B, y,X) < ;
here .#/(X) = maxg_ card{n: xIB = 0} is the maximal number of regressors
X, in a subspace of R” (| u] denotes the largest integer < u). Note that (1.1) is
the same upper bound as in the moving design setting (which allows for more
general perturbations of the data points); see Rousseeuw and Leroy (1987) for
A4 (X) = p—1 and Mili and Coakley (1993) for the general case.

It is of interest whether in fixed design setting the upper bound (1.1) is
attainable and which estimators can achieve it. Miiller (1995) showed that the
bound (1.1) can be attained by some trimmed L, estimators. In the present
paper, we address the question whether the bound can be attained also by
certain M-estimators.

An M-estimator is defined via minimization,

B(y,X) = arg min D(B, y.X),

where
N
D(B,y,X) = Z (p(yn _x}’TL‘B)
n=1

is an objective function and ¢ is a given score function from R to R; in the
sequel, we suppose that ¢ is absolutely continuous, a primitive function of .
All M-estimators are regression equivariant.

For the special case of the location model, that is, the simplest regression
model with x; =X, = --- = x5 = 1 and B € R}, it is known that M-estimators
with bounded ¢ attain the maximum possible breakdown point of approxi-
mately 50%, whenever s is nondecreasing, corresponding to a convex ¢ [Hu-
ber (1981), page 54], or ¢ is unbounded for redescending ¢ [Huber (1984)]. In
regression models with moving design, all M-estimators with nondecreasing s
have the same low breakdown point 1/N as the least squares estimator. This
can be shown along the lines of Maronna, Bustos and Yohai (1979), whose
finding created an overall impression that M-estimators possess “bad” break-
down point behavior. However, their result was based on the convexity of ¢
and used a moving design definition of the breakdown point.

In the fixed design setting, the performance of M-estimators radically
changes. As shown below, M-estimators can exhibit high breakdown points,
including the highest possible ones. In general linear models, the breakdown
point of an M-estimator depends on the asymptotic behavior of the function
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¢, described in terms of the exponent r of regular variation of ¢. Together
with the design matrix X, r determines the breakdown behavior of the
M -estimator.

The paper is organized as follows. In Section 2 we briefly introduce regu-
larity conditions and state the main result: a dependence of the breakdown
point of an M-estimator on its variation exponent r and the design matrix
X. In Section 3 we discuss the regularity conditions, in Section 4 the effect of
unknown scale and some computational aspects. Section 5 deals with appli-
cations; the explicit breakdown points are computed for special linear models
and it is shown how choosing an appropriate design, for a given ¢, can im-
prove the breakdown point of the M-estimator. Finally, Section 6 contains the
proofs.

2. Main result. A measurable function f: Rt — R7 is called regularly
varying, if there is a function A such that for all u > 0,

. f(tw)

lim

t—00 f(t)
[see Bingham, Goldie and Teugels (1987), Chapter 1, or Resnick (1987), Chap-
ter 0]. In such a case, A(u) = u” for some r € R, which is called the exponent

or index of variation. If r = 0, then f is called slowly varying.
We introduce the following assumptions about ¢:

= h(u)

(A) Shape: ¢ is symmetric (¢(¢) = ¢(—t)), nondecreasing on [0, +oc0] and
nonnegative.

(B) Unboundedness: ¢ is unbounded.

(C) Subadditivity: there exists L > 0 such that o(¢ + s) < ¢(¢) + ¢(s) +
L for all ¢,s > 0.

(D) Regular variation: ¢ is regularly varying with an exponent r > 0.

Given r > 0, we define, using the convention 0° = 0,

H(X, 1) = min{card E: Y |xI'B)" > Y |xIB|" for some B # 0},
nek n¢E

where E runs over the subsets of {1,2,..., N}. For r =1, .#(X, 1) coincides
with the minimal possible cardinality of a set E C {1, 2, ..., N} such that

% ZnEE |Xr{‘B| >
BA0 Y IxTB

In this form, .#(X, 1) was introduced by He, Jureckova, Koenker and Port-
noy (1990) in the context of breakdown points of L; type estimators. Ellis
and Morgenthaler (1992) employed it to derive a lower bound for the exact fit
degree of the L; estimator. They also pointed out its diagnostic value in the
assessment of leverage points in L regression.

1
3"
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PROPOSITION 1. If g > r > 0 then
N-(X)+1
2.1) A(X, q) < 4X, 7)< 4(X,0) = {%J

The following general theorem shows how the breakdown point of an M-
estimator depends only on r and X, via .#Z(X, r).

THEOREM 1. If B is an M-estimator with ¢ satisfying (A), (B), (C) and (D)
with variation exponent r € [0, 1], then
A (X, 1)
N

AX,r)+1

(2.2) N

<& B,y X) <
for all y € RV,

The proof of Theorem 1 shows that the upper bound is still true when ¢
satisfies only (A), (B) and (D) with » > 1. Then, in general, the upper bound
is no longer sharp, as the case r = 2 shows: the least squares estimator has
the breakdown point 1/N, which is in general not equal to (.#(X,2)+ 1)/N.
Hence the connection between the breakdown point and variation exponent
holds only for robust M-estimators (those with bounded ).

Theorem 1 shows that for a large sample size N, the breakdown point is
approximately equal to .#(X, r)/N. If r = 0 in (D), the exact equality is the
immediate consequence of the upper bound (1.1) and Proposition 1. In partic-
ular, M-estimators with slowly varying ¢, like the Cauchy or slash maximum
likelihood estimator, have the highest breakdown point possible for regres-
sion equivariant estimators. Proposition 1 also implies that this is not true,
in general, for M-estimators with r = 1 (see also Section 5).

For certain special cases, for the L;-estimator, for instance, a sharpened
version of Theorem 1 can be proved, leading to an improvement of Theorem 5.3
of He, Jureckova, Koenker and Portnoy (1990).

THEOREM 2. For the L, estimator B,
A (X, 1)

8*(31: Yy, X) = N

holds for all y € RY and X.

3. Discussion of regularity conditions. Concerning shape, it is clear
that nonnegativity of ¢ can be always achieved by adding a constant. The
other assumptions in (A) are satisfied by all ¢ used in practice.

A standard property of regularly varying functions implies that if (D) holds
with r > 0, then (B) is satisfied. This implication does not hold for r = 0;
the location case shows that for r = 0, the assumption (B) in Theorem 1 is
essential.

Since ¢ and ¢ + K yield the same M-estimates, (C) really means a kind
of subadditivity: a constant can be added to ¢ such that for the resulting o,
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o(t+s) < ¢(t) + ¢(s) holds, not only for ¢, s > 0, but for all ¢, s, as shown by
Lemma 1 in Section 6. Subadditivity holds for ¢(u) = |u|; for other functions
¢ this is not that obvious, nevertheless, (C) can be proved relatively easily
from simpler assumptions.

A careful inspection of the proof of Lemma 4.2 in Huber (1984) reveals
that if:

(i) (A) is fulfilled and ¢(0) = 0;

(ii) there is an u, < 0 such that ¢ is nondecreasing for 0 < u < u, and
nonincreasing for uy, < u < oo, with ¥(u) — 0 for u — oo; then n(¢) =
sup; |e(t + s) — ¢(s)| — ¢(¢) is bounded. This immediately implies (C) [see
also Mizera (1996)]. Assumptions (i) and (ii) are satisfied, for instance, by the
Cauchy log-likelihood ¢(z) = log(1 + u?). Another example is provided by
the slash likelihood [for the definition, see Morgenthaler and Tukey (1991) or
Hoaglin, Mosteller and Tukey (1983)].

For convex ¢, (C) can be easily verified and subadditivity implies that ¢
is bounded. Thus, our regularity conditions hold for the Huber as well as
the logistic maximum likelihood estimator [for the definitions, see Hampel,
Ronchetti, Rousseeuw and Stahel (1986)].

The easiest way to verify (D) is a direct one, using the I'Hospital rule.
Also, all functions with a nonzero limit at co are slowly varying; as a con-
sequence, any nondecreasing bounded i is slowly varying and this implies,
in view of Proposition 1.5.8 of Bingham, Goldie and Teugels (1987) [see also
Resnick (1987), Theorem 0.6a], that the corresponding ¢ is regularly varying
with r = 1. There are also other criteria for regular variation: for instance,
the von Mises property asserts that ¢ is regularly varying with the exponent
r whenever

)
© LY

If uy(u) is bounded, then (B) immediately implies the slow variation of ¢.

If ¢ is the log-likelihood corresponding to a density f, that is, if ¢(u) =
—log f(u), then (A) is satisfied whenever f is symmetric and unimodal. Con-
dition (D) in this case reflects the tail behavior of f: it is implied by a stronger
condition:

(D2) There exist r > 0, ¢ > 0 and m > 0 such that
im ¢ _
t—oo mlog(t) + ct”
Condition (D2) is itself implied by a further stronger condition:

(D3) There exist L* > 0, r > 0, m > 0and ¢ > 0, m + ¢ > 0, such that
|e(t) — m log(t) — ct"| < L* for all ¢ > L*.

A special class of functions satisfying (D3) appeared in He, Jureckova,
Koenker and Portnoy (1990); they called those ¢ satisfying (D3) with m = 0
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and r = 1 “score functions of L, type.” The log-likelihood functions ¢ satisfying
(D2) with r > 0 correspond to light-tailed distributions (distributions with ex-
ponential tails, for instance, logistic and exponential distribution); the slowly
varying ¢ with r = 0 correspond to heavy-tailed distributions (distributions
with algebraic tails, like the Student ¢-distributions with % degrees of freedom,
including the Cauchy distribution with £ = 1). For more background on tail
behavior, see Jureckova (1981) or He, Jureckova, Koenker and Portnoy (1990).

The following proposition lists some interrelations among the regularity
conditions. For the proof, the interested reader is referred to Mizera and
Miiller (1996).

PROPOSITION 2. Suppose that (A) holds. Then:

(a) (D1) implies (D);

(b) (D2) implies (D) and (B);

(c) (D3) implies (D2), and also (C) if r € [0, 1];
(d) (B), (C) and (D) imply r € [0, 1].

Summarizing the discussion above, we have (among others) the following
examples of estimators satisfying (A), (B), (C) and (D): the L, Huber and lo-
gistic maximum likelihood estimator (r = 1), the Cauchy and slash maximum
likelihood estimator (r = 0).

4. Estimators with unknown scale and computational aspects. In
Section 1, we defined a regression M-estimator without involving a scale pa-
rameter; for simplicity, the scale was set equal to one. This does not make any
difference for the L; or the least squares estimators; however, it is well known
that the scale should not be ignored in the practical use of other M-estimators.
Moreover, scale can have also impact on computational issues; this point was
illustrated by Mizera (1994) and is also discussed below.

There are two commonly used approaches to scale adjustment. The Studen-
tizing approach replaces D(B, y, X) by

N yn_XTB>
D ) 7X = R ’
s(B,y,X) n2=21€0< S.X)

where S(y,X) is a suitable regression and scale equivariant estimator. To
maintain the high breakdown point, S should have high breakdown itself.
Suitable estimators are easily found in the location/scale model (the most
popular choice is the MAD, median deviation from the median, but there are
also better options). In regression, finding a suitable S may be more difficult,
though we admit that recently a considerable work has been done in this
direction.

The second approach to scale adjustment, the simultaneous approach,
arises naturally in the likelihood setting. We simply compute the simul-
taneous maximum likelihood regression/scale estimator: D(B,y,X) is now
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replaced by

4.1) D(B,o,y,X) = Nlog o + Zgo(yn Xn B)

n=1 o

and B and o simultaneously minimizing this new objective function are
sought. Differentiation leads to first-order equations,

and/(yn XB) 0,

n=1 o
(4.2) N r
yn_an _
()

with ¢(v) = (d/du)e(u) and x(u) = uy(u) — 1. Note that our y is usually
monotone, but ¢ not.

The advantage of the simultaneous approach is the possible implication
of unique roots of (4.2). Any known iterative method for minimization ends
with some solution of (4.2). In the presence of multiple roots, the notorious
problem is that this solution may correspond just to a local minimum, or even
to a saddle-point or a local maximum. Surprisingly however, for the Cauchy
maximum likelihood location/scale estimator this problem vanishes; the result
of Copas (1975) shows that (4.2) have a unique root in this case, unless the
data are equidistributed between just two distinct points, a rather exceptional
configuration. Gabrielsen (1982) complemented this result by showing that
this unique root corresponds to the global minimum; he also noted that the
property extends to ¢ distributions with degrees of freedom greater or equal to
1. We do not know whether this result extends to certain other redescending
estimators, but would find that plausible.

Unfortunately, the result of Copas does not extend to the regression case, as
was also noted by Gabrielsen (1982). Even in the simplest regression setting
(simple regression with or without intercept), there are examples exhibiting
more than one local minimum. Though we feel that in “typical cases” this does
not occur, it is not clear whether such a statement can be given a suitable
formalization.

On the positive side, we know that our Theorem 1 extends, with some minor
modifications, to the Cauchy maximum likelihood regression/scale estimator
(the proof, contrary to the proof of Theorem 1, is lengthy and tedious, and will
appear elsewhere). That is, for ¢(z) = log(1 + u?), the breakdown remains
approximately the same in regression/scale setting. We conjecture that the
same is true for other ¢ satisfying Theorem 1. We underline, however, that
it is crucial to define the M-estimator as the global minimizer of (4.1). The
breakdown behavior of the other roots of (4.2) may be different. While the
global minimizer remains stable under almost 50% contamination, there are
examples where a solution of (4.2) (corresponding to a local minimum), moves
to infinity as a consequence of moving just one data point in the y direction.
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Therefore, any computational method should seek global minimizers, not
just stationary points. While this might be perceived as a drawback, we recall
that common high-breakdown estimators (like the LMS or LTS) exhibit much
worse behavior in this respect. In this context, Ruppert (1992) pointed out
that S-estimators behave better, thanks to the smoothness of their objective
functions. It is known that first-order conditions for S-estimators also lead to
(4.2), with x(u) = ¢(u) — ¢ now (c usually equal to 1/2); however, it is also
stressed that it is the minimization definition of S-estimators which ensures
their desired breakdown properties (if y is bounded). Hence, there is a connec-
tion between regression/scale M-estimators and S-estimators. In particular,
the first-order conditions coincide for the L, estimators, when ¢(u) = |u|?.

The similarity to S-estimators indicates that the algorithm of Rup-
pert (1992) is easily adaptable also to our setting. In any case, its perfor-
mance should be at least as good as for S-estimators. Moreover, we may
expect improvements benefiting from the likelihood-maximization nature of
the problem; for instance, employing the EM algorithm in the local step, we
can eliminate local maxima of (4.1). Lange, Little and Taylor (1989) used the
EM algorithm for computing regression estimators with ¢ errors (including
the Cauchy), apparently without a concern for multiple extremes (they report
not finding any such problem in their computations).

We conclude this section by turning attention to a different problem: the
computation of .#(X, r), especially when r = 1, which may be of interest
in evaluating designs for the L; regression. Some aspects of this are ad-
dressed in the next section; more can be found in the Appendix of Mizera
and Miller (1996).

5. Determination of .#(X,r) for special models. For designs with
minimum support, like the classical A- and D-optimal designs for polynomial
regression and the designs for the one-way layout, the breakdown points of
all M-estimators with ¢ satisfying (A), (B), (C) and (D) with r € [0, 1] are
equal and attain the maximum value if the numbers of repetitions are equal.

PROPOSITION 3. Suppose that {Xq,..., Xy} S {X1,---»Xp} CRP. Let N; =
Zi\’:l 1y (x,) fori=1,..., p. If X, ..., X, are linearly independent, then

N-A#/X)+1| |14min, ,Ni| _|N+p
B 2 L 2p

A (X, 1) = L 5

for every r € [0, 1].

The next proposition provides an upper bound for .#(X, 1), in particular
for polynomial and multiple linear regression. It confirms the upper bound
1/4 given by Ellis and Morgenthaler (1992), who showed that in multiple
regression (of any dimension p) there are designs attaining this upper bound.
The proofs of both propositions can be found in Mizera and Miiller (1996).
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PROPOSITION 4. Let, for n = 1,...,N, x, = (x},...,x2)7 with Xt <
xy < .-+ < &y for some i € {1,..., p}. If there exists A € R2*P such that
Ax, = (1, %) forn=1,..., N, then

N-M A N . A
A (X, 1)§min{M: Mo(xh—ax) < Y (xh—x))
n=1 n=N-M+1
N M
. . ‘ ‘ N+3
or ¥ (e -xi)= Dl - < | 0
n=M+1 n=1 4

For linear regression, that is, x, = (1,¢,)T € R?, the first inequality be-
comes an equality [see also Miiller (1997), page 67]. The upper bound of N/4
is attained by designs with equally spaced design points ¢,, as well as by
the classical D-optimal design which puts a half of the observation at each
endpoint of the design region. There are also other designs attaining this up-
per bound, for instance, the design with L observations at 1 and 3 and 2L
observations at 2.

If we have linear regression through the origin, that is, x,, = ¢, € R with
[ts] < [ts] < --- < [ty], then

AX, 1) = min 1 D> ] <|

N + 1J
n=1 n=N-M+1 2 ’

with equality if and only if |¢;] = |ts] = --- = |ty| [see also He, Juretkova,
Koenker and Portnoy (1990)].

6. Proofs.

PROOF OF PROPOSITION 1. We first prove the inequality part of (2.1). Take
an arbitrary B #0 and E C {1,2,..., N} with card £ = .#(X, r) and

(6.1) > =i Bl = X Ix; Bl = 0.

nek n¢eE
If there are i € E and j ¢ E such that [x! | < |X3-1B|, then we can exchange i
and j, that is, we can consider (EU{j})\{i} instead of E. Thus, without loss
of generality we can assume that
d = min{|x"B|: n € E} > max{|x!B|: n ¢ E}.
Then

0< dqr( Y Bl - Y [xT BI’)

nek n¢E

<Y XIBIxIBITT - X IxIBlTIxIBlIT,

nek n¢E
hence .#(X, q) < #(X, r).
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Now we show the equality in (2.1). By definition of .#/(X), there exists § # 0
and E, C {1,2,..., N} with card E, = .#/(X) such that [xIB|® =0 for all n €
E, and |xIB|® =1 for all n ¢ E. Then for any subset E C {1,2,..., N} \ E,
with card £ = | (N — #/(X) + 1)/2] we have

Y Bl = [3(N - (X)+1))
nek
=N-[(N-A#X)+1)| - #(X)= 3 [x, Bl
n¢E
hence .#(X,0) < | (N — #(X)+1)/2]. To see the reverse inequality, take any
B#0and E C {1,2,..., N} with card E = .#(X, 0) such that (6.1) holds with
r = 0. Since at most .#'(X) of the x! B’s satisfy |x!B|° = 0, we have

A(X,0)= 3 [x,B° = 3 [x, 8" = N —.£(X,0) - ./ (X),
nek n¢E
and this implies that 2.#(X,0) > N — 4#/(X); that is, .#(X,0) > [(N —
A4(X) +1)/2].

To prove Theorem 1, we require three lemmas.

LEMMA 1. Conditions (A) and (C) imply ¢(t +s) < ¢(t) + ¢(s) + L for
all t,s e R.

ProOOF. We prove the equivalent assertion: for any s,¢t € R, ¢o(s — ¢) >
o(s) —@(t) — L. If0 <t < s, then ¢(s) = p(s—t+t) < o(s—t)+ ¢(¢)+ L.
If s < ¢t < 0, then, due to the symmetry of ¢, we have ¢(s) = ¢(—s) =
o(—(s—t)—1t) < o(s—t)+ o(¢) + L. Finally, if |s| < |¢|, then ¢(s —t) — ¢(s) >
0 — ¢(t) — L, since ¢ is nonnegative and nondecreasing.

LEMMA 2. Suppose that ¢ satisfies conditions (A) and (D) and let t;,, — oo
and u, — u be arbitrary. Then
t
e(upty) —u,
koo (1)

for B — oo, whenever (a) r > 0, u, > 0and u > 0,0r (b) r =0 and u > 0.

The lemma follows from the standard property of regularly varying func-
tions; see, for instance, Bingham, Goldie and Teugels [(1987), Theorem 1.5.7]
or Resnick [(1987), Proposition 0.5].

LEMMA 3. If #(X) < N, then for all r > 0 there is a B # 0 and a subset
Ec{1,2,..., N} with card E = .#(X, r) + 1 such that

> =i Bl > X Ix, Bl

nek n¢E



1174 I. MIZERA AND C. H. MULLER

Proor. LetB#0and E C{1,2,..., N} with card E = .#Z(X, r) so that
(6.2) S xIB = Y =Bl

nek n¢E
is satisfied. If the inequality in (6.2) is sharp then it remains sharp when we
add an element to E. If we have equality in (6.2) and there exists n ¢ E with
|xI'B| # 0 then we can add this n to E so that for E U {n} the inequality in
(6.2) is sharp. If |xIB| = 0 for all n ¢ E then equality in (6.2) implies [x]B| = 0
foralln=1,2,..., N so that .#/(X) = N. This contradicts the assumptions.

PROOF OF THEOREM 1. Lower bound. Due to the regression equivariance
of M-estimators, we may assume that B(y, X) = 0, without loss of generality.
Let M = N&*(B,y, X). Then for every k € N there is a y* € B(y, M), such
that || ﬁ(yk, X)|| > k. Again without restricting generality we may suppose that
yk =y, forn=1,2,..., N — M. For brevity, f(y*, X) is denoted by B*. We
have that ||B*|| — oo and, in view of the compactness of the unit sphere in R?,
we may also suppose that B/ ||Bk | — B°, passing to a subsequence otherwise.
Since

0> D(B*, y*,X) — D(0, y*,X)
N-M

N
=Y oy, —xIBH+ Y e(yk-xIpH)

n=1 n=N-M+1

N-M N .
= 2 o= X ey
n=1

n=N-M+1
we have by Lemma 1 and the symmetry of ¢,

N

N-M N-M
63 0= oxIBH-2 Y o(y,)— Y  e(xIp¥)- NL.
n=1 n=1 n=N-M+1

Dividing (6.3) by o(||B*|)) and letting ¥ — oo, we obtain
k
N-u o (1B =7 85 1)
> im inf 7
o1 koo e(IB*1)
k
N (18" [xI )

. B*
— Y limsup
n=N_M+1 hk—oo o(IB*11)

(6.4)

If r € (0, 1] then, in view of Lemma 2(a), inequality (6.4) acquires the form

N o y T 0
0> > [x,B°"— > [x, B,
n=1 n=N-M+1

which implies that M > .#(X, r). Thus, ¢*(B, y,X) > .#(X, r)/N in this case.
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Suppose now that » = 0. If ¢, - oo and u, — 0, then

(6.5) 0 < liminf L84 _ jimn qup CEEE) _ i €
koo @(ty) hooo  @(tr) T koo o(ty)

by (A). Since xfBO = 0 for at most .#/(X) of the x,,’s, (6.4), (6.5) and Lemma 2(b)
entail 0 > N - M — 4 (X)— M, hence M > (N — .#(X))/2, and consequently,

in view of Proposition 1,
A 1| N-#X)+1| #(X,0)

Upper bound. We consider the case r = 0 first. Here we see at once that the
upper bound (1.1) and Proposition 1 imply that

. N-/X)+1| 2#(X,0)

By X) = | IR G0,

Now, let r € (0, 1]. Suppose that M = .#(X,r) + 1. If #(X) = N, the upper
bound (1.1) shows that there is nothing to prove; hence suppose that .#(X) <
N. By Lemma 3, there is a set E C {1,2,..., N}, with card E = M, and
B! # 0 such that

(6.6) Y It s Y xIpl

nek n¢eE

>

Without restriction of generahty we may now assume that E={N-M+1,
N M+2,...,N}. Let B* —kB Define y* to satisfy y* = y, for n = 1,
, N — M and yn—xTB forneE.
Suppose that there is a compact .% such that B = B(y*, X) € ¥ for all k.
Then,

~k
0 <d, =D y*",X)- DB, y*", X)

N-M N-M &
=Y ey, —xIBH - X o(y,—xB")

n=1 n=1
Y Y Tk Tk
n=N—M+1 n=N—-M+1

Since f}k, and consequently x” ﬁk are in a compact set, dividing by ¢(%) and
letting £ — oo yields, in view of (A) and Lemma 2(a), that

dy
0= lim =%
(R(xIB' — (1/k)y,)) y  (R(xIB! — (1/R)xTB"))
= Z L m £ - > lim n n
o0 ¢(k) n=N_M+1%7>® ¢(k)
- N
= Z B = X [x. B
n=1 n=N-M+1

This is in contradiction with (6.6); hence, &*(B,y,X) < M/N.
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PROOF OF THEOREM 2. We have only to show that, in view of (2.2),

6.7 By, y,X) < @

A way to do that is to establish (6.7) first for y = 0 and then finish the proof of
Theorem 2 by verifying that the L, estimator is of uniform variation. We say
that an estimator B is of uniform variation, if, given X, for every & > 0 there
is a K > 0 such that whenever ||y! —y2| < 8, then for any B! € B(y?, X) there
is B% € B(y?, X) such that |B' — B?|| < K. Uniform variation implies that the
breakdown point £*(B;,y, X) does not exceed the breakdown point at y = 0.
For the details of the proof, see Mizera and Miiller (1996). O
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