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STRUCTURAL PROPERTIES AND CONVERGENCE
RESULTS FOR CONTOURS OF SAMPLE

STATISTICAL DEPTH FUNCTIONS

By Yijun Zuo and Robert Serfling1

Arizona State University and University of Texas

Statistical depth functions have become increasingly used in nonpara-
metric inference for multivariate data. Here the contours of such functions
are studied. Structural properties of the regions enclosed by contours, such
as affine equivariance, nestedness, connectedness and compactness, and al-
most sure convergence results for sample depth contours, are established.
Also, specialized results are established for some popular depth functions,
including halfspace depth, and for the case of elliptical distributions. Fi-
nally, some needed foundational results on almost sure convergence of sam-
ple depth functions are provided.

1. Introduction. Statistical depth functions have become increasingly
used in nonparametric inference for multivariate data. Given a distribution F
on Rd, a corresponding depth function is any function D�x�F� which provides
an F-based center-outward ordering of points x ∈ Rd. For broad treatments
of depth functions, see Liu, Parelius and Singh (1999) and Zuo and Serfling
(2000b).

The present paper focuses on depth function contours. For α > 0, the bound-
ary of the set �x ∈ Rd � D�x�F� ≥ α� denotes a corresponding α-depth contour.
Besides exhibiting the structure of underlying multivariate distributions and
revealing the shape of multivariate datasets, contours play a natural role in
generalizing univariate L-statistics and R-statistics to the multivariate set-
ting. It is of fundamental interest, therefore, to establish the properties and
convergence behavior of contours for general depth functions D�·�F� and al-
lowing arbitrary distributions F. Results to date, however, have been some-
what limited. Structural properties and convergence of sample depth contours
for the halfspace depth function (defined in Section 2) have been studied by
Eddy (1985), Nolan (1992), Donoho and Gasko (1992) and Massé and Theodor-
escu (1994). Under some broad assumptions on the depth function, but pri-
marily for elliptical distributions F, He and Wang (1997) also provide a result
on convergence.

In Section 3, under various general conditions on depth functions, but not
restricting underlying distributions, we establish structural properties for the
regions enclosed by contours, such as affine equivariance, nestedness, con-
nectedness and compactness. We also treat specifically some particular depth
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functions. The results cover sample depth functions as well. (See Theorems
3.1–3.2.) For the case of elliptical distributions, the contours exhibit ellipsoidal
structure and satisfy some related properties. (See Theorems 3.3–3.5.)

In Section 4, under broad conditions on the underlying depth function and
assuming convergence of the associated sample depth function, we establish
almost sure convergence results for sample depth contours (Theorem 4.1).
For the case of elliptical underlying distributions, and for some particular
depth functions, we establish a.s. convergence of sample contours to ellipsoidal
shapes (Theorem 4.2).

The conditions on depth functions required in these results are based on
four properties ideally satisfied by any statistical depth function. These are
listed in Section 2, along with examples of particular depth functions about
which results are proved in Sections 3 and 4.

Proofs are deferred to Appendix A. Results on convergence of sample depth
functions are treated briefly in Appendix B.

2. Key properties of statistical depth functions. For a depth func-
tion D�·� ·� to serve most effectively as a tool providing an F-based center-
outward ordering of points in Rd, it is argued in Zuo and Serfling (2000b) that
the following properties are favorable. [We note that these properties were
first introduced by Liu (1990) in studying the simplicial depth function.] De-
note the class of distributions on Rd by FFF and for any random vector X its
cdf by FX.

P1. Affine Invariance. D�Ax + b�FAX+b� = D�x�FX� for any random vector
X in Rd, any d× d nonsingular matrix A and any d-vector b.

P2. Maximality at Center. For any F ∈ FFF having “center” θ (e.g., the point of
symmetry relative to some notion of symmetry), D�θ�F� = supx∈Rd D�x�F�.
P3. Monotonicity Relative to Deepest Point. For any F ∈ FFF having deepest
point θ (i.e., point of maximal depth), D�x�F� ≤ D�θ+α�x− θ��F�, α ∈ �0�1�.
P4. Vanishing at Infinity. D�x�F� → 0 as �x� → ∞, for each F ∈ FFF .

With respect to property P2, various notions of multivariate symmetry may
be considered. Here we mention two. A random vector X in Rd (or its distri-
bution P) is centrally symmetric about θ if X− θ

d= θ−X, where “ d=” denotes
“equal in distribution” or, equivalently, if P�S� = P�S�θ�� for any Borel set
S and its reflection S�θ� about θ. This is a classical nonparametric notion of
multivariate symmetry. More generally, as introduced and discussed in Zuo
and Serfling (2000c, 2000b), we define X to be halfspace symmetric about θ if
P�X ∈H� ≥ 1/2 for every closed halfspaceH containing θ. Since C-symmetry
⇒H-symmetry, the preferred manifestation of property P2 is that maximality
at center should hold for D�·�P� for every H-symmetric P. A similar remark
holds regarding property P3.

In Zuo and Serfling (2000b), general types and particular cases of depth
function are examined in detail relative to properties P1–P4. A number of
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these are recalled below for present consideration. Denote by ∂C, Cc, C◦ and
C, respectively, the boundary, complement, interior and closure of a set C.

Example 2.1. Type D depth functions are of the form

D�x�P� CCC � ≡ inf
C

� P�C� � x ∈ C ∈ CCC ��
where CCC is a given class of closed subsets of Rd satisfying:

D1. If C ∈ CCC , then Cc ∈ CCC .

D2. If C ∈ CCC and x ∈ C◦, then there exists C1 ∈ CCC with C1 ⊂ C◦ and x ∈ ∂C1.

Thus the CCC -depth of a point x in Rd with respect to a probability measure
P on Rd is defined to be the minimum probability mass carried by a set C in
CCC that contains x.

For CCC the class HHH of closed halfspaces in Rd, we obtain the leading and
most studied depth function, the halfspace depth introduced by Tukey (1975):

HD�x�P� = inf�P�H� �H a closed halfspace� x ∈H�� x ∈ Rd�

for which all of properties P1–P4 hold, including P2 with respect to H-
symmetry. ✷

The further examples that we consider are of other types.

Example 2.2 (Simplicial depth [Liu (1990)]).

SD�x�P� = P�x ∈ S�X1� � � � �Xd+1��� x ∈ Rd�(1)

where r = d + 1, h�x�x1� � � � � xd+1� = I �x ∈ S�x1� � � � � xd+1��, X1� � � � �Xd+1
is a random sample from P, and S�x1� � � � � xd+1� denotes the d-dimensional
simplex with vertices x1� � � � � xd+1, i.e, the set of convex combinations of
x1� � � � � xd+1. Here P1 and P4 hold in general but P2 and P3 fail in some
discrete cases. ✷

Example 2.3 (Majority depth [Singh (1991)]). For given points x1� � � � � xd
in Rd which determine a unique hyperplane containing themselves, denote
by HP

x1�����xd
the halfspace with this hyperplane as boundary which carries

probability mass ≥ 1/2 under the distribution P on Rd, and define

MJD�x�P� = P
(
x ∈HP

X1�����Xd

)
� x ∈ Rd�(2)

whereX1� � � � �Xd is a random sample from P. Properties P1–P3 hold, includ-
ing P2 with respect to H-symmetry, but P4 fails. ✷

Example 2.4 (Simplicial volume depth).

SVDα�x�F� ≡
(
1+E

[(
��S�x�X1� � � � �Xd��√

det���

)α] )−1
� x ∈ Rd�(3)

where ��S�x�x1� � � � � xd�� denotes the volume of the d-dimensional simplex
S�x� x1� � � � � xd�, α > 0, and � is the covariance matrix of F. All of P1–P4 hold
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(P2 for C-symmetry and p ≥ 1, P3 for p ≥ 1). [Like related versions in the
literature which, however, are not affine invariant, it is inspired by the notion
of multidimensional median given by Oja (1983).] ✷

Example 2.5 (Lp depth).

LpD�x�F� ≡ (
1+E�x−X�p

)−1
� x ∈ Rd�(4)

where � · �p is the usual Lp norm and p > 0. While not fully affine invariant,
this depth function satisfies P2 for C-symmetry and p ≥ 1, P3 for p ≥ 1, and
P4 in general.

Although for p = 2 this depth function is at least rigid-body invariant, a
modification in this case yields a fully affine invariant version:

L̃2D�x�F� ≡ �1+E � �x−X��−1 ��−1 �(5)

where � is the covariance matrix of F and �x�M ≡ √
x′Mx, x ∈ Rd, a norm

introduced by Rao (1988) for positive definite d× d matrix M. ✷

Example 2.6 (Projection depth). Consider the “outlyingness measure”

O�x�F� ≡ sup
�u�=1

� u′x−Med�u′X� �
MAD�u′X� � x ∈ Rd�(6)

where F is the distribution of X, Med denotes the univariate median, and
MAD denotes the univariate median absolute deviation MAD�Y� = Med��Y−
Med�Y���. Then define

PD�x�F� ≡ �1+O�x�F��−1 � x ∈ Rd�(7)

This satisfies all of P1–P4, including P2 with respect to H-symmetry. ✷

Example 2.7 (Mahalanobis depth).

MHD�x�F� =
(
1+ d2

��F��x�µ�F��
)−1

� x ∈ Rd�(8)

where µ�F� and ��F� are location and covariance measures, respectively, de-
fined on distributionsF, and d2

M�x�y� = �x−y�′M−1�x−y� is theMahalanobis
distance [Mahalanobis (1936)] between two points x and y in Rd with respect
to a positive definite d×dmatrixM. This depth function can satisfy all of P1–
P4. In particular, P2 is satisfied with respect to any symmetry notion if µ and
� are affine equivariant and µ�F� agrees with the point of symmetry. The case
of µ�F� and ��F� the mean vector and covariance matrix of F, respectively,
is considered in Liu (1992) and Liu and Singh (1993). ✷

For further details on the foregoing depth functions and other varieties
as well, see Liu, Parelius and Singh (1999), Zuo and Serfling (2000b) and
references cited therein.

For any F-based depth function, we also consider its sample version. With
F̂n the usual empirical distribution placing mass 1/n on each observation
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X1� � � � �Xn from some distribution F ∈ FFF , a sample version of D�·�F� is
given by Dn�·� = D�·� F̂n�. Of course, ad hoc versions of Dn�x� can also be
formulated.

3. Structural properties of depth contours. We mentioned briefly in
Section 1 the depth contour concept.

Definition 3.1. For a given depth function D�·�F� and for α > 0, we call

Dα�F� ≡ �x ∈ Rd � D�x�F� ≥ α�
the corresponding α-trimmed region and its boundary ∂Dα�F� the correspond-
ing α-contour. For a sample depth function Dn�·� we use the notation Dα

n and
∂Dα

n for the corresponding sample α-trimmed region and sample α-contour.

It is convenient to treat depth contours in terms of their corresponding
trimmed regions, which usually are desired to be affine equivariant, nested,
connected and compact. [The regionDα�FX� is affine equivariant ifDα�FAX+b�
= ADα�FX� + b holds for any random vector X in Rd, any d× d nonsingular
matrix A and any d-vector b. A set E in a topological space X is said to
be connected if E is not the union of two nonempty sets A and B such that
A ∩B = � = A ∩B.]

Theorem 3.1. The depth-trimmed regions satisfy the following properties:
(a) Dα�·� and Dα

n are affine equivariant if D�·� ·� and Dn�·�, respectively,
satisfy P1.

(b) Dα�·� and Dα
n are nested: for α1 ≥ α2, D

α1�F� ⊂ Dα2�F�, any F, and
D
α1
n ⊂ D

α2
n .

(c) Dα�·� is connected if D�·� ·� satisfies P3.
(d) Dα�·� is compact for the depth functions SVDβ�x�F� �β ≥ 1�, LpD�x�F�

�p ≥ 1�, PD�x�F� and MHD�x�F�, and, in the case of continuous F, for
SD�x�F� and all Type D depth functions [including HD�x�F�].

Remarks 3.1. (i) For the halfspace depth, for example, P1 is straightfor-
ward to prove and thus by (a) of Theorem 3.1 it follows that the corresponding
depth-trimmed regions are affine equivariant. This result is also given by
Massé and Theodorescu (1994).

(ii) Connectedness and compactness do not hold in general for depth-
trimmed regions. For example, those corresponding to the simplicial depth fail
to be connected in certain cases of discrete F for which P3 fails to hold [see
examples in Remark 2.1 of Zuo and Serfling (2000b)]. Those corresponding to
the majority depth are not compact, due to lack of P4 [see examples following
Theorem 2.2 of Zuo and Serfling (2000b)], although they can be shown to be
closed.

Connectedness and compactness of sample depth-trimmed regions can be
established for many cases. In particular, for Type D depth we have the fol-
lowing:
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Theorem 3.2. Let CCC be a class of closed and connected Borel sets satisfying
D1 and D2 of Example 2.1. Further, assume:

D3. If x ∈ C ∈ CCC and F̂n�C� < α, then there exists C1 ∈ CCC with x ∈ C◦
1 and

F̂n�C1� < α, for α = k/n� 1 ≤ k ≤ n.

Then, for the sample depth function D�·� F̂n� CCC �, the corresponding sample
depth-trimmed regions Dα

n are connected and compact.

For CCC = HHH , we slightly extend Lemma 2.2 of Donoho and Gasko (1992)
in the following result: for halfspace depth, the sample depth-trimmed regions
are nested, connected, convex and compact.

For special distributions such as elliptical, depth contours possess exactly
the same shape as the constant density contours. A random vector X in Rd is
said to be elliptically distributed, denoted by X ∼ Ed�h�µ���, if its density is
of the form

f�x� = c���−1/2h��x− µ�′�−1�x− µ���
The following result generalizes Lemma 3.1 of Liu and Singh (1993).

Theorem 3.3. Suppose that X ∼ Ed�h�µ��� and that D�·� ·� is affine in-
variant (property P1) and attains maximum value at µ (property P2). Then:

(i) D�x�FX� is of form
D�x�FX� = g��x− µ�′�−1�x− µ��(9)

for some nonincreasing function g, and Dα is of form

Dα = �x ∈ Rd � �x− µ�′�−1�x− µ� ≤ r2α�(10)

for some rα.
(ii) D�x�FX� is strictly decreasing on any ray originating from the center if

and only if

�x ∈ Rd � D�x�FX� = α� = �x ∈ Rd � �x− µ�′�−1�x− µ� = r2α��(11)

Remarks 3.2. The maximality at µ condition on D�x�FX� in Theorem 3.3
may be replaced by a convexity condition on Dα, which also suffices to prove
the necessity part of (ii).

Theorem 3.4. Suppose X ∼ Ed�h�µ���. Then the depth contours of the
simplicial depth, majority depth, simplicial volume depth SVDα �α ≥ 1�, L̃2

depth, projection depth, Mahalanobis depth and halfspace depth are surfaces
of ellipsoids.

Theorem 3.5. Suppose that X ∼ Ed�h�µ��� and D�x� is affine invariant.
Then D�x� strictly decreases as x moves away from the center µ along any
ray if and only if D�x� = f

(�x− µ�′�−1�x− µ�) for some strictly decreasing
continuous function f.
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4. Convergence behavior of sample depth contours. We first estab-
lish an almost sure result about sample depth contours in a very general set-
ting. We then turn to some specific cases of depth function. For convenience
denote D�x�F� by D�x� and Dα�F� by Dα when the cdf F is understood.

Theorem 4.1. Let D�x� be any nonnegative depth function and Dn�x� a
corresponding sample depth function. Let Dα and Dα

n be defined as in Defini-
tion 3.1. Assume:

(C1) D�x� → 0 as �x� → ∞ and

(C2) supx∈S �Dn�x� −D�x�� → 0 a.s. for any bounded set S ⊂ Rd.

Then, for any ε > 0� δ < ε� α ≥ 0 and αn → α,

(i) Dα+ε ⊂ D
αn+δ
n ⊂ D

αn
n ⊂ D

αn−δ
n ⊂ Dα−εa.s. for all sufficiently large n

(uniformly if αn → α ∈ �0� α0� uniformly as n→ ∞, for α0 < 1).
(ii) Dαn

n
a�s�→ Dα as n → ∞� if P��x ∈ Rd�D�x� = α�� = 0. The convergence

is uniform in α if αn → α ∈ �0� α0� uniformly as n→ ∞, for α0 < 1.

Applying the preceding general result about depth-trimmed regions to the
special case of elliptical distributions and affine invariant depth functions, we
obtain the following corollary.

Corollary 4.1. Let X ∼ Ed�h�µ���. Suppose that D�x� is nonnegative
and satisfies P1 and P4, that supx∈S �Dn�x�−D�x��→ 0 a.s. as n→ ∞ for any
bounded set S ⊂ Rd, and that Dα

n is convex and closed. Then

�∗� �x ∈ Rd�D�x� = α� = �x ∈ Rd��x− µ�′�−1�x− µ� = r2α� for some rα�

if and only if for any α ∈ �0�1� and ε > 0, there exists a δ > 0 such that for n
sufficiently large,

�∗∗� Dh�q�α−ε�� ⊂ D
βn�α�+δ
n ⊂ D

βn�α�−δ
n ⊂ Dh�q�α+ε�� a�s� �

where h�x�, q�α� and βn are defined by P��x ∈ Rd � e�x� ≤ q�α��� = α,
Pn��x ∈ Rd � Dn�x� ≥ βn�α��� = �αn�/n and D�x� = h�e�x��. Further �∗�
implies that �∗∗� holds uniformly in α ∈ �0� α0� for α0 < 1.

Remarks 4.1. Corollary 4.1 improves and extends the main result of He
and Wang (1997) by relaxing their conditions. Indeed, (D5) of He and Wang
(1997) seems to be redundant, since convexity of Dα

n and convergence of Dn�x�
in He and Wang (1997) imply the convexity of Dα, which, combined with their
condition (D3), our Remark 3.2 and Theorem 3.3, implies condition (D5).

We now examine a.s. convergence of sample depth contours for some specific
depth functions: the simplicial depth, the projection depth and the general
Type D depth.
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Theorem 4.2. Theorem 4.2 Suppose that X ∼ Ed�h�µ���. Then for the
simplicial, projection and general Type D depths,

Dαn
n →Dα a.s. as n→ ∞�

for any sequence αn with αn → α as n → ∞, where ∂Dα is an ellipsoid of the
same shape as those of the constant density contours of the parent distribution.
Further, the convergence is unform in α if αn → α ∈ �0� α0� uniformly as
n→ ∞, for α0 < 1.

Remark 4.1. It is not difficult to see that the contours in Theorem 4.2
satisfy

lim
n→∞ρ�D

αn
n �D

α� = 0 a.s.�

with this convergence holding uniformly in α if αn → α ∈ �0� α0� uniformly as
n→ ∞, for α0 < 1, where ρ represents the Hausdorff distance, that is, for any
sets A and B,

ρ�A�B� = inf�ε �ε > 0� A ⊂ Bε�B ⊂ Aε��
where Aε = �x �d�x�A� < ε� and d�x�A� = inf�d�x�y� �y ∈ A�.

For Type D depth functions with CCC = HHH , we obtain the following results
for sample halfspace depth contours.

Corollary 4.2. Suppose that X ∼ Ed�h�µ���. Then the sample depth-
trimmed region D�αn�/n of the halfspace depth converges almost surely and
uniformly for α ∈ �0�1/2�, as n→ ∞, to Dα, an ellipsoid of the same shape as
those of the constant density contours of the parent distribution.

In particular, for the multivariate normal distribution we have:

Corollary 4.3. Suppose thatX ∼Nd�µ���. Then, for the halfspace depth,
�i� D�αn�/n→Dα =

{
x ∈ Rd � �x− µ�′�−1�x− µ� ≤ (

0−1�1− α�)2} a.s.

and this holds uniformly for α ∈ �0�1/2�, where 0−1�p� denotes the pth quan-
tile of the standard normal distribution. Also

�ii� P
(
D�αn�/n

)
→1− β a.s.

uniformly for α ∈ �0� 1
2 �, where β is determined by

(
0−1�1− α�)2 = χ2

d�β� and
χ2
d�p� denotes the pth quantile of the chi-square distribution with d degrees of
freedom.

Remarks 4.2. (i) Corollary 4.2 slightly extends Lemma 2.5 of Donoho and
Gasko (1992).

(ii) Applying Corollary 4.3 for X ∼ Nd�0� I� and Theorem 4, we obtain
Theorem 1 of Yeh and Singh (1997).
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APPENDIX A: PROOFS

Proof of Theorem 3.1. Part (a) follows immediately from the affine in-
variance property P1 and the analogously defined property for sample depth
functions. Part (b) follows directly from the definitions of Dα and Dα

n. Also, (c)
is immediate. We now prove (d).

It is not difficult to show that SVDβ�x�F� �β ≥ 1�, LpD�x�F� �p ≥ 1�,
PD�x�F� and MHD�x�F� are (uniformly) continuous in x, which implies
closedness of Dα�F� for these depth functions. Property P4 for these depth
functions implies boundedness of their depth-trimmed regions, and thus the
desired compactness follows.

For SD�x�F�, boundedness of the depth-trimmed region follows from The-
orem 1 of Liu (1990) and closedness follows, for absolutely continuous distri-
butions F, from the continuity of SD�x�F� established in Theorem 2 of Liu
(1990).

Finally, for Type D depth functions compactness of Dα is shown in Theorem
2.11 of Zuo and Serfling (2000b). ✷

Proof of Theorem 3.2. For Type D depth functions we have

Dα�F� = ∩�C � F�C� > 1− α� C ∈ CCC ��(A.1)

as shown in the proof of Theorem 2.11 of Zuo and Serfling (2000b). Thus
Dα
n = ∩�C � F̂n�C� > 1− α� C ∈ CCC �, from which follows that Dα

n is closed and
connected. Since Dn�x� F̂n� CCC � satisfies P4, compactness of Dα

n follows. ✷

Proof of Theorem 3.3. (i) Utilizing an argument similar to that for
Lemma 3.1 of Liu and Singh (1993), one obtains (10). Since the points on
the boundary of Dα are of equal depth, (9) follows. The monotonicity of g fol-
lows from the fact that, for any x0, D�λµ+ �1− λ�x0�FX� ≥ D�x0�FX�, since
�λµ+ �1− λ�x0� ∈ Dα0 , where α0 = D�x0�FX�.

(ii) Sufficiency follows directly from Lemma 3.1 of Liu and Singh (1993).
For necessity, we need to show that D�x�FX� is strictly decreasing if (11)
holds. Let y  = µ be a point in Rd, and put y0 = λµ + �1 − λ�y for some
λ ∈ �0�1�. Then y ∈ ∂Dαy and y0 is in the interior of Dαy , for some αy such
that �y− µ�′�−1�y− µ� = r2αy . Hence D�y0�FX� > D�y�FX�. ✷

Proof of Theorem 3.4. By Theorem 3.3 and the affine invariance of these
depth functions, we need only check the strictly decreasing property under the
elliptical distribution assumption.

(i) For the simplicial depth function use an argument similar to that for
Theorem 3 of Liu (1990).
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(ii) For the majority depth function use

P
(
λµ+ �1− λ�x ∈HF

X1�����Xd

)
−P

(
x  ∈HF

X1�����Xd

)
= P

(
λµ+ �1− λ�x ∈HF

X1�����Xd
� x  ∈HF

X1�����Xd

)
> 0�

for any λ ∈ �0�1� and x  = µ in Rd.
(iii) For the simplicial volume depth function with �α ≥ 1�, following the

proof of Corollary 2.1 of Zuo and Serfling (2000b), we have

��S�x0�x1� � � � � xd�� ≤ λ��S�µ�x1� � � � � xd�� + �1− λ���S�x�x1� � � � � xd���
for any λ ∈ �0�1�, x0 = λµ+ �1− λ�x, x  = µ and x� x1� � � � � xd in Rd and

P���S�x0�X1� � � � �Xd�� < λ��S�µ�X1� � � � �Xd��
+�1− λ���S�x�X1� � � � �Xd��� > 0�

for a random sample X1� � � � �Xd from X. The convexity of xα for α ≥ 1 and
0 < x <∞, and the maximality of SVDα�x�F� at µ, now imply that

�α�S�x0�x1� � � � � xd�� ≤ �α�S�x�x1� � � � � xd��
and

P��α�S�x0�X1� � � � �Xd�� < �α�S�x�X1� � � � �Xd��� > 0�

yielding SVDα�x�F� < SVDα�x0�F�.
(iv) For L̃2�x�F�, the proof of Theorem 2.6 of Zuo and Serfling (2000b)

yields

P��λµ+ �1− λ�x−X�M < λ�µ−X�M + �1− λ��x−X�M� > 0�

for any positive definite matrix M, λ ∈ �0�1� and x  = µ in Rd. Maximality of
the depth function at µ now implies that

L̃2�λµ+ �1− λ�x�F� > L̃2�x�F��
(v) For the projection depth function, apply the fact that Med�u′X� = u′µ

for any unit vector u in Rd; see Zuo and Serfling (2000c).
(vi) For the Mahalanobis depth function, following the proof of (c) of The-

orem 2.10 of Zuo and Serfling (2000b), we have

d2
M�x0�X� < λd2

M�µ�X� + �1− λ�d2
M�x�X��

for any λ ∈ �0�1�, x  = µ in Rd and x0 = λµ+ �1− λ�x. Then maximality at µ
implies MHD�x0�F� > MHD�x�F�.

(vii) For the halfspace depth, let λ ∈ �0�1�, x  = µ in Rd and x0 = λµ+�1−
λ�x. To consider the depth of points x0 and x, we need only take the infimum
of P�H� over all H ∈ HHH which do not contain the center µ. Now, for any Hx0
with x0 on its boundary, there always exists an Hx with x on its boundary
such that Hx ⊂ Hx0

and P�Hx� + ε < P�Hx0
� for some ε > 0. It follows that

HD�x�P� < HD�x0�P�. ✷
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Proof of Theorem 3.5. For convenience denote D�x�FX� by D�x�. The
sufficiency is trivial. We need only prove the necessity.

(a) By Theorem 3.3, there is a function f such that

D�x� = f
(�x− µ�′�−1�x− µ�) �

(b) To show that f is strictly decreasing, let q2 > q1 > 0. Then there is an
x ∈ Rd, an α ∈ �0�1� and an x0 = αµ+�1−α�x such that q1 = �x0−µ�′�−1�x0−
µ� and q2 = �x− µ�′�−1�x− µ�. Now f�q1� = D�x0� > D�x� = f�q2�, proving
that f is strictly decreasing.

(c) To show that f is continuous, we note, by Theorem 3.3, that D�x� is
upper and lower semicontinuous. Since �x− µ�′�−1�x− µ� is also continuous,
the continuity of f follows from a standard result. ✷

Proof of Theorem 4. (i) Clearly, Dαn+δ
n ⊂ D

αn
n ⊂ D

αn−δ
n . To show that

D
αn−δ
n ⊂ Dα−ε, assume that α − ε > 0 (the inclusion relation holds trivally

when α − ε ≤ 0, since then Dα−ε = Rd). Since αn → α, there is an N1 such
that when n ≥ N1, �αn − α� < �ε− δ�/2� Then, for ε1 sufficiently small that
α − ε − ε1 > 0, we have Dα−ε ⊂ Dα−ε−ε1 , and by (C1) the region S = Dα−ε−ε1
is bounded. Then, by (C2), there is an N2�≥N1� such that when n ≥N2

�∗� sup
x∈S

�Dn�x� −D�x�� ≤ �ε− δ�/2 a.s.

Let x ∈ Dαn−δ
n ∩ �Dα−ε−ε1 −Dα−ε�. Then when n ≥N2

Dn�x� −D�x� > αn − δ− �α− ε� ≥ α− ε− δ

2
− δ− �α− ε� ≥ ε− δ

2
�

contradicting �∗�. Thus either Dαn−δ
n ⊂ Dα−ε or Dαn−δ

n ∩Dα−ε−ε1 = �. But the
latter is impossible, for if it is true and we let x ∈ Dαn−δ

n , then

Dn�x�−D�x� > αn−δ−�α−ε−ε1� ≥ α− ε− δ

2
−δ−�α−ε−ε1� ≥

�ε− δ�
2

+ε1�

for any n ≥ N2, violating (C2) for ε1 taken sufficiently small. Hence Dαn−δ
n ⊂

Dα−ε. Employing a similar argument as above, one can show that

Dα+ε ⊂ Dαn+δ
n �

(ii) It is easy to see that

�x ∈ Rd�D�x� > α� = ⋃
ε∈Q+

Dα+ε ⊂ ⋂
ε∈Q+

Dα−ε = �x ∈ Rd�D�x� ≥ α��

where Q+ is the set of positive rational numbers. By the result established
above, we can show that⋃

ε∈Q+
Dα+ε ⊂ lim inf

n→∞ Dαn
n ⊂ lim sup

n→∞
Dαn
n ⊂ ⋂

ε∈Q+
Dα−ε a.s.
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Then P��x ∈ Rd�D�x� = α�� = 0 implies that

lim
n→∞D

αn
n = Dα a.s.�

completing the proof. ✷

Proof of Corollary 4.1 (Necessity). Convexity of Dα
n and convergence of

Dn�x� imply the convexity of Dα. Remark 3.2 and Theorem 3.3 then yield
that D�x� is strictly decreasing as x moves away from µ along any fixed ray.
Then Theorem 3.5 implies that h�x� is strictly decreasing and continuous. By
Lemma 3 of He and Wang (1997), limn→∞ βn�α� = h�q�α�� uniformly in α.
The continuity and monotonicity of q�α� and h�x� imply that h�q�α + ε�� =
h�q�α�� − f1�ε� and h�q�α − ε�� = h�q�α�� + f2�ε� for some continuous and
positive functions f1�ε� and f2�ε�. Necessity now follows from Theorem 4.
Also, �∗� implies that �∗∗� holds uniformly in α ∈ �0� α0� for α0 < 1.

(Sufficiency.) By Remark 3.2 and Theorem 3.3, we need only show that
h�x� is strictly decreasing as x moves away from µ along any fixed ray. The
nonincreasing property of h�x� follows from �∗∗�. Assume that e�x� = q�α+ε�,
e�x0� = q�α− ε�, Dn�y� = βn�α� and

�∗∗∗� Dh�q�α− ε
2 �� ⊂ D

βn�α�+δ
n ⊂ D

βn�α�−δ
n ⊂ Dh�q�α+ ε

2 ���

for sufficiently large n. By convergence ofDn�x� and �∗∗∗�, we have h�q�α−ε�=
D�x0� ≥ Dn�x0� − δ/2 ≥ Dn�y� + δ− δ/2 ≥ D�x� + δ− δ/2 = h�q�α+ ε� + δ/2�
for sufficiently large n. By the continuity and monotonicity of q�α�, we obtain
that h�x� is strictly decreasing. ✷

Proof of Theorem 4.2. By results in Section 2 of Zuo and Serfling
(2000b), the depth functions SD�x�P�, PD�x�F� and D�x�P� CCC � satisfy (C1) of
Theorem 4. In Appendix B below, the a.s. uniform convergence of sample depth
functions to population depth functions is established for the sample projec-
tion depth function PDn�x� and sample Type D depth functions Dn�x� CCC �. The
same holds for the sample simplicial depth function [see, e.g., Corollary 6.8 of
Arcones and Giné (1993)]. Thus, by Theorem 3.4, the conditions of Theorem 4
are satisfied for all three depth functions. ✷

Proof of Corollary 4.3. (i) SupposeY ∈ Rd is normally distributed and
Y ∼ Nd�0� I�. By affine invariance of the halfspace depth, the depth contour
Dα under Y is a sphere with radius 0−1�1 − α�. Let X = �

1
2Y + µ. Then

X ∼Nd�µ��� and affine invariance implies that

Dα =
{
x ∈ Rd � �x− µ�′�−1�x− µ� ≤ (

0−1�1− α�)2} �
which, combined with Corollary 4.2, gives (i).
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(ii) Since

P
(
lim inf
n→∞ D�αn�/n

)
≤ lim inf

n→∞ P
(
D�αn�/n

)
≤ lim sup

n→∞
P
(
D�αn�/n

)
≤ P

(
lim sup
n→∞

D�αn�/n
)
�

it follows that

lim
n→∞P

(
D�αn�/n

)
= P

(
lim
n→∞D

�αn�/n
)

= P
(
�X− µ�′�−1�X− µ� ≤ (

0−1�1− α�)2) �
Now since X ∼ Nd�µ���, we have �X − µ�′�−1�X − µ� ∼ χ2

d and thus (ii)
follows. ✷

APPENDIX B: BEHAVIOR OF SAMPLE DEPTH FUNCTIONS

In order to be “reasonable” estimators of population depth functions, the
sample versions of depth functions should be consistent, that is, we desire
that almost surely �P�,

sup
x

�Dn�x� −D�x�P�� → 0� n→ ∞�(B.1)

a condition that has been assumed in the results of Section 4 on convergence
of contours. Further perspective is provided in Remark 3 of Appendix A of
Zuo and Serfling (2000b). Results on (B.1) have been established for the half-
space depth by Donoho and Gasko (1992), the simplicial depth by Liu (1990),
Dümbgen (1990) and Arcones and Giné (1993), and the majority and Maha-
lanobis depths by Liu and Singh (1993). Here we prove (B.1) for the projection
depth and all Type D depth functions.

B.1. Sample projection depth function. For F̂n the sample df, the outly-
ingness measure given by (6) takes the form

On�x� = sup
�u�=1

� u′x−Med1≤i≤n�u′Xi� �
MAD1≤i≤n�u′Xi�

� x ∈ Rd�

where for a univariate sample Y1� � � � �Yn with ordered values Y�1� ≤ · · · ≤
Y�n� we define

Med1≤i≤n�Yi� = 1
2

(
Y�� n+12 �� +Y�� n+22 ��

)
�

MAD1≤i≤n�Yi� = Med1≤i≤n��Yi −Med1≤j≤n�Yj����
The corresponding sample projection depth is then

PDn�x� ≡ �1+On�x��−1 � x ∈ Rd�
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Theorem B.1. Assume that F satisfies

sup
�u�=1

P�u′X ≤ Med�u′X� − ε� < 1/2�

sup
�u�=1

P��u′X−Med�u′X�� ≤ MAD�u′X� − ε� < 1/2�

inf
�u�=1

P��u′X−Med�u′X�� ≤ MAD�u′X� + ε� > 1/2

and

inf
�u�=1

MAD�u′X� > 0�

Then

sup
x∈Rd

∣∣PD�x�F� − PDn�x�
∣∣→ 0 a.s. as n→ ∞�

Proof. The conditions on F ensure that Med(u′X) and MAD(u′X) are
unique for each unit vector u and also that the sample analogues converge
almost surely to these limits uniformly in �u� = 1 as n→ ∞. The arguments
are similar to the proof of Theorem 2.3.2 of Serfling (1980) for univariate
sample quantiles using probability inequalities of Hoeffding (1963).

Now denote “Med,” “MAD,” “Med1≤i≤n” and “MAD1≤i≤n” by “l,” “s,” “ln” and
“sn,” respectively. Let ε > 0 be given. Then clearly

On�x� ≥ sup
�u�=1

� �u′x� − Med1≤i≤n��u′Xi�� �
MAD1≤i≤n�u′Xi�

≥ � �v′x� − Med1≤i≤n��v′Xi�� �
MAD1≤i≤n�v′Xi�

= � �x� − Med1≤i≤n��v′Xi�� �
MAD1≤i≤n�v′Xi�

≥ �x� − sup�u�=1 Med1≤i≤n��u′Xi��
sup�u�=1 MAD1≤i≤n�u′Xi�

= �x� − sup�u�=1 ln�u′Xi�
sup�u�=1 sn�u′Xi�

≥ Mε − sup�u�=1 ln�u′Xi�
sup�u�=1 sn�u′Xi�

�
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for �x� > Mε. This shows that On�x� → ∞ a.s. and hence PDn�x� −→ 0 a.s.
as �x� → ∞. More precisely, we have

PDn�x� ≤ sup�u�=1 sn�u′Xi�
Mε + sup�u�=1 sn�u′Xi� − sup�u�=1 ln�u′Xi�

→ s�u′X�
Mε + sup�u�=1 s�u′X� − sup�u�=1 l�u′X� a.s.

as n → ∞. Now choose Mε large enough that both sup�x�≤Mε
PD�x�F� < ε

and

sup�u�=1 s�u′X�
Mε + sup�u�=1 s�u′X� − sup�u�=1 l�u′X� < ε

are satisfied. Then almost surely sup�x�≤Mε
PDn�x� < 2ε for all sufficiently

large n. Thus it suffices to show that for any given M

sup
�x�≤M

∣∣PD�x�F� − PDn�x�
∣∣→ 0 a.s. as n→ ∞�

Now ∣∣∣∣∣ sup
�u�=1

∣∣∣∣ �u′x− ln�u′Xi��
sn�u′Xi�

∣∣∣∣− sup
�u�=1

∣∣∣∣ �u′x− l�u′X��
s�u′X�

∣∣∣∣
∣∣∣∣∣

≤ sup
�u�=1

∣∣∣∣ �u′x− ln�u′Xi��
sn�u′Xi�

− �u′x− l�u′X��
s�u′X�

∣∣∣∣
≤ sup

�u�=1

∣∣∣∣u′x− ln�u′Xi�
sn�u′Xi�

− u′x− l�u′X�
s�u′X�

∣∣∣∣
≤ sup

�u�=1

∣∣∣∣ u′x
sn�u′Xi�

− u′x
s�u′X�

∣∣∣∣+ sup
�u�=1

∣∣∣∣ l�u′X�
s�u′X� −

ln�u′Xi�
sn�u′Xi�

∣∣∣∣
= I+ II� say�

For �x� ≤M we have

I = sup
�u�=1

∣∣u′x �s�u′X� − sn�u′Xi��
∣∣

sn�u′Xi�s�u′X�

≤ M�ns
inf �u�=1 sn�u′Xi� inf �u�=1 s�u′X� �
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where �ns = sup�u�=1 �s�u′X� − sn�u′Xi�� and

II = sup
�u�=1

∣∣�l�u′X� − ln�u′Xi��sn�u′Xi� + ln�u′Xi��sn�u′Xi� − s�u′X��∣∣
sn�u′Xi�s�u′X�

≤ �nl sup�u�=1 sn�u′Xi� + sup�u�=1
∣∣ln�u′Xi�

∣∣�ns
inf �u�=1 sn�u′Xi� inf �u�=1 s�u′X� �

where �nl = sup�u�=1 �l�u′X� − ln�u′Xi��. Since inf �u�=1 s�u′X� > 0, by the
above results we thus obtain

sup
�x�≤M

∣∣∣∣∣ sup
�u�=1

∣∣∣∣ �u′x− ln�u′Xi��
sn�u′Xi�

∣∣∣∣− sup
�u�=1

∣∣∣∣ �u′x− l�u′X��
s�u′X�

∣∣∣∣
∣∣∣∣∣

≤ I+ II→ 0 a.s.� n→ ∞� ✷

B.2. Sample Type D depth functions. Let D�x�P� CCC � and Dn�x� CCC � be de-
fined as in Example 2.1.

Theorem B.2. Let CCC be a Vapnik-Červonenkis (VC) class of sets in Rd

and P a probability measure on Rd. Suppose that supC∈CCC �P̂n�C� − P�C�� is
measurable. Then

sup
x∈Rd

∣∣Dn�x� CCC � −D�x�P� CCC �∣∣→ 0 a.s. as n→ ∞�

Proof. Write

sup
x∈Rd

∣∣Dn�x� CCC � −D�x�P� CCC �∣∣ = sup
x∈Rd

∣∣∣∣∣ infCx∈CCC
P̂n�Cx� − inf

Cx∈CCC
P�Cx�

∣∣∣∣∣
≤ sup

C∈CCC

∣∣∣P̂n�C� −P�C�
∣∣∣ �

where Cx is a set C with x on its boundary. Now apply well-known results
on almost sure convergence of the empirical measure uniformly on VC classes
[e.g., Shorack and Wellner (1986), page 828]. ✷

For CCC = HHH , we obtain the result of Donoho and Gasko (1992) for the sample
halfspace depth function.
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