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SCALE SPACE VIEW OF CURVE ESTIMATION

By Probal Chaudhuri and J. S. Marron

Indian Statistical Institute and University of North Carolina

Scale space theory from computer vision leads to an interesting and
novel approach to nonparametric curve estimation. The family of smooth
curve estimates indexed by the smoothing parameter can be represented
as a surface called the scale space surface. The smoothing parameter here
plays the same role as that played by the scale of resolution in a visual
system. In this paper, we study in detail various features of that surface
from a statistical viewpoint. Weak convergence of the empirical scale space
surface to its theoretical counterpart and some related asymptotic results
have been established under appropriate regularity conditions. Our theo-
retical analysis provides new insights into nonparametric smoothing pro-
cedures and yields useful techniques for statistical exploration of features
in the data. In particular, we have used the scale space approach for the
development of an effective exploratory data analytic tool called SiZer.

1. Introduction: Curve estimation and scale space theory. Curve es-
timation using nonparametric smoothing techniques is an effective tool for un-
masking important structures from noisy data. Over the last couple of decades,
nonparametric curve estimates have emerged as powerful exploratory and in-
ferential tools for statistical data analysis [see, e.g., Silverman (1986), Eubank
(1988), Müller (1988), Härdle (1990), Rosenblatt (1991), Wahba (1991), Green
and Silverman (1994), Wand and Jones (1995), Fan and Gijbels (1996), Si-
monoff (1996)]. Many different methodologies such as kernel, nearest neigh-
bor, local polynomial, splines and wavelets have been investigated in the lit-
erature for construction of the nonparametric estimate f̂h�x� of an unknown
curve f�x�. Here the subscript h denotes the smoothing parameter associated
with the curve estimate the nature of which varies depending on the method-
ology used (e.g., in the case of kernel smoothing it is the bandwidth). In the
usual approach taken in the statistics literature, one focuses on the “true un-
derlying function” f�x�, and an extensive amount of work has been reported
on the estimation of f�x� and on optimal choice of the smoothing parameter
from the data and inferences about f�x� based on confidence bands. A fun-
damental problem in nonparametric function estimation is that E�f̂h�x�� is
not necessarily equal to f�x�, so there is an inherent bias which creates spe-
cial challenges. The problem does not appear in classical parametric statistics,
where one tacitly assumes a “correct” parametric model for f�x� with param-
eters that can be unbiasedly estimated.
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In this paper, we study nonparametric curve estimation from the viewpoint
of “scale space theory” from the computer vision literature [see, e.g., Linde-
berg (1994)]. We will focus simultaneously on a wide range of values for the
smoothing parameter �h ∈H, say) instead of trying to estimate the optimum
amount of smoothing from the data. From the point of view of data analysis
this is an effective strategy since different levels of smoothing may reveal dif-
ferent useful information. This idea is well known to those who use smoothing
methods to analyze data; see, for example, Tukey (1970), Cleveland and De-
vlin (1988), Hastie and Tibshirani (1990), Cleveland (1993) and Marron and
Chung (1997).

WhenH is a subinterval of �0�∞� (e.g., the range of possible bandwidths in
a kernel smoother) and x varies in an interval I of the real line �−∞�∞�, the
family of smooth curves �f̂h�x�	h ∈H�x ∈ I� can be represented by a surface,
the “scale space surface”shown in Figure 1, which models different features
of the data visible at different levels of smoothing that are comparable with
variations in the scales of resolution in a visual system. This unconventional
way of handling the curve estimation problem leads to an interesting reori-
entation of the bias problem mentioned in the preceding paragraph. We shift
our attention from the “true underlying curve” f�x� to the “true curves viewed
at different scales of resolution”, which is E�f̂h�x�� as h varies in H and x
varies in I. E�f̂h�x�� is a “smoothed version” of the function f�x� and can be
viewed as the theoretical scale space surface if we consider f̂h�x� as the empir-
ical scale space surface. The empirical version here is by definition unbiased
for the theoretical version.

We make E�f̂h�x�� our target and focus our inference on it with the idea
that it will enable us to extract relevant information available in the noisy
data at a given level of smoothing. A large value of the smoothing param-
eter models “macroscopic or distant vision”, where one can hope to resolve
only large scale features. Similarly a small value of the smoothing parameter
will model “microscopic vision” that can resolve small scale features provided
that we have a sufficient amount of informative data. A detailed discussion of
scale space philosophy and many related interesting examples can be found
in Lindeberg (1994).

Figure 1a shows a simulated regression example, based on a target curve
f �x� (dashed line type), and an equally spaced design, xi = i − 1/�n − 1�
for sample size n = 201, and data Yi = f�xi� + εi (dots), where the εi’s are
independent N�0� σ2�, with σ = 0�2. A family of Gaussian kernel local linear
smooths �f̂h�x� � h ∈ H�, indexed by the bandwidth, is overlaid on Figure
1a, as thin solid lines. The Ruppert, Sheather and Wand (1995) data driven
choice of bandwidth is indicated as the thick solid line. The family shows
the very wide range of smoothing being considered, from nearly the raw data
(very wiggly thin line), to nearly the simple least squares fit line (the limit
as the window width goes to infinity). Figure 1b, shows this same family of
smooths �f̂h�x� � h ∈ H�, arranged one behind the other in bandwidth order,
to give the empirical scale space surface. Figure 1c shows the corresponding
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Fig. 1. Simulated regression example showing scale space ideas. Figure 1a shows the target curve
as the dashed line, the data as small dots, and a family of local linear smooths as thin solid lines,
with the Ruppert-Sheather-Wand bandwidth highlighted as the heavy solid line. Figure 1b is the
empirical scale space surface. Figure 1c is the theoretical scale space surface, that is, smooths of
the target curve. Figure 1d is the “noise surface,” that is, the difference between the surfaces shown
in Figures 1b and 1c.

theoretical scale space surface �Ef̂h�x� � h ∈ H�, which is constructed by
applying the same smoothing operations to �f�xi� � i = 1� ���� n�, instead of to
�Yi � i = 1� ���� n�. Figure 1d shows the difference surface �f̂h�x� −Ef̂h�x� �
h ∈ H�, which is showing how noise is attenuated in scale space since it is
the corresponding family of smooths of �εi � i = 1� ���� n�.

The target curve has been selected to highlight an important question that
arises in data analysis by smoothing methods: which features visible in a
smooth are “really there?” The broad peak around x = 0�55 and the deep
valley around x = 0�85 seem to be clearly discernible from the data. It is
likely that the peak at x = 0�2 and the valley at x = 0�3 can be shown to be
“statistically significant” as well. But what about the thinner peak at x = 0�65?
This is much more questionable, since the corresponding sizes of the smooths
are roughly comparable to the size of the spurious peaks just to the left. Note
that the much thinner peak at x = 0�75 clearly does not have enough mass to
be distinguishable from the background noise (even though it is a feature of
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the target curve). In Section 4 we discuss SiZer, a visualization which gives a
convenient solution to this problem of which features are “really there,” that
is, are “statistically significant.”

Figure 1b shows how the scale space view of smoothing is looking at the
data at a number of different resolutions. Figure 1c shows the corresponding
multi-resolution views of the underlying target curve. These surfaces have a
number of interesting properties, some of which are discussed in Section 2.
Convergence results, which give a way of making precise the apparent ap-
proximations of the surfaces in Figures 1b and 1d, are derived in Section 3.
Figure 1d shows the “noise surface” that is displaying the variance part of the
smoothing problem.

2. The scale space surface. One of the prime objectives of nonparamet-
ric curve estimation is exploration of structures such as peaks and valleys. An
important requirement, which the scale space surface should satisfy, is that
as one moves from lower to higher levels of smoothing, structures (e.g., peaks
and valleys) should disappear monotonically. In other words, the smoothing
method should not introduce artifacts by creating “spurious structures” as we
go from a finer to a coarser scale. This idea has been formalized as “causality”
in the scale space literature [see, e.g., Lindeberg (1994)], which is a property
of the scale space surface, and it implies that the number of local extrema in
the curve f̂h�x� or E�f̂h�x�� for a given h will be a decreasing function of h.
The term “causality” was introduced to convey the idea that there should be a
cause for structures appearing at coarser scales, in terms of finer scale struc-
tures. Causality, that is, non-creation of new features with more smoothing,
is visually apparent in Figures 1b, c and d.

Again assume that x varies in a subinterval I of �−∞�∞� and h varies
in a subinterval H of �0�∞�. The kernel density estimator based on data
X1�X2� � � � �Xn, is

f̂h�x� = �nh�−1
n∑
i=1
K��x−Xi�/h��

where K�x� is the kernel function, which is usually taken to be a smooth
density symmetric around zero. The fact that the number of peaks in a kernel
density estimate based on a Gaussian kernel K�x� = �1/√2π� exp�−x2/2�
decreases monotonically with the increase in the bandwidth was proved in the
statistics literature by Silverman (1981). Let us now consider the regression
problem based on the data �Y1�X1�� �Y2�X2�� � � � � �Yn�Xn�. In this case, we
have the Priestley-Chao estimate

�A� f̂h = �nh�−1
n∑
i=1
YiK��x−Xi�/h�

or the Gasser-Müller estimate

�B� f̂h�x� =
n∑
i=1
Yi

∫ ti
ti−1

�1/h�K��x− s�/h�ds�

where −∞ = t0 < X1 < t1 < X2 < t2 < · · · < tn−1 < Xn < tn = ∞.
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Observe that local extrema like peaks and valleys of the curve f̂h�x� for
fixed h are determined by the zero crossings of the derivative ∂f̂h�x�/∂x. Sim-
ilarly, points of inflexion are determined by the zero crossings of the second
derivative ∂2f̂h�x�/∂x2. In general, zero crossings of the mth order derivative
∂mf̂h�x�/∂xm for m ≥ 1 can be used to identify structures in a smooth curve.
We now state a theorem which gives an analog of Silverman’s (1981) result
for nonparametric regression problems. The proof is in Section 5.

Theorem 2.1. Assume that the scale space surface f̂h�x� arises as in (A)
or (B) above, and K�x� = �1/√2π� exp�−x2/2�. Then for each fixed h ∈H and
m = 0�1�2� � � �, the number of zero crossings of the derivative ∂mf̂h�x�/∂xm will
be a decreasing and right continuous function of h for all possible choices of
the data �Y1�X1�� �Y2�X2�� � � � � �Yn�Xn�. Further, the same result holds for
themth order derivative ∂mE�f̂h�x��/∂xm of the theoretical scale space surface
when we assume that theYi’s are conditionally independently distributed given
the Xi’s, and E denotes the conditional expectation given X1�X2� � � � �Xn.

It will be appropriate to note here that for other versions of kernel based re-
gression smoothers such as the Nadaraya-Watson estimate and kernel
weighted local polynomial estimates [see Wand and Jones (1995), Fan and Gi-
jbels (1996) and Cleveland and Loader (1996) for useful discussion and histor-
ical background], which arise in the forms of ratios of two weighted averages,
the “causality” (monotonicity) property may fail to hold on their scale space
surfaces for certain data sets even if the Gaussian kernel is used. While dis-
cussing Silverman’s (1981) result on kernel density estimates, Minnotte and
Scott (1993) constructed some counter-examples to show that this monotonic-
ity may fail to hold for certain non-Gaussian kernels including some compactly
supported ones. However, they did not resolve the case of Cauchy kernel in a
definite way. The example in Figure 2 demonstrates that the Cauchy kernel
may not produce a scale space surface with the “causality” property.

The noncausality of the Cauchy kernel proved to be rather elusive, with
trial and error simulation experiments not turning up a counterexample [sim-
ilar to the experience reported by Minnotte and Scott (1993)]. This suggested
that modes that were created with increasing bandwidth were rare and/or
very small. To improve the magnification of our search method, we studied
very small sets of parametrically indexed examples, which gave simple an-
alytic representations for the derivative of the Cauchy kernel smooths. In
particular, for Priestley-Chao regression with three data points, the number
of roots of the derivative is the same as the number of real roots in a degree
nine polynomial. Figure 2 shows one example where lack of causality, that
is, creation of additional modes, appeared for the Cauchy kernel. Figure 2a
shows the three data points as circles, together with sample smooths using 3
bandwidths. Figure 2b shows the number of roots as a function of the band-
width with the vertical overlaid lines corresponding to the three bandwidths
in Figure 2a. Note the increase around log10�h� = 0�4, which implies that the
number of modes in the smooth increases with h at that point. Note also that
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Fig. 2. Counterexample showing that the Cauchy kernel does not satisfy the causality property.
A three point regression data set is shown as circles in Figure 2a, together with 3 Cauchy kernel
smooths. Figure 2b shows the numbers of real roots of the derivative, as a function of the bandwidth,
with the 3 smooths in Figure 2a represented as vertical bars with the same line types. Figure 2c
and 2d are successive enlargements of the regions shown as boxes in Figures 2a and 2c respectively.

it is not clear in Figure 2a that the dashed and dot-dashed curves have two
modes while the solid curve has three modes. Figures 2c and 2d show that
this is actually the case, by successive zooming. The trimodality of the solid
curve only becomes clear using the large amount of magnification shown in
Figure 2d.

Other examples we found were of similar very small magnitude, so we
believe this noncausality of the Cauchy kernel is always small scale. We also
were unable to find an example where all of the Y-values were positive, as in
density estimation. So we conjecture that the Cauchy kernel may be causal for
density estimation [recall that Minnotte and Scott (1993) reported not finding
a counterexample in that case].



414 P. CHAUDHURI AND J. S. MARRON

For scale space surfaces arising as smooth convolutions of the form

�C� S�x�h� = f�x� ∗ �1/h�K�x/h� =
∫
f�t��1/h�K��x− t�/h�dt�

where f�x� is a smooth function, Lindeberg (1994) gives a detailed discus-
sion of the causality property and several interesting related results follow-
ing Schoenberg (1950), Hirschmann and Widder (1955), Karlin (1968), Witkin
(1983) and Koenderink (1984). A very interesting justification for the “causal-
ity” in the scale space surface S�x�h� generated by the Gaussian kernel can
be found in the scale space literature. If we accept that diffusion (e.g., heat
diffusion) is a physical process that “destroys structures” over time and does
not “create structures”, and view the smoothing parameter as the time pa-
rameter in the diffusion process, the “causality” of the scale space surface can
be reformulated in terms of the classical heat diffusion equation

�D� ∂S�x�√t�
∂t

= �1/2�∂
2S�x�√t�
∂x2

�

The Gaussian kernel emerges as the Green’s function solving �D�. Here h =√
t, so that time in the heat diffusion goes like the square of the bandwidth,

that is, the variance of the kernel window. For more formal mathematical de-
tails on the derivation of the heat equation in this context and its solution,
readers are referred to Koenderink (1984) and Section 2.5 in Lindeberg (1994).
Figure 3 provides visual insight into how solutions to the heat equation cor-
respond to families of smooths.

The physical model for Figure 3 is a thin wire, with hot and cold spots at
the beginning, and the heat dissipating over time (represented here by band-
width). The color map in Figure 3b shows how the heat diffuses. The surface
in Figure 3a is the corresponding solution to the heat equation. The starting
values used were the raw data shown in Figure 1a. Figures 3a and 3b are
both approximations, based on Gaussian kernel Nadaraya-Watson smooths.

The use of the heat equation as a paradigm for smoothing is quite well de-
veloped in some parts of the literature [see Weickert (1997) for good access to
this work]. But for statisticians this approach provides a host of new answers
to some old problems, for example, boundary adjustments and corrections.
Another such problem is: how should continuous convolution be discretized,
as for nonparametric regression? There has been substantial debate concern-
ing the Nadaraya-Watson (evaluate the kernel) vs. the Gasser-Müller (inte-
grate the kernel over small rectangles) approaches. Many statisticians now
prefer the local linear, for reasons made clear by Fan (1992,1993), although
see, for example, Stone (1977) and Cleveland (1979) for much earlier insights
in this direction. However, the heat equation approach gives a quite different
resolution of this controversy, using the solution of a discrete analog of the heat
equation. Explicit calculation of this smoothing method in general requires it-
erative methods, and has not been proposed in the statistical literature. See
section 3.6.2 of Lindeberg (1994) for details.
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Fig. 3. Figure 3a shows a family of Nadaraya-Watson smooths, similar to Figure 1b, for the data
of Figure 1a, but now panels are shaded using a “temperature” color scale. Projection of these colors
into the plane is shown in Figure 3b, which shows how �one dimensional� heat diffuses in time.

Silverman (1981) introduced the notion of “critical bandwidths”, which are
used to test for multimodality of densities. If N�h� denotes the number of
modes in a density estimate based on the Gaussian kernel with bandwidth
h, we have already noted that N�h� is a monotonically decreasing and right
continuous function of h, and “critical bandwidths” are precisely the points of
jump discontinuities of N�h�. Minnotte and Scott (1993) [see also Marchette
and Wegman (1997)] introduced the notion of a “mode tree”, which is a graph-
ical tool that presents the locations of modes of a kernel density estimate at
different bandwidths. We will now discuss some important connections be-
tween these statistical concepts and the geometry of the scale space surface.
Suppose that we have a smooth scale space surface �f̂h�x�	x ∈ I�h ∈ H�
arising from a density estimation or a regression problem, and assume that
“causality” holds for this surface. Consider the trajectories of the critical points
on this surface given as{

�x�h� f̂h�x��	x ∈ I�h ∈H� ∂f̂h�x�
∂x

= 0

}
�

Then these trajectories trace the “mode tree” as well as the “antimode tree” on
the scale space surface (antimode = valley). Critical points �x�h� f̂h�x�� where
∂2f̂h�x�/∂x2 = 0, are called degenerate critical points. Critical points where
∂2f̂h�x�/∂x2 �= 0, are called non-degenerate. Degeneracy of a critical point is
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a form of singularity on the surface where bifurcation of the trajectory may
occur. The following theorem describes some interesting features of critical
points on a scale space surface.

Theorem 2.2. A critical point �x�h� f̂h�x�� corresponds to a “critical band-
width” only if it is a degenerate critical point. With the increase in the value of
scale, the x co-ordinate of a non-degenerate critical point moves with a finite
velocity along its trajectory �however, this drift velocity at a degenerate critical
point may be infinite�.

Figure 4 shows a discretized version of these trajectories, for the same ex-
ample as used in Figures 1 and 3. Red highlights the mode tree (subset of scale
space consisting of local maximizers in the x direction), and yellow highlights
the antimode tree (subset of scale space consisting of local minimizers in the
x direction). The critical bandwidths are at the branch locations.

Variations on mode and anti-mode trees have been developed in parallel in
other literatures; see Muzy, Bacry and Arneodo (1994) for a wavelet version,
and Wong (1993) for a neural net version.

3. Weak convergence of empirical scale space surface and its deri-
vatives. Though we have stated Theorem 2.2 in the preceding section only
for the empirical scale space surface �f̂h�x�	x ∈ I�h ∈ H�, analogous results

Fig. 4. Figure 4a shows the same family of smooths as in Figure 1b, with modes highlighted in
red, and antimodes highlighted in yellow. Figure 4b shows the projection of the red mode locations
and the yellow antimode locations into the plane, yielding the mode and antimode trees.
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hold for the theoretical scale space surface �E�f̂h�x��	x ∈ I�h ∈H�, and the
proofs will be virtually identical. Note that the “critical bandwidths” as well as
the “mode tree” have their empirical and theoretical (or population) versions,
where the former can be viewed as an estimate of the latter. We will now
focus attention on statistical convergence of the empirical scale space surface
and its derivatives to their theoretical counterparts. Consider first the density
estimation problem based on i.i.d observations X1�X2� � � � �Xn. Assume that
f̂h�x� is the usual kernel density estimate �nh�−1∑n

i=1K��x − Xi�/h� and
E�f̂h�x�� = E�h−1K��x−Xi�/h��.

Theorem 3.1. Suppose that X1�X2� � � � �Xn are i.i.d random variables
with a common distributionFn, where as n→ ∞,Fn converges weakly to a dis-
tribution F, and assume that I and H are compact subintervals of �−∞�∞�
and �0�∞� respectively. Let the smooth kernel K�x� be such that for integer
m ≥ 0, the derivatives ∂mh−1K�x/h�/∂xm and ∂m+2h−1K�x/h�/∂h∂xm+1 both
remain uniformly bounded as h varies in H and x varies in �−∞�∞�. Then
as n→ ∞, the 2-parameter stochastic process

n1/2

[
∂mf̂h�x�
∂xm

− ∂mE�f̂h�x��
∂xm

]

with �h�x� ∈H×I converges weakly to a Gaussian process onH×I with zero
mean and covariance function

cov�h1� x1� h2� x2� = COV

(
∂mh−1

1 K��x1 −X�/h1�
∂xm1

�
∂mh−1

2 K��x2 −X�/h2�
∂xm2

)
�

where X has distribution F.

Let us next consider the regression problem based on independent observa-
tions �Y1�X1�� �Y2�X2�� � � � � �Yn�Xn�, and in this case we will assume that
f̂h�x� has the form n−1∑n

i=1YiWn�h�x�Xi�, where Wn is a smooth weight
function that arises from the kernel function in usual kernel regression or
kernel weighted local polynomial regression with bandwidth h. We will also
set E�f̂h�x�� =def n−1∑n

i=1E�Yi	Xi�Wn�h�x�Xi� as before.

Theorem 3.2. Suppose that �Y1�X1�� �Y2�X2�� � � � � �Yn�Xn� are i.i.d ob-
servations with a common bivariate distribution Gn such that we have

sup
n≥1

sup
x∈I

EGn
{	Y−E�Y	X = x�	2+ρ |X = x} <∞

for some ρ > 0 and, as in Theorem 3.1, I and H are compact subintervals of
�−∞�∞� and �0�∞� respectively. For integer m ≥ 0, assume that as n→ ∞,

n−1
n∑
i=1

VAR Gn
�Yi	Xi�

∂mWn�h1� x1�Xi�
∂xm1

∂mWn�h2� x2�Xi�
∂xm2
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converges in probability to a covariance function cov�h1� x1� h2� x2� for all
�h1� x1� and �h2� x2� ∈H× I, and

n−�1+ρ/2�
{
max
1≤i≤n

∣∣∣∣∂mWn�h�x�Xi�
∂xm

∣∣∣∣ρ} n∑
i=1

{
∂mWn�h�x�Xi�

∂xm

}2
→ 0

in probability for all �h�x� ∈H× I. Also, assume that as h varies in H and x
varies in I, VAR Gn

�Yi	Xi�
{
∂m+2Wn�h�x�Xi�/�∂h∂xm+1�}2 will be uniformly

dominated by a positive function M�Xi� such that supn≥1EGn�M�Xi�� < ∞.
Then as n→ ∞, the 2-parameter stochastic process

n1/2

[
∂mf̂h�x�
∂xm

− ∂mE�f̂h�x��
∂xm

]

with �h�x� ∈H×I converges weakly to a Gaussian process onH×I with zero
mean and covariance function cov�h1� x1� h2� x2�.

When Fn ≡ F or Gn ≡ G for all n ≥ 1 (G being a fixed bivariate distribu-
tion), Theorems 3.1 and 3.2 yield the weak convergence of the empirical scale
space surfaces and their derivatives under the standard i.i.d set up. On the
other hand, if we take Fn = F̂n, that is, the usual empirical distribution of
the univariate data, or Gn = Ĝn, that is, the usual empirical distribution of
the bivariate data, in view of the uniform strong consistency of the empirical
distribution function based on i.i.d data (Glivenko-Cantelli theorem), we get
the bootstrap versions of the weak convergence results. In that case, Theo-
rems 3.1 and 3.2 imply that the weak convergence of the scale space surfaces
(as well as their derivatives) to appropriate Gaussian processes will hold even
under the bootstrap or resampled distributions. These results are useful in
setting up bootstrap confidence sets for theoretical scale space surfaces and
their derivatives and also for carrying out bootstrap tests of significance for
their features [see Chaudhuri and Marron (1999)].

Note that the conditions assumed on the kernel function in Theorem 3.1 are
satisfied for many standard kernels including the Gaussian kernel. Similarly,
the conditions assumed on the weight function in Theorem 3.2 are satisfied
for many standard kernel regression estimates and kernel weighted local poly-
nomial estimates for suitable distributions of �Y�X�. Observe that a natural
estimate for the covariance function in the case of density estimation is

ĉov�h1� x1� h2� x2� = n−1
n∑
i=1

∂mh−1
1 K��x1 −Xi�/h1�

∂xm1

∂mh−1
2 K��x2 −Xi�/h2�

∂xm2

−n−2
(
n∑
i=1

∂mh−1
1 K��x1 −Xi�/h1�

∂xm1

)

×
(
n∑
i=1

∂mh−1
2 K��x2 −Xi�/h2�

∂xm2

)
�
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which can be computed from the data in a straightforward way. Similarly, in
the regression problem, a natural estimate for the covariance function is

ĉov�h1� x1� h2� x2� = n−1
n∑
i=1

V̂AR �Yi	Xi�
∂mWn�h1� x1�Xi�

∂xm1

∂mWn�h2� x2�Xi�
∂xm2

�

which too can be easily computed from the data once we have a suitable esti-
mate for the conditional variance VAR�Yi	Xi�.

We will now state the last theorem in this section, which is related to the be-
havior of the difference between the empirical and the theoretical scale space
surfaces under the supremum norm on H×I and the uniform convergence of
the empirical version to the theoretical one as the sample size grows.

Condition A1. In the setup of Theorem 3.1, let the smooth kernel K�x�
be such that for integer m ≥ 0, the derivatives ∂m+1h−1K�x/h�/∂xm+1 and
∂m+1h−1K�x/h�/∂h∂xm both remain uniformly bounded as h varies in H and
x varies in �−∞�∞�.

Condition A2. In the setup of Theorem 3.2, as h varies in H and x varies
in I, both

VAR Gn�Yi	Xi�
{
∂m+1Wn�h� x�Xi�

∂xm+1

}2
and

VAR Gn
�Yi	Xi�

{
∂m+1Wn�h�x�Xi�

∂h∂xm

}2
are uniformly dominated by a positive function M∗�Xi� such that
supn≥1EGn�M∗�Xi�� <∞.

Theorem 3.3. Assume either the set up of Theorem 3.1 and Condition A1
or that of Theorem 3.2 and Condition A2. Then as n→ ∞,

sup
x∈I�h∈H

n1/2

∣∣∣∣∣∂mf̂h�x�∂xm
− ∂mE�f̂h�x��

∂xm

∣∣∣∣∣
converges weakly to a random variable that has the same distribution as that
of supx∈I�h∈H 	Z�h�x�	. Here Z�h�x� with h ∈ H and x ∈ I is a Gaussian
process with zero mean and covariance function cov�h1� x1� h2� x2� as defined
in Theorem 3.1 or Theorem 3.2 so that

Pr�Z�h�x� is continuous for all �h�x� ∈H× I� = 1�

and consequently Pr
{
supx∈I�h∈H 	Z�h�x�	 <∞} = 1.
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It immediately follows from the preceding theorem that we have

sup
x∈I�h∈H

∣∣∣∣∣∂mf̂h�x�∂xm
− ∂mE�f̂h�x��

∂xm

∣∣∣∣∣ = OP�n−1/2� as n→ ∞�

This uniform n1/2-consistency of the empirical scale space surfaces and their
derivatives ensure convergence of the empirical versions of the “critical band-
widths” and the “mode tree” to their theoretical (or population) counterparts
as the sample size grows.

Note that all the weak convergence results in this section have been estab-
lished under the assumption that both ofH and I are fixed compact subinter-
vals of �0�∞� and �−∞�∞� respectively. Compactness of the setH×I enables
us to exploit standard results on weak convergence of a sequence of probabil-
ity measures on a space of continuous functions defined on a common compact
metric space. However, conventional asymptotics for nonparametric curve es-
timates allows the smoothing parameter h to shrink with growing sample size.
There frequently one assumes that hn is of the order n−γ for some appropriate
choice of 0 < γ < 1 so that the estimate f̂hn�x� converges to the “true func-
tion” f�x� at an “optimal rate.” This makes one wonder about the asymptotic
behavior of the empirical scale space surface when h varies inHn = �an−γ� b�,
where a� b > 0 are fixed constants. Extension of our weak convergence results
along that direction will be quite interesting, and we leave it as a challenging
open problem here.

4. Some applications. In nonparametric curve estimation a question of
fundamental importance is which of the observed features in an estimated
curve are really significant, and which ones are spurious artifacts of random
noise in the data. In the scale space literature, “blobs” in the scale space
surface are used as the primary tools for assessing significance of peaks ob-
served in smooth curves at various levels of scale. Readers are referred to
Lindeberg (1994) for detailed discussion on “blobs” and related mathematics.
On the other hand, in the statistics literature on mode testing [see, e.g., Good
and Gaskins (1980), Silverman (1981), Hartigan and Hartigan (1985), Donoho
(1988), Müller and Sawitzki (1991), Hartigan and Mohanty (1992), Mammen,
Marron and Fisher (1992), Minnotte and Scott (1993), Fisher, Mammen and
Marron (1994), Marchette and Wegman (1997), Minnotte (1997)], various sta-
tistical tests have been proposed for measuring the significance of modes in
estimated curves. It will be interesting to note here that some of these tests,
which are based on Silverman’s “critical bandwidths”, are comparable with
the significance measures based on “lifetimes of blobs” (i.e., the ranges of the
scale over which the “blobs” exist in the scale space surface). Similarly, other
measures of “blob” significance that are obtained from the sizes and spatial
extents of “blobs” have close connection with statistical tests based on Müller
and Sawitzki’s “excess mass estimates.”

We have already pointed out that features like peaks, valleys, points of in-
flexion, etc. of a smooth curve can be characterized in terms of zero crossings
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of derivatives. Hence the significance of such features, as discussed in Sec-
tion 2, can be judged from statistical significance of zero crossings or equiv-
alently the sign changes of derivatives. This idea has been successfully ex-
ploited by Chaudhuri and Marron (1999) in developing a simple yet effective
tool called SiZer for exploring significant structures in curves. Let us now con-
sider the null hypothesis H�h�x�

0 � ∂mE�f̂h�x��/∂xm = 0 for a fixed x ∈ I and
an h ∈H. Then a statistical test can be carried out for this hypothesis based
on ∂mf̂h�x�/∂xm, and if H�h�x�

0 is rejected, one can claim to have statistically
significant evidence for ∂mE�f̂h�x��/∂xm being positive or negative depend-
ing on the sign of ∂mf̂h�x�/∂xm. Then each point of significant zero crossing
of ∂mf̂h�x�/∂xm at a given level of scale (i.e., h) will be located between a pair
of points x1� x2 ∈ I such that there will be significant evidence in the data
against both of H�h�x1�

0 and H�h�x2�
0 , and ∂mf̂h�x1�/∂xm1 and ∂mf̂h�x2�/∂xm2 will

have opposite signs. We have already seen in the preceding section that the
process n1/2�∂mf̂h�x�/∂xm− ∂mE�f̂h�x��/∂xm� has a limiting Gaussian distri-
bution, and this can be used to construct simultaneous asymptotic tests for
the family of hypotheses �H�h�x�

0 	h ∈ H�x ∈ I�. We now state a theorem that
highlights performance of such tests.

Theorem 4.1. Assume that either all the conditions in Theorem 3.1 and
Condition A1 (in the case of density estimation) or those in Theorem 3.2 and
Condition A2 (in the case of regression) hold. Let q�1−α� be the �1− α�th quan-
tile of the continuous distribution of supx∈I�h∈H 	Z�h�x�	, where Z�h�x� is the
Gaussian process on H × I with covariance function cov�h1� x1� h2� x2� intro-
duced in Theorem 3.3. Consider the statistical test that accepts the null hy-
pothesis H�h�x�

0 � ∂mE�f̂h�x��/∂xm = 0 if 	∂mf̂h�x�/∂xm	 ≤ n−1/2q�1−α� and
concludes significant evidence for ∂mE�f̂h�x��/∂xm being positive or nega-
tive if ∂mf̂h�x�/∂xm > n−1/2q�1−α� or < −n−1/2q�1−α� respectively. Then the
asymptotic simultaneous level of this test for the entire family of hypotheses
�H�h�x�

0 	x ∈ I�h ∈ H� will be α. In other words, if the hypotheses H�h�x�
0 are

true for all �h�x� ∈ S ⊆ H × I, all of them will be accepted by the test with
asymptotic probability at least �1−α� as n→ ∞. Further, this test will have the
property that for any fixed h ∈H, if ∂mE�f̂h�x��/∂xm has k ≥ 1 sign changes
(i.e., k zero crossings) as x varies in I, the test will detect significant evidence
for all of these k sign changes with probability tending to one as n→ ∞.

Finding the exact distribution of the supremum of the absolute value of a
general Gaussian process is an almost impossible task, and the results avail-
able in the literature can only provide exponential bounds for the probability
Pr

{
supx∈I�h∈H 	Z�h�x�	 > λ} for λ > 0 [see, e.g., Adler (1990) for some de-

tailed discussion]. Therefore in practice it may not be possible to evaluate the
quantile q�1−α� analytically, and one may have to use some approximation for
it such as an estimate based on the bootstrap [see Chaudhuri and Marron
(1999)]. Note that so long as such an approximation converges to the true
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quantile as the sample size grows to infinity, the asymptotic performance of
the test described in the preceding theorem remains unaffected. One nice fea-
ture of the statistical test considered here is that it tries to detect the positions
of significant zero-crossings in the derivative of the scale space surface in ad-
dition to the number of such zero crossings at different levels of the scale.
Mode testing procedures considered in the literature however focus only on
the number of modes of the curve, with little or no attention to their positions.

Figure 5a shows the SiZer map for the data shown in Figure 1a. Regions in
scale space are shaded blue for significantly increasing, red for significantly
decreasing, purple for unable to distinguish (i.e., the confidence interval for the
derivative contains the origin), and gray for insufficient data in each window.
The SiZer map shows that the underlying regression is significantly increasing
near x = 0�1, and near x = 0�4, and is significantly decreasing near x = 0�25
and x = 0�7. However the spikes in the regression curve, shown in Figure 1a,
at x = 0�65 and x = 0�75 are not discernible from the data with this level of
noise. Many more applications of SiZer are shown in Chaudhuri and Marron
(1999).

A statistical test that has simultaneous asymptotic level α for all of the
null hypotheses H�h�x�

0 as x varies in I and h varies in H may turn out to
be overly conservative in many finite sample situations. If necessary, one may

Fig. 5. Figure 5a shows the SiZer map corresponding to the data and the family of smooths shown
in Figure 1b. This shows which modes in the smooths are significant, and which are spurious
sampling artifacts. Figure 5b shows the family surface with panels shaded according to the SiZer
colors.
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consider tests that have simultaneous asymptotic level α only for the hypothe-
sesH�h�x�

0 as x varies in I for some fixed h ∈H. In some sense, it may be quite
reasonable to consider different levels of the scale separately and carry out
separate tests for different curves corresponding to different values of h in-
stead of pooling those curves together and conducting one simultaneous test
for all of them. In this case, one has to use �1−α�th quantiles of the distribu-
tions of supx∈I 	Z�h�x�	 for different h ∈H. Readers are referred to Chaudhuri
and Marron (1999) for detailed discussion on different statistical tests for sig-
nificant zero crossings of the derivative of the scale space surface and many
illustrative examples that demonstrate their numerical implementation and
performance. Figure 5a uses the simplest non simulation version of these.

Additional examples illustrating the performance of SiZer in a variety of
ways, including a density estimation version, can be found in Marron and
Chaudhuri (1998a, 1998b) and Kim and Marron (1999). The extension of SiZer
to two dimensions is not direct, mostly because really different visualizations
are needed, but see Godtliebsen, Marron and Chaudhuri (1999a,b) for some
approaches to this problem.

APPENDIX: PROOFS

Proof of Theorem 2.1. Let us denote the theoretical scale space surface
E�f̂h�x�� by gh�x�. First observe that since E here means conditional ex-
pectation given X1�X2� � � �Xn and the Yi’s are assumed to be conditionally
independent given the Xi’s, in the case of Priestley-Chao estimate (A), we
have

gh�x� = �nh�−1
n∑
i=1
E�Yi	Xi�K��x−Xi�/h��

while in the case of Gasser-Müller estimate (B), we have

gh�x� =
n∑
i=1
E�Yi	Xi�

∫ ti
ti−1

�1/h�K��x− s�/h��

where −∞ = t0 < X1 < t1 < X2 < t2 < · · · < tn−1 < Xn < tn = ∞ as before.
Next observe that for Gaussian kernel K�x� = �1/√2π� exp�−x2/2� and any
integer m ≥ 0, we have

∂mf̂h1�x�
∂xm

∗K�x/h2� =
∂mf̂√

h21+h22�x�
∂xm

and

∂mgh1�x�
∂xm

∗K�x/h2� =
∂mg√

h21+h22�x�
∂xm

for all h1� h2 > 0 and both of Priestley-Chao and Gasser-Müller estimates.
Here ∗ denotes usual convolution, and note that we are using the fact that

K�x/h1� ∗ K�x/h2� = K�x/
√
h21 + h22�. Now it follows from total positivity
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of Gaussian kernel and the variation diminishing property of functions gen-
erated by convolutions with totally positive kernels [see Schoenberg (1950),
Karlin (1968)] that the number of sign changes in ∂mf̂h�x�/∂xm and that in
∂mgh�x�/∂xm will both be monotonically decreasing function of h.

Suppose next that ∂mf̂h0�x�/∂xm has k ≥ 0 sign changes for some fixed
h0 > 0. Then arguing as in Silverman (1981), it is easy to see using the
continuity of ∂mf̂h�x�/∂xm as a function of h and x that there exists ε > 0
such that for all h ∈ �h0� h0+ε�∂mf̂h�x�/∂xm will have at least k sign changes.
Hence the monotonic decrease in the number sign changes with increase in
h implies that the number of sign changes in ∂mf̂h�x�/∂xm will be exactly
equal to k for all h ∈ �h0� h0 + ε�. An identical argument can be given for
the number of sign changes in ∂mgh�x�/∂xm. This completes the proof of right
continuity. ✷

Proof of Theorem 2.2. Let �x0� h0� f̂h0�x0�� be a non-degenerate critical
point, that is, ∂f̂h0�x0�/∂x0 = 0 and ∂2f̂h0�x0�/∂x20 �= 0. Then using the con-
tinuity of ∂2f̂h�x�/∂x2 as a function of h and x there will be an ε > 0 and
a δ > 0 such that ∂2f̂h�x�/∂x2 will be non-zero and have the same sign for
all h ∈ �h0 − ε� h0 + ε� and x ∈ �x0 − δ� x0 + δ�. Further, in view of the im-
plicit function theorem of calculus, ε and δ can be so chosen that for every
h ∈ �h0−ε� h0+ε� there will be a unique x = x�h� ∈ �x0−δ� x0+δ� satisfying
∂f̂h�x�/∂x = 0, and �x�h�� h� f̂h�x�h��� will automatically be a non-degenerate
critical point. Now, if h0 is a “critical bandwidth,” it must correspond to a point
of bifurcation �x0� h0� f̂h0�x0�� of the trajectory of critical points on the scale
space surface. Hence, if ε and δ are sufficiently small, for all h ∈ �h0 − δ� h0�,
there will be more than one x’s in �x0 − δ� x0 + δ� satisfying ∂f̂h�x�/∂x = 0.
This contradicts the uniqueness of x�h� and completes the proof of the first
part of the theorem.

For the second part of the theorem let us observe that we have for x = x�h� ∈
�x0−δ� x0+δ�, ∂f̂h�x�/∂x = ∂f̂h�x�h��/∂�x�h�� = 0 for all h ∈ �h0−δ� h0+δ�.
Then the rule for differentiation of implicit functions leads to

∂2f̂h�x�
∂h∂x

+ ∂2f̂h�x�
∂x2

∂x

∂h
= 0�

which implies that at x = x�h�, we will have
∂x

∂h
= −

{
∂2f̂h�x�
∂h∂x

}{
∂2f̂h�x�
∂x2

}−1
�

Finiteness of the drift velocity is now immediate. ✷

Proof of Theorem 3.1. Let us first fix �h1� x1�� �h2� x2�� � � � � �hk� xk�
∈H× I and t1� t2� � � � � tk ∈ �−∞�∞�. Then observe that

n1/2
k∑
i=1
ti

[
∂mf̂hi�xi�
∂xmi

− ∂mE�f̂hi�xi��
∂xmi

]
= Zn �say�
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has zero mean, and its variance converges to
∑k
i=1

∑k
j=1 titjcov�hi� xi� hj� xj�

as n→ ∞ in view of the weak convergence of Fn to F and uniform bounded-
ness of ∂mh−1K�x/h�/∂xm as h varies inH and x varies in �−∞�∞�. Further,
uniform boundedness of ∂mh−1K�x/h�/∂xm implies that Lindeberg’s condition
holds for Zn, and consequently its limiting distribution will be normal. This
in turn implies using Cramér-Wold device that as n → ∞, the joint limiting
distribution of

n1/2

[
∂mf̂hi�xi�
∂xmi

− ∂mE�f̂hi�xi��
∂xmi

]
= Un�hi� xi� �say�

for 1 ≤ i ≤ k is multivariate normal with zero mean and cov�hi� xi� hj� xj� as
the �i� j�th entry of the limiting variance covariance matrix for 1 ≤ i� j ≤ k.

Next fix h1 < h2 in H and x1 < x2 in I. Then uniform boundedness of
∂m+2h−1K�x/h�/∂h∂xm+1 implies that

EFn �Un�h2� x2� −Un�h2� x1� −Un�h1� x2� +Un�h1� x1��2

≤ nEFn
{
∂mf̂h2�x2�
∂xm2

− ∂mf̂h2�x1�
∂xm1

− ∂mf̂h1�x2�
∂xm2

− ∂mf̂h1�x1�
∂xm1

}2

≤ C1�h2 − h1�2�x2 − x1�2

for some constant C1 > 0. It now follows from one of the main results in Bickel
and Wichura (1971) that the sequence of processes

n1/2

[
∂mf̂h�x�
∂xm

− ∂mE�f̂h�x��
∂xm

]

on H × I will have the tightness property. This completes the proof of the
theorem. ✷

Proof of Theorem 3.2. The proof here is very similar to the preceding
proof of Theorem 3.1. The weak convergence of finite dimensional distributions
to Gaussian limits can be established by verifying Lindeberg’s condition, and
tightness follows from bounds on second moments of the increments. Full
details may be found in Chaudhuri and Marron (1998), the earlier technical
report version of this paper.

Proof of Theorem 3.3. Let us begin by observing that for �h1� x1� and
�h2� x2� in H× I, we have

E �Z�h2� x2� −Z�h1� x1��2 = cov�h2� x2� h2� x2�
+cov�h1� x1� h1� x1� − 2cov�h2� x2� h1� x1�

≤ C4��h2 − h1�2 + �x2 − x1�2�
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for some constant C4 > 0. The above follows straight away from the fact that

E �Un�h2� x2� −Un�h1� x1��2 ≤ C4��h2 − h1�2 + �x2 − x1�2�
for all n ≥ 1 with some appropriate choice of C4 if either Condition A1 or Con-
dition A2 holds. Here Un is as in the proof of Theorem 3.1 or 3.2 depending on
whether we have a density estimation or a regression problem. Next consider
the compact metric space H× I metrized by the pseudo metric

d��h2� x2�� �h1� x1�� =
[
E �Z�h2� x2� −Z�h1� x1��2

]1/2
�

which is nothing but the so called canonical metric associated with the Gaus-
sian process Z�h�x�. Let N�ε� be the smallest number of closed d-balls with
radius ε > 0 in this metric space that are required to coverH×I. So, log�N�ε��
is the usual metric entropy ofH×I under the metric d. Note that for any ε >
diameter�H× I�, N�ε� = 1 and N�ε� = O�ε−2� for 0 < ε ≤ diameter�H× I�.
Hence, we must have

∫∞
0 �log�N�ε���1/2dε < ∞. This ensures the continu-

ity of the sample paths of the process Z�h�x� as well as the finiteness of
supx∈I�h∈H 	Z�h�x�	 with probability one [see Adler (1990, pages 104–107)].
The proof of the theorem is now complete in view of the weak convergence
of the centered and normalized empirical scale space process to the Gaussian
process Z�h�x� on H× I established in Theorems 3.1 and 3.2. ✷

Proof of Theorem 4.1. First observe that if H�h�x�
0 is true for all �h�x� ∈

S ⊆H× I, we have ∂mE�f̂h�x��/∂xm = 0 for all �h�x� ∈ S. Hence,

Pr
{
H

�h�x�
0 is accepted for all �h�x� ∈ S

}
= Pr

{∣∣∣∣∣∂mf̂h�x�∂xm

∣∣∣∣∣ ≤ n−1/2qα for all �h�x� ∈ S
}

≥ Pr
{

sup
�h�x�∈H×I

n1/2

∣∣∣∣∣∂mf̂h�x�∂xm
− ∂mE�f̂h�x��

∂xm

∣∣∣∣∣ ≤ qα
}

→ Pr

{
sup

�h�x�∈H×I
	Z�h�x�	 ≤ qα

}
= �1− α��

Note that the convergence in the last step asserted above follows from the
weak convergence results established in Theorems 3.1 and 3.2, and this com-
pletes the proof of the first half of the theorem.

Next note that if for a fixed h ∈ H, ∂mE�f̂h�x��/∂xm has k ≥ 1 sign
changes, we will be able to choose x1 < x2 < · · · < xk < xk+1 in I such
that ∂mE�f̂h�xi��/∂xmi �= 0 for all 1 ≤ i ≤ k + 1, and ∂mE�f̂h�xi��/∂xmi
and ∂mE�f̂h�xi+1��/∂xmi+1 will have opposite signs for all 1 ≤ i ≤ k. Since
n−1/2qα → 0 as n→ ∞, the second half of the theorem now follows from the
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fact that

max
1≤i≤k+1

∣∣∣∣∣∂mf̂h�xi�∂xmi
− ∂mE�f̂h�xi��

∂xmi

∣∣∣∣∣
≤ sup

�h�x�∈H×I

∣∣∣∣∣∂mf̂h�x�∂xm
− ∂mE�f̂h�x��

∂xm

∣∣∣∣∣ = OP�n−1/2��

which has been observed following Theorem 3.3. ✷
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