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THE CONSISTENCY OF THE BIC MARKOV ORDER ESTIMATOR

By Imre Csiszár1 and Paul C. Shields2

Hungarian Academy of Sciences and University of Toledo

The Bayesian Information Criterion (BIC) estimates the order of a
Markov chain (with finite alphabet A) from observation of a sample path
x1� x2� � � � � xn, as that value k = k̂ that minimizes the sum of the nega-
tive logarithm of the kth order maximum likelihood and the penalty term
�A�k��A�−1�

2 log n�We show that k̂ equals the correct order of the chain, even-
tually almost surely as n → ∞, thereby strengthening earlier consistency
results that assumed an apriori bound on the order. A key tool is a strong
ratio-typicality result for Markov sample paths. We also show that the
Bayesian estimator or minimum description length estimator, of which the
BIC estimator is regarded as an approximation, fails to be consistent for
the uniformly distributed i.i.d. process.

1. Introduction. A Markov chain is a discrete stochastic process
	Xn: n ≥ 1�with values in a setA, called the alphabet, of cardinality �A� < ∞,
for which there is a k ≥ 1 such that

Prob�Xn
1 = xn

1� = Prob
(
Xk
1 = xk

1

) n∏
i=k+1

Q
(
xi�xi−1

i−k

)
� n ≥ k� xn

1 ∈ An�(1.1)

for suitable transition probabilities Q�·�·�. Here and in the sequel, xn
m denotes

the sequence xm�xm+1� � � � � xn. The class of processes such that (1.1) holds for
a given k ≥ 1 will be denoted by �k, and �0 will denote the class of i.i.d.
processes. The order of a process in � = ∪∞

k=0�k is the smallest integer k0
such that for some � ≥ 1, 	Xn: n ≥ �� is in �k0

.
One popular approach to model selection is the so-called Bayesian Infor-

mation Criterion (BIC) of Schwarz [16]. Applied to estimating the order of a
Markov chain, this gives the estimator

k̂BIC = k̂BIC�xn
1� = argmin

k

(
− logPML�k��xn

1� +
�A�k��A� − 1�

2
log n

)
�(1.2)

where PML�k��xn
1� is the kth order maximum likelihood, that is, the largest

probability given to xn
1 by processes in �k. Our principal result is that this

estimator is consistent.
It is a kind of folklore that “BIC is consistent,” that is, recovers the right

model class, eventually almost surely, provided one of the candidate model

Received February 1999; revised October 2000.
1Supported in part by a joint NSF-Hungarian Academy Grant 92 and by the Hungarian Na-

tional Foundation for Scientific Research Grant T26041.
2Supported in part by A joint NSF-Hungarian Academy Grant INT-9515485.
AMS 2000 subject classifications. Primary 62F12, 62M05; secondary 62F13, 60J10.
Key words and phrases. Bayesian Information Criterion, order estimation, ratio-typicality,

Markov chains.

1601
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classes is right. Consistency proofs are available for various situations such as
i.i.d. processes with distributions from exponential families (Haughton [10]),
autoregressive processes (Hannan and Quinn [9]) and Markov chains (Finesso
[6]). All these proofs include the assumption that the number of candidate
model classes is finite; for Markov chains, this means that there is a known
upper bound k∗ on the order of the process and the minimization in (1.2) is for
k ≤ k∗. Consistency results of this kind may satisfy the practitioner, to whom
consistency is of limited interest anyhow, for the true law of the process seldom
belongs exactly to one of the candidate model classes (and the practitioner may
not assume that a true law exists at all). From a theoretical point of view,
however, restriction to a finite number of candidate model classes appears
artificial, and it is a relevant question whether consistency also holds without
such restriction. We answer this question in the positive, for the Markov chain
case.
A process in � = ∪∞

k=0�k is irreducible if it is either i.i.d. or belongs to �k

for some k ≥ 1 and has the additional property that the k-blocks that occur
with positive probability communicate.

The BIC consistency theorem. For any irreducible process in � ,
k̂BIC�Xn

1� is eventually almost surely equal to the order of the process.

The restriction to the irreducible case is justifiable for two reasons. First,
if transient blocks were permitted, the order of the process could depend on
those, and then it could not be estimated consistently. The definition of order
could, however, be modified so as to keep the theorem valid for this case also.
Second, the theorem is not true if the process is a mixture of two processes of
different orders, because the sample paths drawn from the lower order com-
ponent have positive probability and on these the BIC estimator is eventually
almost surely equal to the lower order.
Consistent Markov order estimators of the penalized likelihood type, not

assuming a prior bound on the order, have been known before, see Kieffer [11].
There, the penalty term was larger than the BIC penalty term 1

2 �A�k��A� −
1� log n in (1.2) and BIC consistency was raised as an open question. We note
that the previously cited consistency proofs (assuming a finite number of model
classes) were not restricted to the BIC, rather, consistency was proved even
with penalty terms growing as slow as log log n (but sample-size independent
penalty terms, such as in AIC, do not suffice for consistency). Our proof uses
the particular form of the BIC penalty term rather strongly, and it remains
open whether smaller penalty terms suffice for consistency in the absence of
a prior bound on the order.
In the sequel, processes will be identified with their distributions. Thus,

if a probability measure P on A∞ is the distribution of a process in � ,
we will write P ∈ � and say that P is a process in � . Note that to each
each irreducible P ∈ � there exists a stationary (i.e., shift-invariant) Q ∈ �
whose order and transition matrix are the same as those of P. This “station-
ary modification” of the process P is obtained by replacing Prob�Xk

1 = xk
1�
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in (1.1) by the limit as n → ∞ of the arithmetic mean of the probabilities
Prob�Xi+k−1

i = xk
1�� i = 1� � � � � n. Any irreducible process in � is absolutely

continuous with respect its stationary modification, hence it suffices to prove
the consistency theorem for stationary irreducible processes in � .
An essential tool in proving the consistency of the BIC order estimator is

a strong ratio-typicality result we establish for stationary, irreducible Markov
chains, a result that appears to be of independent interest. It says, loosely,
that as long as k does not grow too rapidly with sample path length, the
ratio of the empirical relative frequency of each k-block to its probability is
uniformly close to 1. The empirical distribution of k-blocks in xn

1 is defined by
the formula

P̂�ak
1 �xn

1� =
1

n− k+ 1N�ak
1 �xn

1�� ak
1 ∈ Ak�(1.3)

where N�ak
1 �xn

1� = �	i ∈ �1� n − k + 1�: xi+k−1
i = ak

1�� is the number of occur-
rences of ak

1 in xn
1 .

The sequence xn
1 is called �k� ε�-typical for a process Q if P̂�ak

1 �xn
1� = 0,

whenever Q�ak
1� = 0, and∣∣∣∣P̂�ak

1 �xn
1�

Q�ak
1�

− 1
∣∣∣∣ < ε whenever Q�ak

1� > 0�(1.4)

The typicality theorem. For any stationary irreducible process Q ∈ �
and any 0 < β < 1/2 there exists α > 0 such that eventually almost surely as
n → ∞, the sequence xn

1 is �k�n−β�-typical for every k ≤ α log n�

Earlier typicality results in which block length grows with sample path length
include the following.

1. Marton and Shields obtain large deviations bounds for the variational dis-
tance between the empirical k-block distribution and the theoretical k-
block distribution that are valid for all k ≤ �log n��H + ε�, where H is
the process entropy [13]. Their results do yield our typicality theorem for
k = o�log log n�, but this is not sufficient for our proof of the BIC consistency
theorem.

2. Flajolet, Kirschenhofer and Tichy have obtained similar results for the case
whenQ is the unbiased coin-tossing process [8]. They consider longer blocks
but do not give an error rate.

The relevance of the typicality theorem for our consistency proof is that the
probabilities

Q
({

xn
1 : k̂BIC = k� xn

1 is
(
k�n−β

)
-typical

})
can be bounded by direct counting arguments to show that their sum over all
k ∈ �k∗� α log n� is itself summable in n if k∗ is sufficiently large. A second
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idea, which comes from a more careful look at the Bayesian framework that
underlies the BIC, will be used to show that

k̂BIC�xn
1� �∈

(
log log n
log �A� � n

]
eventually a.s.(1.5)

These results combine with the known consistency results, subject to k ≤ k∗

in (1.2), to establish the BIC consistency theorem.
The Bayesian framework starts with a prior distribution 	pk� on the pos-

sible orders, together with a prior distribution on �k, for each k; the latter
defines a mixture distribution, that is, a weighted average of the processes
in �k. The Bayesian order estimator is that k for which the product of pk

and the mixture probability of xn
1 is largest. We consider here the mixture of

those kth order Markov chains whose starting distribution is uniform on Ak,
taking as prior the �A�k-fold product of the � 12 � � � � � 12� Dirichlet distributions
put on the transition probability matrices Q�·�·�. This mixture distribution
plays a distinguished role in the theory of universal coding; see Krichevsky
and Trofimov [12]. We denote it by KTk; its explicit form is given later. The
expression minimized in the definition (1.2) of k̂BIC�xn

1� is an approximation
to − log KTk�xn

1� when k is fixed and n → ∞. We will show, however, that for
large n and k, it substantially overestimates − log KTk�xn

1�, a fact that easily
leads to the result (1.5).
We will also consider the Bayesian order estimator

k̂KT�xn
1� = argmin

k

(
− logpk − log KTk�xn

1�
)
�(1.6)

which is also a minimum description length (MDL) estimator; see Rissanen
[15] or Barron, Rissanen and Yu [2]. This is because − log KTk�xn

1� is the
description length (code length) for a universal code tailored to the model
class �k.
In contrast to the BIC consistency theorem, we will prove the following.

The inconsistency theorem. If 	Xn� is i.i.d. with Xn uniformly dis-
tributed on A, then k̂KT�xn

1� → +∞, almost surely, provided the pk of �1�6�
are taken, as usual, to be slowly decreasing, say pk = ck−2.

Bayesian inconsistency phenomena similar to ours are well known; see, for
example, Diaconis and Freedman [5]. Our inconsistency result is interesting
for three reasons:

(i) It concerns a natural problem with choice of priors commonly used in
the literature.
(ii) The contrast to the BIC consistency theorem suggests a deficiency in

the usual interpretation of the BIC order estimator as an approximation to
the Bayesian.
(iii) An MDL-inspired result of Barron [1] (see also [2]) says the following:

if the processes of �k are parametrized by an �A�k��A� − 1� dimensional pa-
rameter, then for Lebesgue almost all choices of the parameter, the estimator
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k̂KT�xn
1� is eventually almost surely equal to the correct order. Our inconsis-

tency theorem shows that “for almost every choice of the parameter,” is not
vacuous.

The question remains open whether the Bayesian order estimator k̂KT may
be inconsistent also for other processes than the uniform i.i.d. process. If the
answer is no, as we conjecture, the inconsistency could be remedied by putting
the uniform i.i.d. process into a class of its own (of order −1, say) and, accord-
ingly, assigning to it a positive prior probability.
In addition to the Bayesian estimator k̂KT there are other MDL order es-

timators that correspond to different coding schemes tailored to model class
�k. Another form of optimal code for the class �k, due to Shtarkov [18], has
codeword lengths − log NMLk�xn

1�, where NMLk is the normalized maximum
likelihood

NMLk�xn
1� = PML�k��xn

1�
/ ∑

yn
1∈An

PML�k��yn
1��

The corresponding order estimator is obtained replacing KTk by NMLk in (1.6).
We will show that the inconsistency theorem also holds for this estimator. The
estimator is related to k̂BIC is the same way as k̂KT is, that is, − log NMLk�xn

1�
is also asymptotically equal to the expression minimized in (1.2) when k is
fixed and n → ∞.
As a reviewer suggested, we mention some recent results about model se-

lection for a more refined model in which probabilities are assumed to depend
on a variable number of steps in the past, with a bound on the depth of look-
back. Such a process is Markov (with order equal to the depth of lookback),
but now the user wishes to determine not only the order but also the explicit
“context tree” that determines the probabilities. Weinberger, Rissanen and
Feder [19], showed that the context tree can be consistently estimated by a
search that assumes a bounded depth but the bound is allowed to grow slowly
as the sample increases. Bühlman and Wyner [3], using a modified algorithm
that does not require a prior depth bound, obtained consistency in probabil-
ity even if the “true model” is allowed to depend on sample size (subject to
regularity assumptions). Willems et al. [21] showed that a modified version
of the “weighting algorithm” they develop for data compression, [20], is also
suitable for consistent estimation of the context tree; here, however, a prior
bound on depth is assumed. While none of these consistency results employ a
BIC estimator, they may render our BIC consistency theorem more plausible.
Finally, we mention the paper of Papangelou [14] whose flavor is somewhat

similar to our work, although no direct relationship of results is apparent. We
should also mention that our methods, particularly the ratio-typicality idea,
might be useful in establishing consistency in other settings; for brevity and
to keep this paper focused we do not consider these here.
In outline, here is the structure of the remainder of the paper.

1. The proof of the BIC consistency theorem, assuming the typicality theorem,
is given in Section 2. As alluded to earlier, separate arguments to rule
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out moderate and gross overestimation are given in Sections 2.1 and 2.2,
respectively.

2. The typicality theorem is proved using a martingale argument in Section 3.
3. The inconsistency theorem is established in Section 4. The key is that if

k is large enough to make it unlikely that no k-block appears twice, then
KTk ∼ �A�−n while KT0 ∼ �A�−nn

�A�−1
2 .

2. Proof of the BIC consistency theorem. We make use of the fact
that the maximum likelihood PML�k��xn

1� can be expressed in terms of the
empirical distribution of �k+ 1�-blocks. Indeed, using the notation ak

1 ∈ xn
1 to

mean thatN�ak
1 �xn

1� > 0, where, as defined earlier,N�ak
1 �xn

1� is the number of
occurrences of ak

1 in xn
1 , the Markov condition (1.1) can be expressed as

Prob�Xn
1 = xn

1� = Prob
(
Xk
1 = xk

1

) ∏
ak+1
1 ∈xn

1

Q�ak+1�ak
1�N�ak+1

1 �xn
1 ��(2.1)

For fixed xn
1 ∈ An, this probability is maximized if Prob�Xk

1 = xk
1� = 1 and

Q�ak+1�ak
1� = N�ak+1

1 �xn
1�/N�ak

1 �xn−1
1 � whenever ak

1 ∈ xn−1
1 . It follows that

PML�k��xn
1� = exp


− ∑

ak+1
1 ∈xn

1

N�ak+1
1 �xn

1� log
N�ak

1 �xn−1
1 �

N�ak+1
1 �xn

1�


(2.2)

where N�ak
1 �xn−1

1 � is replaced by n in the case when k = 0.
As noted in the Introduction, it suffices to prove consistency of the BIC

order estimator for stationary, irreducible processes in � . Throughout this
section Q will denote such a process of order k0 and almost sure statements
are with respect to Q. Further, we abbreviate �A�k+1 − �A�k by �kA and put

Bn�k =
{
xn
1 : k̂BIC�xn

1� = k
}
�

Since Q ∈ �k0
implies Q�xn

1� ≤ PML�k0��xn
1�, it follows from the definition (1.2)

of k̂BIC�xn
1� that

logQ�xn
1� ≤ logPML�k��xn

1� −
�kA

2
log n+ �k0

A

2
log n� xn

1 ∈ Bn�k�(2.3)

By the consistency result with a prior bound on the order, see [6], we have,
for any fixed k∗ > k0,

k̂BIC�xn
1� �∈ �0� k0� ∪ �k0� k∗� eventually almost surely�

For completeness a proof is given in the Appendix. The consistency theorem
will be established if we can show that for suitable k∗ > k0,

k̂BIC�xn
1� ≤ k∗ eventually a.s.

We sketch our initial attempts to prove the preceding via bounding the prob-
abilities Q�Bn�k�. Partition Bn�k according to the empirical distribution of
�k+ 1�-blocks in xn

1 . As the maximum likelihood is constant on a class of the
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partition the class size is bounded by the reciprocal of that maximum likeli-

hood. It follows, using (2.3), that each class has Q-probability ≤ n
−�kA

2 + �k0
A

2 .
This provides a useful bound for Q�Bn�k� only if there is available a bound
sufficiently less than n

�kA

2 − �k0
A

2 on the number of classes.
Counting ideas like the preceding are frequently used in information the-

ory, where it is known as the method of types; for previous applications to
Markov order estimation, see [7]. Unfortunately, the argument fails for our
problem, since the number of classes is too large. It can be salvaged, however,
by invoking the typicality theorem. The latter permits restricting attention to
the part of Bn�k consisting of �k�n−β�-typical sequences, and for that part a
satisfactory bound on the number of classes can be obtained.
We show in Section 2.1 how to use the counting idea in conjunction with

the typicality theorem to obtain the following result.

Proposition 1. There exist positive numbers k∗ ≥ k0 and α, both depend-

ing on Q, such that k̂BIC�xn
1� �∈ �k∗� α log n�� eventually almost surely.

For large k the penalty term �kA log n becomes dominant. For example, if

k ≥ log n
log �A�

then �kA ≥ n log n, so that (2.3) yields

logQ�xn
1� ≤ −n

2
log2 n+O�log n�� xn

1 ∈ Bn�k�

This cannot hold for large n since the Markov property implies there is positive
constant c such that

min
xn
1 : Q�xn

1 �>0
Q�xn

1� ≥ cn� n ≥ 1�

A more sophisticated argument will be used in Section 2.2 to establish the
following stronger result.

Proposition 2.

k̂BIC�xn
1� �∈

(
log log n
log �A� � n

]
�

eventually almost surely.

Combined with Proposition 1 and the preceding arguments, this yields the
BIC consistency theorem.
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2.1. Proof of Proposition 1. Two lemmas will be established, one bounding
the number of typical sequences with a given empirical �k + 1�-block distri-
bution, the other bounding the number of possible such distributions. Used
in conjunction with the typicality theorem, these lead to the proof of Proposi-
tion 1.
To facilitate the statements and proofs of our two lemmas we introduce

the following terminology. A distribution P on �k + 1�-blocks will be called a
�k+1�-type (with path length n) if it is the empirical �k+1�-block distribution
of some n-sequence. The �k + 1�-type class of P, denoted by � n

P , is the set of
all xn

1 for which P̂�ak+1
1 �xn

1� = P�ak+1
1 �, for all ak+1

1 .
The typicality concept (1.4) extends to type classes. For each j, let�j denote

the support of the jth marginal of Q, that is, the set of all a
j
1 for which

Q�aj
1� > 0. A �k + 1�-type class � n

P is ε-typical (for the given Q) if some
xn
1 ∈ � n

P (and hence every xn
1 ∈ � n

P ) is �k+ 1� ε�-typical, that is, if∣∣∣∣P�ak+1
1 �

Q�ak+1
1 �

− 1
∣∣∣∣ < ε� ak+1

1 ∈ �k+1� P�ak+1
1 � = 0� ak+1

1 �∈ �k+1�

Lemma 1. There is a positive constant C = C�Q� such that

�� n
P � ≤ C�A�k�n− k�− ��k+1 �−��k �

2 exp�− logPML�k��xn
1��� xn

1 ∈ �P�

for every ε-typical �k + 1�-type class � n
P , for all ε < 1/2, for all n, and for all

1 ≤ k < n.

Proof. The easy case is k = 0 for then

�� m
P � =

(
m+ �� �P�� − 1

�� �P�� − 1
)

�

where � �P� = 	a ∈ A:P�a� > 0�� to which Stirling’s formula can be applied.
Indeed, using the refined version of Stirling’s formula (see [4], Exercise 2,
Section 1.2), a straightforward calculation yields the 1-type bound

�� m
P � ≤ �2πm�− �� �P��−1

2∏
a∈� �P�

√
P�a� exp

(
− logPML�0��xm

1 �
)
� xm

1 ∈ � m
P �(2.4)

For the case when k > 0, the idea is to partition � n
P according to the first

k-terms, then upper bound the cardinality of each set of the partition by the
product of the cardinalities of the 1-types given by the conditional counts. This
plan is carried out in the following paragraphs.
Fix 0 < ε < 1/2 and 1 ≤ k < n, and let P be an ε-typical �k+1�-type of path

length n. Typicality implies that P�ak
1� > 0 iff ak

1 ∈ �k and P�ak+1
1 � > 0 iff

ak+1
1 ∈ �k+1. Furthermore, denoting the support of the conditional distribution

P�·�ak
1� by � �·�ak

1�, we have∑
ak
1∈�k

�� �·�ak
1�� − 1
2

= ��k+1� − ��k�
2

�(2.5)
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Given xn
1 ∈ � n

P , let x∗�ak
1� denote the sequence of length �n − k�P�ak

1� con-
sisting of the symbols xtj

that follow the occurrences of ak
1 in xn−1

1 , that is,

such that x
tj−1
tj−k = ak

1, k < tj ≤ n. Then x∗�ak
1� belongs to the 1-type class

�
�n−k�P�ak

1�
P�·�ak

1�
and it follows that assigning to xn

1 the ��k�-tuple 	x∗�ak
1�:ak

1 ∈ �k�
defines a mapping of � n

P into the Cartesian product of the sets �
�n−k�P�ak

1�
P�·�ak

1�
,

ak
1 ∈ �k. Furthermore, this mapping is one-to-one when restricted to the set

� n
P�xk

1
consisting of all xn

1 ∈ � n
P that start with a fixed xk

1. Hence it follows
from the 1-type bound (2.4) and the support relations (2.5) that

�� n
P�xk

1
� ≤ ∏

ak
1∈�k

∣∣∣∣� �n−k�P�ak
1�

P�·�ak
1�

∣∣∣∣
≤ !�P��n− k�− ��k+1 �−��k �

2 exp
{− logPML�k��xn

1�
}
� xn

1 ∈ � n
P �

where

!�P� = ∏
ak
1∈�k

�2πP�ak
1��−

�� �·�ak1 ��−1
2∏

ak+1∈� �·�ak
1�
√

P�ak+1�ak
1�

�(2.6)

since ∑
ak
1∈�k

logPML�0�x
∗�ak

1�� = logPML�k��xn
1�� xn

1 ∈ � n
P �

as can be seen by using formula (2.2) and some algebra.
Typicality and the assumption that 0 < ε < 1/2 imply that

!�P� ≤ c�A
k�!�Q��(2.7)

where c is a constant, depending only on Q, and !�Q� is defined by replacing
P by Q in (2.6). (One can show that c = √

6 suffices.) The Markovian property,
however, implies the existence of c∗ > 0 such that Q�aj

1� ≥ c
j
∗ � for any j and

any a
j
1 ∈ �j� This fact, together with (2.7), easily yields the desired result.

This completes the proof of Lemma 1. ✷

Lemma 2. The number of ε-typical �k + 1�-type classes � n
P is less than

�A�2k �1+ 2ε�n− k����k+1�−��k�.

Proof. It suffices to show that, fixing xk
1 and xn

n−k+1, the number of ε-
typical �k + 1�-type classes that could contain xn

1 is less than
�1+ 2ε�n− k����k+1�−��k�. Note that for a �k+1� ε�-typical xn

1 , among the num-
bers N�ak+1

1 �xn
1� exactly those with ak+1

1 ∈ �k+1 are positive, and each have
less than 1+ 2ε�n− k� possible values, because typicality implies∣∣∣N (

ak+1
1 �xn

1

)
− �n− k�Q�ak+1

1 �
∣∣∣ < ε�n− k�Q�ak+1

1 � ≤ ε�n− k��
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Hence the proof will be complete if we show that, fixing xk
1 and xn

n−k+1, the
numbersN�ak+1

1 �xn
1�, ak+1

1 ∈ �k+1, satisfy ��k� independent linear constraints,
so that ��k+1� − ��k� of these numbers uniquely determine the others.
Clearly, the following equations always hold:∑

ak+1
1 ∈�k+1

N
(
ak+1
1 �xn

1

)
= n− k�

and for each bk
1 ∈ �k,∑
ak+1
1 ∈�k+1

N
(
ak+1
1 �xn

1

) (
�
(
ak
1 = bk

1

)
− �

(
ak+1
2 = bk

1

))

= �
(
ak
1 = xk

1

)
− �

(
ak
1 = xn

n−k+1
)
�

where here and in the remainder of the paper, ��·� denotes the indicator
function.
It is easy to see that dropping any one of the last ��k� equations, the remain-

ing ��k� constraints are independent. Formally, � (with each component equal
to 1) and

{
��ak

1 = bk
1� − ��ak+1

2 = bk
1�� ak+1

1 ∈ �k+1
}
with bk

1 running over all

k-blocks in �k but one, are linearly independent vectors in ���k+1�. ✷

Proof of Proposition 1 completed (Assuming the typicality theorem).
Let 0 < β < 1/2 and α > 0 be as in the typicality theorem for Q and let
C = C�Q� be the number given by Lemma 1. The bound (2.3) and Lemma 1
imply that

Q�� n
P ∩Bn�k� ≤ C�A�k�n− k�− �k�

2 n
−�kA

2 + �k0
A

2 �(2.8)

for any ε-typical �k+1�-type class � n
P with ε < 1/2, where we used the notation

�k� = ��k+1� − ��k� in addition to our earlier notation �kA = �A�k+1 − �A�k.
Let Gn�k be the union of the n−β-typical �k+1�-type classes � n

P . The bound
(2.8) and Lemma 2 combine to show that Q�Gn�k ∩Bn�k� is upper bounded by

C�A�k�1+ 2n−β�n− k���k� �n− k�− �k�
2 n

−�kA

2 + �k0
A

2 �

which is, in turn, upper bounded by

(constant)�A�kn−β�k� �n− k� �k�
2 n− �kA

2 n
�k0

A

2 �(2.9)

Here

n−β�k� �n− k� �k�
2 n− �kA

2 ≤ n−��kA−�kS�1−2β��/2 ≤ n−β�kA�

since 0 ≤ �kS ≤ �kA. It follows that for k sufficiently large, the bound in (2.9)
becomes smaller than any negative power of n, because �kA = �A�k��A� − 1�
goes to infinity as k → ∞. Hence, there is a k∗ ≥ k0 and an n∗ such that

Q�Gn�k ∩Bn�k� ≤ n−2� n ≥ n∗� k∗ ≤ k ≤ α log n�
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from which it easily follows that

∑
n

Q

( ⋃
k∈�k∗�α log n�

�Gn�k ∩Bn�k�
)

< ∞�

The typicality theorem implies

xn
1 ∈

⋂
k∈�k∗�α log n�

Gn�k eventually a.s.,

and an application of Borel-Cantelli yields Proposition 1. ✷

2.2. Proof of Proposition 2� Again we use the notation ak
1 ∈ xn

1 to mean that
N�ak

1 �xn
1� > 0. The proof of Proposition 2 relies on properties of the Krichevsky-

Trofimov distributions KTk. For k = 0, KT0 is the � 12 � � � � � 12�-Dirichlet mixture
of the i. i. d. distributions with alphabet A. In explicit terms, see [12],

KT0�xn
1� =

%� �A�
2 �

%�n+ �A�
2 �

∏
a∈xn

1

%�N�a�xn
1� + 1

2�
%� 12�

=
∏

a∈xn
1
�N�a�xn

1� − 1
2��N�a�xn

1� − 3
2� · · · � 12�

�n− 1+ �A�
2 ��n− 2+ �A�

2 � · · · � �A�
2 �

�

(2.10)

For k ≥ 1, KTk is the mixture of the kth order Markov chains whose starting
distribution is uniform on Ak, the mixture taken with the �A�k-fold product
of � 12 � � � � � 12�-Dirichlet distributions put on the transition matrices Q�·�·�. The
explicit form is

KTk�xn
1�

= 1
�A�k

∏
ak
1∈xn−1

1

[∏
ak+1:a

k+1
1 ∈xn

1
�N�ak+1

1 �xn
1�− 1

2��N�ak+1
1 �xn

1�− 3
2� · · · � 12�

�N�ak
1 �xn−1

1 �−1+ �A�
2 ��N�ak

1 �xn−1
1 �−2+ �A�

2 � · · · � �A�
2 �

]
�

(2.11)

For our purposes (2.10) and (2.11) are taken as the definition of KTk�xn
1�.

The next lemma summarizes the properties we shall need. A more precise
result than inequality (2.12) appears in [20], for the case �A� = 2.

Lemma 3. There is a constant C depending only on the alphabet size �A�
such that for every n ≥ 1 and xn

1 ∈ An,∣∣∣∣∣logKT0�xn
1� −

∑
a∈A

N�a�xn
1� log

N�a�xn
1�

n
+ �A� − 1

2
log n

∣∣∣∣∣ ≤ C(2.12)

and, for every k ≥ 1,∣∣∣∣logKTk�xn
1� − logPML�k��xn

1� +
�A� − 1
2

∑
ak
1∈xn−1

1

logN�ak
1 �xn−1

1 �
∣∣∣∣

≤ C�A�k�
(2.13)
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and

logKTk�xn
1� ≥ logPML�k��xn

1� −
�kA

2

(
1+ log+ n

�A�k
)
−C�A�k�(2.14)

where log+ t = max�log t�0�.

Proof. The well-known bound (2.12) (see [12]) easily follows from Stir-
ling’s formula for %-functions and (2.13) is an immediate consequence of (2.12).
Indeed, the square-bracketed factors in the definition (2.11) of KTk are of the
form of the definition (2.10) of KT0, with N�ak

1 �xn−1
1 � and N�ak+1

1 �xn
1� in the

role of n and N�a�xn
1�, respectively. Applying (2.12) to each of these factors

and recalling formula (2.2), that is,

∑
ak
1∈xn−1

1

∑
ak+1:

ak+1
1 ∈xn

1

N�ak+1
1 �xn

1� log
N�ak+1

1 �xn
1�

N�ak
1 �xn−1

1 � = logPML�k��xn
1��

we obtain (2.13), with a somewhat larger C to take care of the logarithm of
the 1/�A�k factor that appears in the definition (2.11) of KTk.
The final bound follows from (2.13), because, by the concavity of

f�t� =
{
log t� if t > 1,
t− 1� if 0 ≤ t ≤ 1�

we have∑
ak
1∈xn−1

1

logN�ak
1 �xn−1

1 � ≤ ∑
ak
1∈Ak

f�N�ak
1 �xn−1

1 �� + �A�k

≤ �A�kf
(

n

�A�k
)
+ �A�k ≤ �A�k log+

(
n

�A�k
)
+ �A�k�

This completes the proof of Lemma 3. ✷

To establish Proposition 2 we first recall (2.3):

logQ�xn
1� ≤ logPML�k��xn

1� −
�kA

2
log n+ �k0

A

2
log n� xn

1 ∈ Bn�k�

Adding − log KTk�xn
1� to both sides and applying the bound (2.14) of Lemma 3,

we obtain with kn = log log n
�A� that

− log KTk�xn
1� + logQ�xn

1� ≤ −3 log n� k ≥ kn� n ≥ n0� xn
1 ∈ Bn�k�

This implies that

Q�∪n
k=kn

Bn�k� ≤ n−3
n∑

k=kn

KTk�Bn�k� ≤ n−2� n ≥ n0�

which, in turn, implies
∞∑

n=n0

Q
({

xn
1 : k̂BIC�xn

1� ∈ �kn� n�
})

≤
∞∑

n=n0

n−2 < ∞�
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An application of the Borel-Cantelli theorem yields Proposition 2. ✷

3. Proof of the typicality theorem. In this section, Q again denotes
the distribution of a stationary irreducible Markov chain 	Xn: n ≥ 1� of
order k0, and, for each j, �j denotes the support of the jth order marginal

of Q, that is, the set of all aj
1 for which Q�aj

1� > 0. For brevity, in this section
we denote the k-block frequencies N�ak

1 �xn
1� by Nn�ak

1� and, accordingly, we
write P̂n�ak

1� = Nn�ak
1�/�n− k+ 1�.

To prove the typicality theorem, it suffices to establish the following two
propositions.

Proposition 3. For any fixed k there is a constant C such that∣∣∣∣P̂n�ak
1�

Q�ak
1�

− 1
∣∣∣∣ < C

√
log log n

n
� ak

1 ∈ �k� eventually a.s.

Proposition 4. To any 0 < β < 1/2 there exists α > 0, which depends on
Q, such that, eventually almost surely,

∣∣∣∣P̂n�ak
1�

Q�ak
1�

− P̂n−�k−k0��a
k0
1 �

Q�ak0
1 �

∣∣∣∣ < n−β� ak
1 ∈ �k� k0 < k ≤ α log n�(3.1)

Proof of Proposition 3. For each k ≥ k0, the law of the iterated loga-
rithm applied to the recurrence times of the (delayed) renewal process
	��Xi+k−1

i = ak
1�: i ≥ 1� shows that the proposition is true; see [6]. The

assertion for smaller k obviously follows. ✷

Proof of Proposition 4. The simplest idea would be to overbound the
probability that (3.1) does not hold by some γn for which

∑
γn < ∞, but this

does not appear to be feasible. The same idea, however, works when merging
“bad events” between consecutive powers of 2. We proceed by noticing first that
whenever (3.1) is violated for some n ∈ �2i−1�2i�, there exists k ∈ �k0� α log 2i�
and ak

1 ∈ �k such that

max
2i−1<n≤2i

∣∣∣∣P̂n�ak
1�

Q�ak
1�

− P̂n−�k−k0��a
k0
1 �

Q�ak0
1 �

∣∣∣∣ > 2−iβ�(3.2)

Thus, letting Bi�α�β� be the event that (3.2) occurs for some k ∈ �k0� α log 2i�
and ak

1 ∈ �k, it is enough to show that

∞∑
i=1
Prob�Bi�α�β�� < ∞�(3.3)

for suitable α > 0.
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Using the factorization

Q�ak
1� = Q�ak0

1 �
k∏

j=k0+1
Q�aj�aj−1

j−k0
��

inequality (3.2) can be rewritten as

max
2i−1<n≤2i

∣∣∣∣∣Nn�ak
1� −Nn−�k−k0��a

k0
1 �

k∏
j=k0+1

Q
(
aj�aj−1

j−k0

)∣∣∣∣∣ > 2−iβ2i−2Q�ak
1��(3.4)

The differenceNn�ak
1�−Nn−�k−k0��a

k0
1 �∏k

j=k0+1Q�aj�aj−1
j−k0

� can be decomposed
as the sum

k−k0∑
�=1

[
Nn−�+1

(
ak−�+1
1

)
−Nn−�

(
ak−�
1

)
Q
(
ak−�+1�ak−�

k−�+1−k0

)]

×
k∏

j=k−�+2
Q
(
aj�aj−1

j−k0

)
�

(3.5)

hence, if its absolute value exceeds a positive constant λ, then at least one
term of the sum (3.5) has absolute value > λ/�k − k0�. Using this fact, the
probability of the event (3.4) is upper bounded by the sum, for 1 ≤ � ≤ k− k0,
of the probabilities of the events

max
2i−1<n≤2i

∣∣∣Nn−�+1
(
ak−�+1
1

)
−Nn−�

(
ak−�
1

)
Q
(
ak−�+1�ak−�

k−�+1−k0

)∣∣∣
>
2−iβ2i−2Q�ak−�+1

1 �
k− k0

�
(3.6)

The key to the remainder of the proof is the observation that, for any m ∈
�k0� k�� the sequence{

Nn�am
1 � −Nn−1�am−1

1 �Q
(
am�am−1

m−k0

)
:n ≥ m

}
is a martingale. Indeed, Nn�ak

1� = ∑n−k+1
i=1 ��Xi+k−1

i = ak
1� implies that

Nn�am
1 � −Nn−1�am−1

1 �Q
(
am�am−1

m−k0

)
=

n∑
j=m

�j�

where

�j = �
(
X

j
j−m+1 = am

1

)
− �

(
X

j−1
j−m+1 = am−1

1

)
Q
(
am�am−1

m−k0

)
�

which satisfies E��j�Xj−1
1 � = 0. Furthermore,

E��2j� = Q�am
1 �

(
1−Q�am�am−1

m−ko
�
)
≤ Q�am

1 ��
so Kolmogorov’s inequality for martingales gives that

Prob
{
max
n≤2i

∣∣∣∣Nn�am
1 � −Nn−1�am−1

1 �Q�am�am−1
m−k0

�
∣∣∣∣ > λ

}
<
2iQ�am

1 �
λ2

�
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Applying this with m = k− �+1 and λ = 2k−iβ−2Q�ak−�+1
1 �/�k−k0�, it follows

that the sum, for 1 ≤ � ≤ k−k0, of the probabilities of the events (3.6) is upper
bounded by

k−k0∑
�=1

2iQ�ak−�+1
1 ��k− k0�2

�2i−iβ−2Q�ak−�+1
1 ��2

≤ 24k3

2�1−2β�iQ�ak
1�

�(3.7)

Next let γ be the minimum of Q�ak0
1 �� over all ak0

1 ∈ �k0
, and let δ be the

minimum of Q�ak0+1�a
k0
1 �, over all ak0+1

1 ∈ �k0+1. For all k and all a
k
1 ∈ �k, we

then have Q�ak
1� ≥ γδk, and hence our argument shows that the probability

that (3.2) holds for some fixed k ∈ �k0� α log 2i� and ak
1 ∈ �k, is bounded above

by 24k3/2�1−2β�iγδk. Summing over k ∈ �k0� α log 2i� and ak
1 ∈ �k produces

Prob�Bi�α�β�� ≤ ∑
k0<k≤α log 2i

24k3�A�k
2�1−2β�iγδk

<
24�α log 2i�4��A�/δ�α log 2i

γ2�1−2β�i
= �2α log 2�4

γ
i42�2β−1+α log �A�

δ �i�

It follows from this final bound that if α > 0 is chosen to satisfy 2β+α log �A�
δ

<
1, then the sum of the probabilities of the events Bi�α�β� is indeed finite, that
is, the desired result (3.3) holds. This completes the proof of the typicality
theorem. ✷

4. Proof of the inconsistency theorem. In this section, Q denotes the
uniform i.i.d. process,

Q�xn
1� = �A�−n� xn

1 ∈ An�

We prove that the Bayesian Markov order estimator with Dirichlet priors, viz.

k̂KT�xn
1� = argmin

k
�− logpk − log KTk�xn

1��

fails to put out 0, the order of Q, eventually almost surely, provided that 	pk�
is slowly decreasing, that is, logpk = o�k�. We prove that, in fact,

k̂KT�xn
1� → ∞ almost surely�(4.1)

The same inconsistency will be established also for the non-Bayesian MDL
estimator defined by replacing KTk�xn

1� in the definition of k̂KT with the nor-
malized maximum likelihood

NMLk�xn
1� = PML�k��xn

1�
/ ∑

yn
1∈An

PML�k��yn
1��(4.2)

The key to inconsistency is the observation that for k large enough it is
likely that each k-block appears only once in xn

1 , which forces − log KTk�xn
1� =

n log �A�. On the other hand − logQ�xn
1� + �1/2� log n = n log �A� + ���A� −

1�/2� log n. These two facts mean that k̂KT > 0, and it only takes a bit more to
establish (4.1). The formal proof is organized as the following two propositions.
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Proposition 5. For kn = α log n, with a sufficiently large constant α,

− logpkn
− logKTkn

�xn
1� + logKT0�xn

1� → −∞ a�s�

Proposition 6. For every fixed k > 0,

− logKTk�xn
1� + logKT0�xn

1� → ∞ a�s�

Indeed, Proposition 5 implies that k̂KT�xn
1� �= 0, and Proposition 6 implies that

k̂KT�xn
1� �= k, for any fixed k > 0, both eventually almost surely.

Proof of Proposition 5. Note first that if no k-block occurs in xn−1
1 more

than once then KTk�xn
1� = �A�−n. This follows from the representation (2.11)

of KTk�xn
1� since the assumption on xn−1

1 implies that exactly n − k different
k-blocks ak

1 occur in xn−1
1 ; to each of these there is one ak+1 ∈ A with ak+1

1 ∈ xn
1 ,

so that N�ak
1 �xn−1

1 � = N�ak+1
1 �xn

1� = 1.
The probability that some k-block occurs in xn−1

1 more than once is less than
n2�A�−k. Indeed, for any �, m with 1 ≤ � < m ≤ n − k + 1, the probability of
x�+k−1

� = xm+k−1
m is �A�−k because, arbitrarily fixing xm−1

1 ∈ Am−1, for exactly
one of the �A�k equiprobable choices of xm+k−1

m ∈ Ak will x�+k−1
� = xm+k−1

m hold.
In particular, for kn = α log n with α = 4/ log �A�, the probability that some
kn-block occurs in xn−1

1 more than once is less than n−2. This and the previous
observation gives that

− log KTkn
�xn
1� = n log �A� eventually a.s.(4.3)

Next we use the fact that for any fixed k ≥ 0 there is a constant K such that,

� logPML�k��xn
1� + n log �A�� < K log log n eventually a.s.�(4.4)

see Proposition A.2 in the Appendix, where now logQ�xn
1� = −n log �A�. Since∣∣∣∣log KT0�xn

1� − logPML�0��xn
1� +

�A� − 1
2

log n
∣∣∣∣ ≤ C�

by the bound (2.12) in Lemma 3, it follows that log KT0�xn
1� differs from

−n log �A� − �A�−1
2 log n by less than (constant)log log n, eventually almost

surely. This, together with (4.3), proves Proposition 5, because the hypothesis
on 	pk� implies that logpkn

= o�log n�. ✷

Proof of Proposition 6. For fixed k > 0, we have eventually almost
surely

n

2
�A�−k < N�ak

1 �xn−1
1 � < n for all ak

1 ∈ Ak�

so that, by (2.14), − log KTk�xn
1� differs from −PML�k��xn

1� + �A�k��A�−1�
2 log n by

less than a constant (depending on k). Hence, using (4.4), − log KTk�xn
1� dif-

fers from n log �A� + �A�k��A�−1�
2 log n by less than (constant)log log n, eventually

almost surely. Combining this with the previous result on log KT0�xn
1� gives

Proposition 6. ✷
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Finally, to check the analogues of Propositions 5 and 6 for NMLk�xn
1�, we

need a result from the theory of universal coding (see [18]), namely, for fixed
k ≥ 0 and n → ∞,

log
∑

yn
1∈An

PML�k��yn
1� ∼

�A�k��A� − 1�
2

log n�

This and (4.4) immediately give the analogue of Proposition 6 for the normal-
ized maximum likelihood NMLk�xn

1� defined by (4.2). To get the analogue of
Proposition 5, we additionally need an analogue of (4.3), namely with kn as
there,

− log NMLkn
�xn
1� ≤ n log �A� eventually a.s.

The latter follows because if no k-block occurs in xn−1
1 more than once then

clearly PML�k��xn
1� = 1, and consequently,

NMLk�xn
1� = 1

/ ∑
yn
1∈An

PML�k��yn
1� ≥ �A�−n�

APPENDIX

Here we prove, for completeness, that for a stationary process Q ∈ � of
order k0 < k∗,

kBIC�xn
1� �∈ �0� k0� ∪ �k0� k∗� eventually a.s.

Clearly, this is a consequence of the following two propositions.

Proposition A.1. In the case k < k0, there is a positive constant C such
that

− logPML�k��xn
1� ≥ − logPML�k0��xn

1� +Cn eventually a.s.

Proposition A.2. For any fixed k > k0, there is a positive constant C such
that

− logPML�k0��xn
1� ≤ − logPML�k��xn

1� +C log log n eventually a.s.

Proof of Proposition A.1. Recall [see (2.2)] that

logPML�k��xn
1� =

∑
ak+1
1 ∈xn

1

N�ak+1
1 �xn

1� log
N�ak+1

1 �xn
1�

N�ak
1 �xn−1

1 � �

The ergodic theorem implies thatN�ak+1
1 �xn

1�/�n−k� converges almost surely
to Q�ak+1

1 �, for each ak+1
1 ∈ �k+1, as n → ∞, and hence

lim
n→∞

(
− 1

n
logPML�k��xn

1�
)
= − ∑

ak+1
1 ∈�k+1

Q�ak+1
1 � log Q�ak+1

1 �
Q�ak

1�
a.s.�(A.1)
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the limit being the conditional entropy Hk of Xk, given Xk−1
1 . (Here Q�ak

1� is
replaced by 1 if k = 0.) It is well known (see [17], Theorem I.6.11), that Hk is
strictly greater than Hk0

if k < k0. Hence (A.1) implies the proposition. ✷

Proof of Proposition A.2. Fix k > k0. Since Q is a stationary process in
�k, the product formula (2.1) yields

logQ�xn
1� = logQ�xk

1� +
∑

ak+1
1 ∈xn

1

N�ak+1
1 �xn

1� logQ�ak+1�ak
1�

whenever Q�xn
1� > 0. This and the expression (2.2) for logPML�k��xn

1�, yield
logPML�k��xn

1� − logQ�xn
1�

= − logQ�xk
1� −

∑
ak+1
1 ∈xn

1

N
(
ak+1
1 �xn

1

)
log

Q�ak+1�ak
1�

N�ak+1
1 �xn

1�/N�ak
1 �xn−1

1 �
(A.2)

(with an obvious modification if k = k0 = 0).
Recall from Proposition 3 in Section 3 that the ratio

P̂n�ak
1�

Q�ak
1�

= N�ak
1 �xn

1�
�n− k+ 1�Q�ak

1�

differs from 1 by less than (constant)
√
log log n

n
, eventually almost surely. Ap-

plying this with k replaced by k + 1, and also with n replaced by n − 1, it
follows, since Q�ak+1�ak

1� = Q�ak+1
1 �/Q�ak

1�, that the quantity

ε�ak+1
1 �xn

1� =
Q�ak+1�ak

1�
N�ak+1

1 �xn
1�/N�ak

1 �xn−1
1 �

− 1

is bounded in absolute value by (constant)
√
log log n

n
, eventually almost surely.

Hence, using that log�1+ ε� = ε+O�ε2�, the summation in (A.2) becomes∑
ak+1
1 ∈xn

1

N
(
ak+1
1 �xn

1

)
ε
(
ak+1
1 �xn

1

)
+ ηn�

where �ηn� ≤ (constant) log log n, eventually almost surely. Eventually almost
surely, however, the last summation is over all ak+1

1 ∈ �k+1, so that it takes
the form ∑

ak+1
1 ∈�k+1

[
Q
(
ak+1�ak

1

)
N

(
ak
1 �xn−1

1

)
−N

(
ak+1
1 �xn

1

)]
�

This sum is equal to 0, since summing for ak+1 with ak
1 ∈ �k fixed gives zero.

This completes the proof of Proposition A.2. ✷
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