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We propose the randomized Generalized Approximate Cross Valida-
tion (ranGACV) method for choosing multiple smoothing parameters in
penalized likelihood estimates for Bernoulli data. The method is intended
for application with penalized likelihood smoothing spline ANOVA models.
In addition we propose a class of approximate numerical methods for solv-
ing the penalized likelihood variational problem which, in conjunction with
the ranGACV method allows the application of smoothing spline ANOVA
models with Bernoulli data to much larger data sets than previously pos-
sible. These methods are based on choosing an approximating subset of
the natural (representer) basis functions for the variational problem. Sim-
ulation studies with synthetic data, including synthetic data mimicking
demographic risk factor data sets is used to examine the properties of the
method and to compare the approach with the GRKPACK code of Wang
(1997c). Bayesian “confidence intervals” are obtained for the fits and are
shown in the simulation studies to have the “across the function” property
usually claimed for these confidence intervals. Finally the method is ap-
plied to an observational data set from the Beaver Dam Eye study, with
scientifically interesting results.

1. Introduction.

1.1. Overview. Smoothing spline ANOVA (SS-ANOVA) models have been
shown to provide a large, flexible class of methods for non and semiparametric
statistical model building and supervised machine learning from databases.
These models have a number of advantages, including the facts that they
reduce to commonly used parametric models when the data so warrant; the
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results are generally interpretable, reasonable accuracy statements concern-
ing the models are available; and mixtures of continuous, ordered discrete and
unordered discrete variables can be accomodated. The main drawback of these
models as developed to date is that they are highly computationally intensive,
especially with non-Gaussian data, where the fits are no longer linear in the
observations. In that case they become infeasible for sample sizes of the or-
der of a few thousand or so. The increasing availability, and desire to exploit
large data bases to model and understand the relationships between predictor
variables and response variables via flexible methods, makes it desirable to
develop methods which will allow these models to be applied to much larger
data sets. Fitting these models with large sets of non-Gaussian data provides
new theoretical and computational challenges.
In this paper we contribute to these techniques by providing an overall

method which allows the building of SS-ANOVA models on data from general
exponential families with no nuisance parameter, on much larger data sets
than previously possible. The primary tricks are two: Firstly we develop a
technique for efficiently choosing a (reduced) collection of approximating ba-
sis functions, which is much smaller than the full collection which is usually
used to solve the SS-ANOVA variational (penalized likelihood) problem ex-
actly, yet the technique provides an answer which is still quite accurate when
compared with solutions based on the full set. Secondly we develop and use
a (new) randomized version of the Generalized Approximate Cross Validation
method (ranGACV) for choosing multiple smoothing parameters in penalized
likelihood equations. This ranGACV is the major contribution of this paper,
along with the basis function technique. They are what allow the SS-ANOVA
models to be applied to very large data sets, while retaining, or even improv-
ing upon the favorable results available in previous work with these models.
The ranGACV, and the method as a whole, is developed for general exponen-
tial families with no nuisance parameter; however, the simulation studies and
data analysis here are carried out specifically for Bernoulli data.
SS-ANOVA models represent a function f�t�
 t = �x1
 � � � 
 xd� of d variables

as

f�t� = C+∑
α

fα�xα� +
∑
α<β

fαβ�xα
 xβ� + · · · 
(1)

where the main effects �fα�, two factor interactions �fαβ� etc. satisfy side
conditions which generalize the usual side conditions for parametric ANOVA
to function spaces and the series is truncated in some manner. Indicator func-
tions and other parametric functions may be added to the model of (1). Inde-
pendent observations yi
 i = 1
 � � � 
 n are assumed to be distributed with the
density g�yi
 f�t�i���, where g�y
f� = exp �yf− b�f� + c�y�
, with parameter
of interest f�·� and f�·� is assumed to be in an appropriate function space � ,
a reproducing kernel Hilbert space. For Bernoulli data (y = 0 or 1), c�y� = 0,
b�f� = log�1+expf�, f is the log odds ratio, a.k.a. logit, and f = log�µ/�1−µ�
,
where µ = Ey. f is estimated as fλ, the minimizer in � of the penalized log
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likelihood functional Iλ�f
Y� given by

Iλ�f
Y� = − 1
n

n∑
i=1
l�yi
 fi� +

1
2
Jλ�f�
(2)

where fi = f�t�i��, Y = �y1
 � � � 
 yn�′, l�yi
 fi� = yifi − b�fi� is the log likeli-
hood of �yi�fi�, and Jλ�f� is of the form

Jλ�f� =
∑
α

λαJα�fα� +
∑
α<β

λαβJαβ�fαβ� + · · · �(3)

The Jα
Jαβ
 � � � are quadratic penalty functionals, the series is truncated
somewhere and the λα
 λαβ
 � � � are smoothing parameters to be chosen. In
important examples the components of the fit fλ are splines of various kinds,
but may be much more general.
The exact minimizer of (2) is known to be in an n dimensional subspace

of � [Kimeldorf and Wahba (1971)] and an essentially n dimensional matrix
decomposition problem is solved to obtain the solution. In the typical model
selection and model fitting problems that arise in demographic medical risk
factor studies that we are concerned with here, the degrees of freedom for
signal is very much less than n. It can be shown theoretically under certain
circumstances [Gu (personal communication), Xiang (1996), Gao (1999)] that
one can use fewer, appropriately chosen basis functions and obtain an esti-
mate which is asymptotically indistinguishable from the “exact” estimate fλ
obtained using all the basis functions. We will demonstrate that excellent ap-
proximations to an “exact” solution in the “correct” n dimensional subspace
can be obtained in a much smaller subspace spanned by k 
 n basis func-
tions, if the basis functions are chosen appropriately for that approximating
task. The k basis functions we use here are a subset of the n representers
of evaluation functionals at the observation points, in a subspace of � ; we
describe a clustering technique for choosing the subset that works very well
for this purpose.
To obtain the smoothing parameter estimates proposed here we begin with

the generalized approximate cross validation (GACV) estimate proposed in
Xiang and Wahba (1996), which was derived as a transformation of an approx-
imate leaving-out-one cross validation estimate (ACV) for data from an expo-
nential family with no nuisance parameter. The GACV estimate was shown
in Xiang and Wahba (1996) via simulation to have favorable properties for
Bernoulli data, as measured by the Comparative Kullback-Leibler distance
(CKL). However, the estimate there was computed directly with small sample
sizes and the computation described there is not stable for large data sets.
In the present work we develop ranGACV, which gets around the numerical
instabilities of the original GACV and which in fact is very cheap and stable
to compute, given an algorithm for solving the penalized likelihood problem.
As judged by the CKL in simulations, we find that ranGACV behaves at least
as well, and sometimes better than the original GACV as well as previous re-
lated estimates, noted below. But at the same time it can be readily adapted for
use in very large data sets with multiple smoothing parameters, and, possibly,
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complex model selection procedures, using the basis selection procedure noted
above. The Bayesian “confidence intervals” of earlier work are also developed
here in the context of the present algorithm. Selected simulation studies are
presented which illustrate the properties of the method. Finally, the method is
applied to the study of risk factors associated with pigmentary abnormalities,
based on data from the Beaver Dam Eye study. Some new insights into this
data set appear as a result of the analysis.

1.2. Related work. The work here may be considered a sequel to Wahba,
Wang, Gu, Klein and Klein (1995) and Wang, Wahba, Gu, Klein and Klein
(1997). In those papers, the iterative unbiased risk (UBR) estimate given in Gu
(1992), Wang (1995, 1997) was extended for the purpose of choosing multiple
smoothing parameters in the smoothing spline (penalized likelihood) ANOVA
models. The UBR method is targeted at minimizing the CKL distance of the
estimate from the unknown “truth.” The penalized likelihood estimate is ob-
tained using the fact that the solution to the variational problem is known
to lie in an n-dimensional space based on the n representers of evaluation in
� and the span of the null space of the penalty functional [see, e.g., Wahba
(1990)]. A Newton-Raphson iteration is used to find the coefficients, for any
fixed set of smoothing parameters λ = �λα
 λαβ � � ��. At each step of the iter-
ation, a local quadratic approximation to the penalized likelihood functional
is obtained. When the penalized likelihood problem is exactly quadratic (the
Gaussian case), and the variance is known, there is an exact unbiased risk es-
timate. The iterative UBR estimate alternates back and forth between solving
the penalized likelihood problem, and choosing the smoothing parameter(s) to
minimize the unbiased risk estimate for the Gaussian problem associated with
the local quadratic approximation. This method is available as an option in
GRKPACK. It is specifically designed for SS-ANOVA models and has been
successfully used by a number of authors. We will be comparing the present
algorithm to the algorithm in GRKPACK, as well as an earlier randomization
technique proposed in Xiang (1996) and Xiang and Wahba (1997).
As many readers will know, the search for data based smoothing or band-

width parameters is a very active field of research, pursued in the context
of various kinds of nonparametric regression estimates, for example, kernel,
orthogonal series, regression splines, wavelets, sparse representations, and so
forth, and various kinds of data, including Bernoulli data. We will not at-
tempt to discuss the extensive literature here, with the exception of mention
of recent work related to smoothing spline/penalized likelihood ANOVA mod-
els, and smoothing parameter estimates that are relatively closely related to
the ranGACV. More extensive references to the literature can be found in
Wahba, Wang, Gu, Klein and Klein (1995) and more recently in Wood and
Kohn (1998).Wood and Kohn (1998) propose a Bayesian method for choosing
smoothing parameters in the multicomponent spline context based on endow-
ing the smoothing parameter(s) with a flat prior, and a Gibbs sampler for the
computations. Interestingly, they provide simulation examples which show
that the method has favorable properties compared to GRKPACK, which is
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targeted more directly to the CKL distance. We do not provide any compar-
isons here, but it would be interesting to further understand theoretically how
methods directly targeted at the CKL might compare with the Woods-Kohn
approach. We note in passing other recent references making use of smoothing
spline ANOVA models in various contexts: Wang (1998),Gu (1998), Verbyla,
Cullis, Kenward and Welham (1997), Brumback and Rice (1998), Luo (1997).
Lin (1998c), Lin (1998b) has recently obtained some general convergence re-
sults for these models. We note that the popular additive spline models in
Hastie and Tibshirani (1990) are the special case of (1) restricted to main
effects.
Ye and Wong (1997a), Ye and Wong (1997b) define the generalized degrees

of freedom (GDF) in the general exponential family case, and by an interesting
theorem show that it is the key to model fitting and model selection when the
goal is to minimize the CKL. The GDF generalizes the degrees of freedom
for signal for the Gaussian penalized likelihood case, given in Wahba (1983),
where it is defined as the trace of the influence matrix. Ye and Wong’s theorem
holds for any model fitting procedure, not just penalized likelihood estimates
with prespecified terms, and they argue that it justifies the use of the GDF
in very general model selection procedures. Interesting examples of the use of
the estimated GDF in model selection in the Gaussian case are given in Ye
(1998), where randomization techniques are used in the estimation process.
In the general non-Gaussian exponential family case, the GDF depends on
the true but unknown parameter f that one is attempting to estimate. Ye and
Wong (1997b) outline an approach based on sensitivity analyses to estimate
the GDF in the Bernoulli case, which is similar in spirit, but not exactly the
same as the estimate proposed here.

1.3. Outline of paper. In Section 2 we review unbiased risk estimates in
the penalized likelihood, general exponential family case with no nuisance pa-
rameter when the CKL is the target, and we describe the role of the GDF in
obtaining these estimates, or approximations to them. In Section 3 we present
the the GACV estimate from Xiang and Wahba (1996) in order to set the stage
for the derivation of the randomized version, ranGACV, which takes place in
Section 4. It is noted here that the technique may be applicable in much more
general contexts. Section 5 discusses approximate solutions to the penalized
likelihood optimization problem, Section 5.1 describes a clustering technique
for extracting an approximating basis set, and Section 5.2 brings the clus-
tering technique and the ranGACV together. Section 5.3 describes the Bayes
model behind this approximate estimate, as well as Bayesian “confidence in-
tervals” which generalize the confidence intervals given in Wahba, Wang, Gu,
Klein and Klein (1995), Wahba (1983) to this approximate estimate. Section
6 presents a suite of simulation studies, to examine by illustration the prop-
erties of the method, and to compare the estimates with the iterated UBR
estimates of Wahba, Wang, Gu, Klein and Klein (1995). The first set of simu-
lations is based on simple “truth” functions with regular data. The second set
of simulations is based on “truth” functions which were previously obtained
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smoothing spline ANOVA model fits to two epidemiological data sets. For the
simulated data points we used the observed epidemiological design points,
which are quite irregular, as is typical in many observational studies. These
two epidemiological data sets are from the Pima Indian Diabetes Data Set and
the Wisconsin Epidemiologic Study of Diabetic Retinopathy. In Section 7 we
use the method to analyze the association of pigmentary abnormalities with
various risk factors in the women in the Beaver Dam Eye Study (n = 2585, 5
smoothing parameters). We found via the use of this method an association of
lower cholesterol with the presence of pigmentary abnormalities and an asso-
ciation of hormone replacement therapy with their absence. Finally, Section 8
gives a summary and conclusions.

2. Unbiased risk estimates and the generalized degrees of freedom.
Let yi
 i = 1
 � � � 
 n be independent random variables from an exponential
family with no nuisance parameter, with density of the form

g�yi
 fi� = exp�yifi − b�fi� + c�yi��
(4)

with b a strictly convex function of f on any bounded set. We have that
Eyi = b′�fi� = µi, and var yi = b′′�fi� = ∂µi

∂fi
≡ σ2i , say. Our examples in this

paper are all for Bernoulli data. Thus yi = 1 with probability µi and 0 with
probability �1−µi�. In this case b�fi� = log�1+efi�, b′�fi� = efi/�1+efi� ≡ µi,
b′′�fi� = efi/�1 + efi�2 ≡ µi�1 − µi� ≡ σ2i , and c�yi� is 0. Furthermore,
fi = log�µi/�1−µi�
 is the log odds ratio, also known as the logit. We assume
that fi ≡ f�t�i��, where t�i� is a vector of covariates, t�i� ∈ � , where � is
some possibly multivariate index set. f�·� is assumed to be in some reproduc-
ing kernel Hilbert space � of real valued functions of t ∈ � . If a component
of t is continuous, then typically f�·� will be a smooth function of that com-
ponent. It is desired to estimate f�·�. f is estimated as fλ, the minimizer of
Iλ�f
Y� = − 1

n

∑n
i=1 l�yi
 fi�+ 1

2Jλ�f� of (2) where l�yi
 fi� = yifi−b�fi� is the
log likelihood minus c�yi�. In the examples we will study, as the components
of λ become large, fλ is shrunk into a low dimensional (parametric) subspace,
and as λ becomes small, µλ ≡ µ�fλ� , where µ�fλ� = b′�fλ�, becomes closer
to the observations. We have a family of estimates indexed by λ, and the goal
is to choose λ from the observations to minimize the comparative Kullback-
Leibler distance CKL�λ� of fλ from f. Letting fλi = fλ�t�i��
 µλi = µ�fλi�,
CKL�λ� is given by

CKL�λ� =KL�f
fλ� −
1
n

n∑
i=1

�Eµyifi − b�fi�
(5)

≡ 1
n

n∑
i=1

�−µifλi + b�fλi�
(6)

where

KL�f
fλ� =
1
n

n∑
i=1
Eµ

(
log
g�yi
 fi�
g�yi
 fλi�

)
�
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Here Eµ indicates expectation with respect to the true µ = b′�f�, equivalently
the true f. The CKL differs from the Kullback-Leibler distanceKL by quanti-
ties not depending on λ. The CKL is, up to a factor of 2, the same as in Hastie
and Tibshirani [(1990), equation (6.29)], where it is called the PE (prediction
error). For Gaussian observations, minimizing the CKL is equivalent to min-
imizing the predictive mean square error, hence the CKL can be viewed as a
generalization of the predictive mean square error. It is tempting to estimate
the CKL by

OBS�λ� = 1
n

n∑
i=1

�−yifλi + b�fλi�
(7)

(where “OBS” stands for “observed” and corresponds in the Bernoulli case to
one half the deviance), but it is well known that OBS�λ� is an underestimate
of the CKL�λ�; see, for example, Efron (1986). This is related to the fact that
yi and fλi are correlated.
Let D�λ� be defined by

CKL�λ� = OBS�λ� +D�λ��(8)

Then D�λ� = 1
n

∑n
i=1�yi − µi�fλi and

EµD�λ� = 1
n

n∑
i=1
Eµ�yi − µi�fλi�(9)

Ye and Wong (1997b) have provided the following interesting theorem con-
cerning (9):

Let f̂ be any estimate of f. Then

1
n

n∑
i=1
Eµi�yi − µi�f̂i =

1
n

n∑
i=1

∂

∂fi
Eµi�f̂i� =

1
n

n∑
i=1
σ2i
∂

∂µi
Eµi�f̂i��(10)

Here Eµi�f̂i� is the expectation with respect to yi conditional on the yj
 j �=
i being fixed. The proof is short:

∂

∂f
Eµ�f̂� =

∂

∂f

∫
f̂�z� exp��zf− b�f� + c�z�
�dz

=
∫
zf̂�z� exp��zf− b�f� + c�z�
�dz

−b′�f�
∫
f̂�z� exp��zf− b�f� + c�z�
�dz

= Eµ�yf̂− µf̂��
The second equality follows from the fact that σ2i = ∂µi

∂fi
. Ye and Wong call

n times the right hand side of (10) the generalized degrees of freedom for f̂
(GDF�f̂��, generalizing the degrees of freedom for signal proposed in Wahba
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(1983) and elsewhere. In the Gaussian case with the variance σ2i known
(w.l.o.g. set σ2i = 1) we have b�f� = f2/2
 µ�f� = f. If fλ is the minimizer
of (2) there is a symmetric, nonnegative definite (smoother) matrix A�λ� such
that 


fλ1
���
fλn


 = A�λ�Y�

See Wahba (1990). In this case σ2i
∂
∂µi
Eµfλi = aii�λ�, where aii�λ� is the iith

entry of A�λ� and nEµD�λ� ≡ GDF�fλ� = trA�λ�. This result is the well
known unbiased risk estimate of λ as the minimizer of

1
2n

[
n∑
i=1

�yi − fλi�2 + 2trA�λ�
]

(11)

[Mallows (1973), Craven and Wahba (1979)]. We see from (10) that the prob-
lem of choosing λ to minimize the CKL in a penalized likelihood estimate in
the non-Gaussian, exponential family case, can be reduced to the problem of
estimating GDF�fλ�. Wong (1992) and Ye and Wong (1997b) give an exact un-
biased risk estimate in the Poisson case. However they also show that in the
Bernoulli case, no unbiased estimate of GDF�f̂� exists, so that only approxi-
mations are possible. The minimizer of the GACV, which will be discussed in
the next section, has been shown to provide a good estimate of the minimizer
of the CKL. The GACV is the sum of OBS and an additional term which may
be thought of as an estimator of the GDF.

3. The GACV estimate of �. In the general penalized likelihood problem
where Jλ is a seminorm in � , the minimizer fλ�·� of (2) has a representation

fλ�t� =
M∑
ν=1
dνφν�t� +

n∑
i=1
ciQλ�t�i�
 t�(12)

where the φν span the null space of Jλ, Qλ�s
 t� is a reproducing kernel (posi-
tive definite function) for the penalized part of� , and c = �c1
 � � � 
 cn�′ satisfies
M linear conditions, so that there are (at most) n free parameters in fλ. Typ-
ically the unpenalized functions φν are low degree polynomials. If fλ�·� is of
the form (12) then Jλ�fλ� = ∑n

i
j=1 cicjQλ�t�i�
 t�j��. Substituting this and
(12) into (2) results in Iλ a convex functional in c and d = �d1
 � � � 
 dM�′, and c
and d are obtained numerically via a Newton Raphson iteration. For large n,
the second sum on the right of (12) may in some applications be replaced by an
approximation of the form

∑k
5=1 ci5Qλ�t�i5�
 t� for some k 
 n. The rationale

for this approximation, and the choice of the t�i5� will be discussed later.
The GACV was obtained in Xiang and Wahba (1996). They began with the

ordinary leaving-out-one cross validation function CV�λ� as an estimate for
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the for the CKL of (6):

CV�λ� = 1
n

n∑
i=1

[
−yif�−i
λi + b�fλi�

]
(13)

= OBS�λ� + 1
n

n∑
i=1

[
yi

(
yi − µ�−i


λi

)][fλi − f�−i
λi

yi − µ�−i

λi

]
(14)

= OBS�λ� + 1
n

n∑
i=1
yi�yi − µλi�

[
fλi − f�−i
λi

yi − µ�−i

λi

]/[
1− µλi − µ

�−i

λi

yi − µ�−i

λi

]
(15)

≈ OBS�λ�

+ 1
n

n∑
i=1
yi�yi − µλi�

[
fλi − f�−i
λi

yi − µ�−i

λi

]/[
1− σ2λi

(
fλi − f�−i
λi

yi − µ�−i

λi

)]
(16)

where f�−i
λ is the solution to the variational problem of (2) with the ith data
point left out and f�−i
λi is the value of f�−i
λ at t�i�. (Observe that yi and f�−i
λi

are uncorrelated.) Here σ2λi = σ2�fλi� and the last approximation follows upon
recalling that ∂µ

∂f
= σ2. Xiang and Wahba (1996) after a series of steps approx-

imating the terms in brackets in (16) obtain the GACV as

GACV�λ� = OBS�λ�
+ 1
n

n∑
i=1
yi�yi − µλi�

[
1
n
trH

]/[
1
n
tr�I− �W1/2HW1/2�

]



(17)

where W = W�f� is the n × n diagonal matrix with σ2λi in the iith position
and H = �W+ n8λ
−1, where, to define 8λ we need some notation as follows:
Where there is no confusion between functions f�·� and vectors �f1
 � � � 
 fn�′
of values of f at t1
 � � � 
 tn, let f = �f1
 � � � 
 fn�′. For any f�·� of the form (12),
Jλ�f� also has a representation as a non-negative definite quadratic form in
�f1
 � � � 
 fn�′, 8λ is the matrix of this quadratic form. We can then rewrite (2)
as

Iλ�f
Y� =
1
n

n∑
i=1

�−yifi + b�fi�
 +
1
2
f′8λf�(18)

Using the fact that σ2i is the second derivative of b�fi�, we note that H =
�W+n8λ
−1 is the inverse Hessian of this variational problem (18). The inverse
Hessian of the variational problem plays a key role in perturbation methods
here, as can be seen clearly in (20) below. [Note that in the Gaussian case
A�λ� is the inverse Hessian.]



BERNOULLI OBSERVATIONS AND THE ranGACV 1579

Numerical results based on an exact calculation of (17), which provide evi-
dence that the minimizer of GACV�λ� is a good estimate of the minimizer of
CKL�λ�, appear in Xiang and Wahba (1996). This exact calculation is limited
to small n however, since the direct calculation of 8λ will generally be unstable
for large n.
The reader may compare (17) with a similar, but not the same, estimate

given in equation (6.30) of Hastie and Tibshirani (1990) called AIC, and re-
produced here, namely AIC = D�y� û�/n + 2dfφ/n. Their D�y� µ̂�/n is what
we call OBS�λ�. The second term in (17), estimating the GDF�λ�, plays the
same role as their dfφ/n, but differs from their suggestions for this quantity.

4. The randomized GACV estimate. Given any “black box” which,
given λ, and a training set �yi
 t�i�� produces fλ�·� as the minimizer of (2), and
hence fλ = �fλ1
 � � � 
 fλn�′, we can produce randomized estimates of trH and
tr�I−W1/2HW1/2
 without having any explicit calculations of these matrices.
This is done by running the “black box” on perturbed data Y + ε, where the
components of ε come from a random number generator. When the yi are from
a Gaussian distribution, randomized trace estimates of the inverse Hessian
of the variational problem (the “influence matrix”) have been studied exten-
sively and shown to be essentially as good as exact calculations for large n;
see, for example, Girard (1998). Randomized trace estimates are based on the
fact that if A is any square matrix and ε is a zero mean random n-vector with
independent components with variance σ2ε , then

1
σ2ε
Eε′Aε = trA. See Gong,

Wahba, Johnson and Tribbia (1998) and references cited there for experimen-
tal results with multiple regularization and other parameters in the Gaussian
case. In practice σ2ε is replaced by

1
n

∑n
i=1 ε

2
i . Xiang and Wahba (1997), follow-

ing the argument in Xiang and Wahba (1996), obtained the approximation
fY+ελ − fYλ ≈ �W�fYλ � + n8λ
−1ε, which suggests that 1

σ2ε
ε′�fY+ελ − fYλ � with

ε ∼ � �0
 σ2ε I� provides an estimate of tr�W�fYλ � + n8λ
−1.
In this work we make the key observation that if we take the solution fYλ to

the nonlinear system for the original data Y as the initial value for a Newton-
Raphson calculation of fY+ελ things become even simpler. Letting fY+ε
1λ be the
result of the first step in a Newton-Raphson iteration gives

f
Y+ε
1
λ = fYλ −

[
∂2Iλ
∂f′∂f

�fYλ 
Y+ ε�
]−1
∂Iλ
∂f

�fYλ 
Y+ ε��(19)

Since ∂Iλ
∂f

�fYλ 
Y + ε� = −ε + ∂Iλ
∂f

�fYλ 
Y� = −ε, and � ∂2Iλ
∂f′ ∂f�fYλ 
Y + ε�
−1 =

� ∂2Iλ
∂f′ ∂f�fYλ 
Y�
−1, we have f

Y+ε
1
λ = fYλ + � ∂2Iλ

∂f′ ∂f�fYλ 
Y�
−1ε so that

f
Y+ε
1
λ − fYλ = �W�fYλ � + n8λ
−1ε�(20)
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The result is the following ranGACV function:

ranGACV�λ�

= OBS�λ� + 1
n

n∑
i=1
yi�yi − µλi�

× [
ε

′ �fY+ε
1λ − fYλ �
]/[
ε′ε− ε′W�fYλ ��fY+ε
1λ − fYλ �

]
�

(21)

To reduce the variance in the term after the “+” in (21), we may draw R
independent replicate vectors ε1
 � � � 
 εR, and replace the term after the “+” in
(21)by

1
n

n∑
i=1
yi�yi − µλi�

× 1
R

R∑
r=1

[
ε′r�fY+εr
1λ − fYλ �

]/[
ε′rεr − ε′rW�fYλ ��fY+εr
1λ − fYλ �

](22)

to obtain an R-replicated ranGACV�λ� function.
We remark that ranGACV of (21) was derived assuming a particular pe-

nalized likelihood estimate, and various continuity properties were assumed.
However, following Ye (1998), Ye and Wong (1997a), it can be defined for a
variety of other procedures which produce an estimate f̂Y given a data vector
Y, by replacing fY+ε
1λ − fYλ in (21) by f̂Y+ε − f̂Y, if necessary. If the second
term in (21) is still a reasonable estimate of the GDF
 then this estimate could
be used in data mining and model selection in the same way as the estimated
GDF was used in Ye (1998). At present, this observation is, however, only con-
jectural. Randomized trace estimates for the inverse Hessian in a Gaussian
problem where, however the optimization problem was non quadratic in a
fairly complicated way, have been quite successful; see Gong, Wahba, Johnson
and Tribbia (1998).

5. Approximate solutions to the penalized likelihood problem.

5.1. Clustering the design points. The “exact” minimizer of (2) is, as noted,
in an n dimensional subspace consisting of span φν and an n−M dimensional
subspace of � spanned by the Qλi�·�; where Qλi�t� = Qλ�t�i�
 t�, and the
coefficient vector c satisfies T′c = 0 with T the n ×M matrix with i
 νth
entry φν�t�i��. Various authors have suggested (in this and other contexts)
that, especially for large data sets, f be found in a smaller subspace, say that
spanned by the φν and Qλi5
 5 = 1
 � � � 
 k, say. See, for example, Hutchinson
(1984), Silverman (1985). Given that fλ will be constrained to be of the form

fλ =
M∑
ν=1
dνφν +

k∑
5=1
ci5Qλi5(23)
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and observing that then Jλ�fλ� =
∑k
5
5′=1 ci5ci5′Qλ�t�i5�
 t�i5′ ��, the coefficients

d and ck = �ci1
 � � � 
 cik�′ minimizing (2) can be found by a similar Newton-
Raphson iteration as that described for the case k = n, in Wahba, Wang, Gu,
Klein and Klein (1995). It is(

Qknλ W−Q
nk
λ + nQkkλ Qknλ W−T

T′W−Q
nk
λ T′W−T

)(
ck − ck−
d− d−

)

=
(−Qknλ µλ− − nQkkλ ck−

−T′µλ−

)



(24)

where Qnkλ is the n× k matrix with i
 5 entry Qλ�t�i�
 t�i5��
 i = 1
 · · · 
 n
 5 =
1
 � � � 
 k, Qknλ is its transpose, Qkkλ is the k × k matrix Q�t�i5�
 t�i5′ ��
 5
 5′ =
1
 � � � 
 k, and µλ = �µλ1
 � � � 
 µλn�′. The subscript “−” indicates the value from
the previous iteration. The k = n case corresponds to iteratively reweighted
least squares, see Wahba, Wang, Gu, Klein and Klein (1995), Hastie and Tib-
shirani (1990).
There are several different criteria for choosing the i5, and the resulting

methods may, roughly, be divided into two categories, namely those which in-
volve both yi and t�i�, and those which involve only the t�i�. In the former
category are included methods designed to capture different amounts of struc-
ture in the estimate in different parts of � . Luo and Wahba (1997) is in this
category. A greedy algorithm is used to choose the t�i5� and the result is an
estimate which allows more flexibility in the solution where the data are more
dense and/or the responses more variable. MARS [Friedman (1991)] and re-
lated methods for “knot selection” which restrict the knots to a subset of the
data points, and choose them via a greedy algorithm, are in this spirit. The
second category of methods is based on the assumption that the minimizer of
(2) is the “gold standard” and it is desired to choose k and the i5 as a compro-
mise to obtain a good approximation to the minimizer of (2) while reducing
the computational cost of performing a Newton-Raphson iteration in n +M
unknowns to one in k +M unknowns. Gu (personal communication), Xiang
(1996) and Gao (1999) have shown in some special cases, that if k increases at
an appropriate (quite slow) rate, the same convergence rates are obtainable as
with the exact solution. In the problems that we will consider in the rest of the
paper, which concern Bernoulli observations from demographic data sets, the
desired fλ will generally not be expected to have a lot of fine structure, and,
furthermore, there is no a priori reason to believe that the desired estimate
is more “wiggly” in one part of � than another. Thus, we consider only the
second category of methods here. Furthermore, we can expect that k may be
substantially less than n in many cases and still provide an excellent approx-
imation to the minimizer of (2) when the desired solution has relatively few
degrees of freedom.
If t�i� is close to t�j� in some sense, then Qλi will be “close” to Qλj, so for

fixed k, for the purpose of approximating the minimizer of (2) it is desirable
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that the t�i5� have maximal separation while being “representative” of the full
set of t�i�. A random or stratified sampling scheme on the t�i� (after suitable
scaling) is possible. Xiang and Wahba (1995), Xiang (1996), Xiang and Wahba
(1997) utilize a clustering scheme to “thin out” basis functions.

5.2. The algorithm. In this work we utilize a similar clustering scheme.
The FASTCLUS procedure in SAS [SAS Institute (1989)],which is designed
for the disjoint clustering of very large data sets in minimal time, is used to
obtain K clusters from the n data points. Here, within each cluster, one data
point t�i5� is chosen at random to be representative of each of the K clusters.
Given the basis functions Qλi5
 5 = 1
 � � � 
K, (2) is minimized in the span
of the φν
Qλi5 and ranGACV�λ� is computed. The minimizer λ̂�K�, say, of
ranGACV�λ� is found, along with the fit, fλ̂�K�. (The minimization scheme for
λ is described in Section 5.4 below.) Then K is increased, say, by a factor of 2,
and the process repeated to obtain fλ̂�2K�, say. ThenK is increased again, until
the difference between two consecutive fits is smaller than a given tolerance,
as judged by

�fλ̂�2K� − fλ̂�K���
�fλ̂�K��

≤ 10−4�

It is possible that the coefficient matrix of the linear system (24) would be
computationally singular even if it is nonsingular in theory. In order to get a
stable solution, the QR factorization with pivoting is used. Also, when solving
the linear system using the QR decomposition, a cutoff parameter τ is selected
(such as the machine precision times the largest absolute diagonal element of
the R matrix). Whenever �rii� ≤ τ (where rii denotes the diagonal element
of the R matrix in the QR decomposition), the corresponding component of the
solution is set to be zero.

5.3. The Bayes model and Bayesian “confidence intervals” for the approx-
imate solution. Bayesian “confidence intervals” based on the Bayes model
corresponding to the variational problem (2) are discussed in Wahba, Wang,
Gu, Klein and Klein (1995). They are based on approximating the posterior
distribution of �fYλ �Y
λ� in the exponential family case, by the posterior dis-
tribution of �fYλ �Y
λ� in the Gaussian case which corresponds to the quadratic
optimization problem appearing in the last step of the Gauss-Newton iteration
for minimizing (2). See Wahba, Wang, Gu, Klein and Klein (1995), Gu (1990),
Gu (1992). Experiments described there [see also Wang and Wahba (1995)]
tend to provide empirical evidence that these estimates have the “across the
function” property when an optimum value of λ is used. The “across the func-
tion” property says that about 95% of the true values at the observation points
will be covered by the 95% Bayesian “confidence intervals.” See also Wahba
(1983), Nychka (1988).
The Gaussian model is

yi = f�t�i�� + εi
 i = 1
 � � � 
 n
(25)
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where ε = �ε1
 � � � 
 εn�′ ∼ � �0
W−1� and

f�t� ∼
M∑
ν=1
dνφν�t� +Zλ�t�
 t ∈ � 
(26)

where d ∼ � �0
 ξIM� with ξ→ ∞ and Zλ�t� zero mean Gaussian with
EZλ�s�Zλ�t� = Qλ�s
 t��(27)

The Bayes model behind fλ of (23) is obtained by replacing Zλ�t� of (27) by
the projection Zkλ�·� of Zλ�·� onto span�Zλ�ti5�
 5 = 1
 � � � 
 k�, that is

Zkλ�t� = E�Zλ�t��Zλ�ti1�
 � � � 
Zλ�tik�
�(28)

We have that

EZkλ�s�Zkλ�t� = �Qλi1�s�
 � � � 
Qλik�s���Qkkλ �−1

Qλi1�t�· · ·
Qλik�t�


 �(29)

Following Silverman (1985), another representation for the zero mean Gaus-
sian stochastic process with the covariance (29) is

Zkλ�t� =
k∑
5=1
ci5Qλi5�t�(30)

where we endow the vector ck = �ci1
 � � � 
 cik�′ with the distribution ck ∼
� �0
 �Qkkλ �−1�. Replacing Zλ�t� in (26) by Zkλ�t� of (30) into the joint dis-
tribution of Y and �ck
 d� we have that the posterior log likelihood of �ck
 d�
given �Y
λ� is proportional to

− 1
2

[
�Y−Qnkλ ck −Td�′W�Y−Qnkλ ck −Td� + c′kQkkλ ck

]
�(31)

This gives that the posterior distribution of �c′k � d′�′ given Y
λ has mean

E��c′k � d′�′�Y
λ
 =M−1


Qknλ· · ·
T′


Y
(32)

and covarianceM−1, where

M =
(
Qknλ WQ

nk
λ + nQkkλ Qknλ WT

T′WQnkλ T′WT

)
�(33)

Letting v�t� = �Qλi1�t�
 � � � 
Qλik�t� � φ1�t�
 � � � 
 φM�t��′ then gives the pos-
terior distribution of fλ�·� as

E�fλ�t��Y
λ
 = v�t�′M−1


Qknλ· · ·
T′


Y


cov�fλ�s�
 fλ�t��Y
λ
 = v�s�′M−1v�t��
(34)

Since the Newton-Raphson iteration for minimizing (2) solves Mx = y [refer
to (24)], the (approximate, Bayesian) posterior variance of fλ�t� is at hand.
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5.4. Minimizing ranGACV�λ� in the case λ = �λ1
 � � � 
 λp�. In the cases
we will be interested in, which include the well known additive models [Hastie
and Tibshirani (1990)] smoothing spline ANOVA models [Wahba, Wang, Gu,
Klein and Klein (1995)] and others, Qλ�s
 t� has a representation of the form

Qλ�s
 t� =
p∑
β=1
θβRβ�s
 t�
(35)

with θβ
−1 = λβ; see Wahba (1990) and the examples below. Since first or second

derivatives of ranGACV�λ1
 � � � 
 λp� are not at hand in this formulation of
the problem, standard optimization methods such as the Newton method or
conjugate gradient algorithm for minimizing ranGACV�λ1
 � � � 
 λp� are not
available. In the experiments here, we have found that for p as many as
6 or more, the downhill simplex method [Press, Teukolvsky, Vetterling and
Flannery (1992)], possibly in conjunction with computer experimental design
techniques [Bowman, Sacks and Chang (1993)] works well. Details will be
given with the experiments below.

6. Simulation studies. In this section we present several simulation
studies, designed to illustrate various aspects of the overall approach, and
to compare the ranGACV estimate with the iterative UBR estimate. Com-
parison with other methods remains for the future. The models here are
the same smoothing spline ANOVA models described in detail in Wahba,
Wang, Gu, Klein and Klein (1995). These models have main effects which
are cubic splines. Other models may be found in Gu and Wahba (1993) and
elsewhere. In the models here, the t�i� are all rescaled to the unit inter-
val or the unit cube. For t ∈ Ed
 t = �x1
 � � � 
 xd�, the Rβ of (35) are built
up from the basic linear function and cubic spline reproducing kernels (rk’s)
ro�u
 v� = �u − 1/2��v − 1/2� and r1�u
 v� = k2�u�k2�v� − k4��u − v
�, where
u
 v ∈ �0
1
, 5!k5�u� is the 5th Bernoulli polynomial and �x
 is the fractional
part of x. The main effects rk’s involve only r1 with values of xα and the two
factor interaction terms involve tensor products of ro and r1 and of r1 with
itself, with values of xα and xβ as arguments. The φν are of the form u− 1/2
with u taking values of xα, and tensor products of these terms when interac-
tions are present. See Wahba, Wang, Gu, Klein and Klein (1995). In each of
the examples below, only a subset of the n representers Qλi were used, chosen
by the clustering method previously described. In every case K was 25, and
2K = k = 50 was sufficient to meet the tolerance requirement. The random-
ized trace estimates were based on iid � �0
 σ2ε � random variables. In theory
the randomized trace estimates based on one step of the Newton-Raphson
iteration are independent of σ2ε , since they are linear in ε, although in the
(multi-step) method which iterates fY+ελ to convergence they are not. In prac-
tice the (one step) randomized trace estimates were found to be insensitive
to σ2ε over seven orders of magnitude. In the multi-step method, some exper-
imentation in Xiang and Wahba (1997) found that σε = �001 worked well.
σε = �001 is used in most of the simulations below.
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6.1. Replicates of ranGACV follow CKL. Figure 1 is an example illustrat-
ing the ability of ranGACV�λ� to follow CKL�λ� in a simple univariate case.
n = 500 observations were generated based on t ∈ �0
1
, f�t� = 2 sin 10t, with
t�i� = �i− 1/2�/500
 i = 1
 � � � 
 n.
The solid curves in both panels are a plot of the CKL�λ� for this data set

with the minimum marked with a filled in square. Each of the 10 dashed
lines in panel (a) represents a plot of ranGACV�λ� using R = 1 replicate of ε
to compute ranGACV
 and the minimum of each is marked with a circle. It
can be seen that any of these ten versions of the ranGACV provides a rather
good estimate of the λ that minimizes the CKL. Panel (b) presents results
from the same experiment except that this time the number R of replicates in
(22) was taken as 5. It can be seen that all 10 minimizers of the 10 ranGACV
curves are even more reliable estimates of the minimizer of CKL. The direct
calculation of 8λ in order to calculate traceH directly is not feasible with n
this large because the calculation is very ill-posed. [An explicit formula for 8λ
appears in Xiang and Wahba (1997), equation (3.4).]

6.2. ranGACV behaves similarly to the multi-step randomized GACV�
Figure 2 provides a comparison, based on the CKL, of the ranGACV based on
one step of the Newton-Raphson iteration versus the multi-step randomized
GACV as described in Xiang and Wahba (1996).
The multi-step randomized GACV involves carrying the Newton-Raphson

iteration to convergence to obtain fY+ελ . Plotted is the CKL. Each point rep-
resents one observational data set. The observations were generated from
f�t� = 2sin10t as before with n = 500 equally spaced points. It can be seen
that based on the CKL the two randomized versions are about equally good.
Since the (one step) ranGACV is faster to compute, we have adopted it in the
studies here. This figure and Figure 1 were typical of a number of simulation
studies, with different “truth functions.”

6.3. Minimizing ranGACV�λ1
 λ2�. In order to implement the method in
large data sets with multiple smoothing parameters a workable method for
finding the minimizer of ranGACV which does not use derivatives is neces-
sary. After a fair amount of experimentation [see also Gong, Wahba, Johnson
and Tribbia (1998), Lin (1998a)], we have found that the downhill simplex
method works well for ranGACV functions encountered in the demographic
data sets with Bernoulli data that we have analyzed. Starting guesses for
the downhill simplex method may be obtained by trial and error, via a de-
fault (e.g., log λβ = −5) which works well at the scale of the present exper-
iments, or via computer experimental design methods, see Bowman, Sacks
and Chang (1993). In computer experimental design methods a multivariate
design is selected, for example, a Latin hypercube design, and the function
to be minimized is evaluated at the design points. It is then interpolated via
some appropriate multivariate interpolation scheme using functions that can
be minimized easily, and the minimum of the interpolant found. Figure 3 de-
scribes a typical two smoothing parameter case.
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Fig. 1. 10 replicates of ranGACV�λ� compared with CKL�λ�: (a) One replicate for each curve.
(b) Five replicates for each curve.
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Fig. 2. CKL comparison of the �one step� ranRGACV with the multi-step randomized GACV.

Data were generated according to the additive model f�x1
 x2� = sinx1 −
sinx2 with n = 500 and the values of t = �x1
 x2� chosen according to a uniform
distribution on the unit square. An additive cubic spline model was fit, with
one smoothing parameter for each variable. Panel (a) gives the CKL�λ1
 λ2�
and panel (b) gives the corresponding ranGACV�λ1
 λ2�. It can be seen that
the inefficiency of the GACV estimate, as judged by

CKL�λ̂1
 λ̂2�
minλ1
λ2CKL�λ1
 λ2�

is very close to 1. Panel (c) gives an example of a Latin hypercube design,
and panel (d) gives a thin plate spline interpolant to the ranGACV function
at the design points, which could be used to provide starting guesses for a
downhill simplex search. For examples tried with dimensions p = 3
 � � � 
6, we
have found a least squares quadratic polynomial interpolant adequate. Other
methods are discussed in Bowman, Sacks and Chang (1993).

6.4. Comparison of ranGACV with UBR of GCVPACK, two smoothing pa-
rameters. Figure 4 gives the results of a comparison of the ranGACV and the
iterative UBR estimate of GRKPACK. Here 200 data sets of n = 500 observa-
tions each, from the model of the previous example were generated. For each
data set, the CKL was obtained both for theUBR estimate and the ranGACV
estimate. The ranGACV estimate was also based on a subset of k = 50 basis
functions and R = 5 replications of the randomized trace estimate. Each point
represents one comparison. It can be seen that the CKL is roughly the same
for about 90% of the cases, while in the preponderance of the remaining cases
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(d) Thin Plate Spline Interpolation of ranGACV on design

Fig. 3. CKL�λ1
 λ2�
 ranGACV�λ1
 λ2� and thin plate spline interpolation of ranGACV on a
Latin hypercube design.

the ranGACV estimate is better. This kind of result is typical of a number of
similar experiments.

6.5. Simulation experiments with realistic designs.
6.5.1. Pima Indian Diabetes data set. Typical designs in observational

studies tend to be very irregular. This example and the example in the next
section are used to compare the ranGACV estimate with the UBR estimate
in GRKPACK on more realistic simulated data sets. This example is based
on the Pima Indian Diabetes data set from the UCI Repository of Machine
Learning Databases (http://www.ics.uci.edu/˜mlearn/MLRepository.html)
that was analyzed in Wahba, Gu, Wang and Chappell (1995). Here we use
the same randomly chosen subset of n = 500 of the subjects that was used
as the training set in Wahba, Gu, Wang and Chappell (1995). Only two vari-
ates, x1 = body mass index (bmi) and x2 = plasma glucose concentration (pgc)
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Fig. 4. ranGACV vs. UBR comparison of the CKL, 200 runs.

are used here. The response is a positive or negative test for diabetes. The
smoothing spline ANOVA model

f�x1
 x2� = C+ f1�x1� + f2�x2� + f12�x1
 x2�(36)

was fitted using GRKPACK and then used as the “truth” function. Five smooth-
ing parameters were used in this model, one each for the main effects and
three for the interaction term. [The interaction term has three components,
smooth⊗parametric, parametric⊗smooth and smooth⊗smooth, see Wahba,
Wang, Gu, Klein and Klein (1995), pages 1870–1871.] A downhill simplex
search with starting guesses log λp = −5 and changing each log λp succes-
sively to −4 to get the simplex was used. Figure 5 gives a scatter plot of the
two covariates, and the fitted probability surface µ�f̂�.
We generated 200 data sets from µ�f̂� and the design of Figure 5 and fitted

each set using GRKPACK along with ranGACV. The ranGACV estimate
used k = 50 basis functions and R = 5 replicates in the randomized trace
calculations. The results are plotted in Figure 6.
For 8 of the 200 replications the UBR algorithm failed to converge, so that

the plot has 192 points. It can be seen that about 90–95% of the points form a
roughly circular cloud, which indicates that theUBR and ranGACV estimates
do about equally well, with the remaining 5–10% of points indicating a larger
CKL for the UBR estimate.
6.5.2. The Wisconsin Epidemiologic Study of Diabetic Retinopathy

�WESDR�. This example is based on a model obtained from data from the
WESDR study. This study is described in more detail in Wahba, Wang, Gu,
Klein and Klein (1995) and Klein, Klein, Moss, Davis and Demets (1984). The
predictor variables are duration of diabetes (dur), glycosylated hemoglobin
(gly) and body mass index (bmi) at baseline. The response is four year pro-
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Fig. 5. Left� Scatter plot of the covariates. Right� “Truth” probability surface µ�f̂�, Pima Indian
example.

gression of diabetic retinopathy. n = 669 subjects were in the data set that
was analyzed in Wahba, Wang, Gu, Klein and Klein (1995), and that data
set is available as part of the documentation for GRKPACK. The following
smoothing spline ANOVA model was fitted to this data using GRKPACK with
UBR:

f�dur, gly,bmi� = C+ f1�dur� + f2�gly� + f3�bmi� + f13�dur,bmi��(37)

This model is similar to the model in Wahba, Wang, Gu, Klein and Klein (1995)
the only difference being that there f2�gly� was replaced by const · gly, since
it was found there that the fitted f2�gly� was visually indistinguishable from
a straight line. Thus (37) represents a conservative approach for our example
below. The right panel of Figure 7 gives this fitted probability surface, as a
function of �bmi,dur� with gly fixed at its median. The surface is plotted only
over the region for which the posterior standard deviation (in f) is �5 or less,
although the entire surface is retained for the purposes of this experiment.
For this experiment data were simulated from this fitted model at the de-
sign points of the original data set. The left panel gives a scatterplot of the
bmi, dur design. The first simulated data set has been used to mark simulated
1 responses by filled in circles and the simulated 0 responses by open circles.
100 data sets were simulated. Then the ANOVAmodel is fitted for each data

set, first, using GRKPACK and then ranGACV with k = 50 and R = 5, and
the CKL for each fit is determined. There are six smoothing parameters. For
the ranGACV estimate the same downhill simplex search as in the previous
example was used. Figure 8 shows the comparison results.
The results are similar to those in the previous examples. In about 90%–

95% of the replicates GRKPACK and the ranGACV with approximating basis
functions give about the same CKL values, while in the remaining cases UBR
estimates are worse.
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Fig. 6. Pima Indian example: UBR vs ranRGACV compared on the basis of the CKL, 192
simulated data sets.
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Several other experiments were performed with this experimental data set.
Two other search methods were tried with the ranGACV, first a computer ex-
perimental design method followed by a downhill simplex search, and secondly
a two stage computer experimental design method. The computer experimen-
tal design method used 28 design points and a least squares fit to a quadratic
polynomial. The two stage method generated a new set of points around the
minimum of the quadratic polynomial from the first stage. While the mini-
mizer varied slightly by search method, the three pairwise comparisons based
on the CKL showed that, based on this criterion they were all close, and no
one method was superior to the others. Since the downhill simplex method is
conceptually and practically simpler, we are continuing to use it.
Returning to Figure 8, several data sets where the CKL from the two fit-

ting methods was the same were selected and cross sections of the actual
fits [corresponding to the cross sections presented in Wahba, Wang, Gu, Klein
and Klein (1995)] were compared visually. All the cross sectional curves were
found to be essentially visually indistinguishable. From this we conclude that
the approximate solution using k = 50 basis functions is almost identical
to the exact smoothing spline ANOVA solution using all the basis functions.
From this one can make the reasonable assumption that in the cases where
the CKL from the two methods is noticeably different, the reason is due to
the method for choosing the smoothing parameters and not the approximation
using a smaller number of basis functions.
The Bayesian confidence intervals were computed for the first replication

where the two methods had the same CKL, and the fractions of the n = 669
data points for which the confidence intervals covered the true fλ̂i (equiva-
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Fig. 8. WESDR example� UBR and ranGACV compared on the basis of the CKL, 100 simulated
data sets.
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Table 1
Bayesian “confidence interval” coverage

Nominal Coverage GRKPACK ranGACV, R = 5

90% 88% 87%
95% 96% 94%

lently µλ̂i) were determined. Rather modest differences were found. The re-
sults are seen in Table 1.
The slightly wider coverage from GRKPACK may reflect the fact that the

GRKPACK estimate is (slightly) more flexible.

7. Pigmentary abnormalities in the Beaver Dam study. The Beaver
Dam Eye Study is an ongoing population-based study of age-related ocular
disorders. Subjects were a group of 4926 people aged 43–86 years at the start
of the study who lived in Beaver Dam, WI and were examined at baseline, be-
tween 1988 and 1990. A description of the population and details of the study
at baseline may be found in Klein, Klein, Linton and Demets (1991). Five
year followup data is presently being analyzed; see, for example, Klein, Klein,
Jensen and Meuer (1997). Here we consider only the n = 2585 women mem-
bers of this cohort, and the baseline observations. We examine the association
of pigmentary abnormalities with six other attributes t = �x1
 x2
 � � � 
 x6� at
baseline. µ�t� is the probability that a subject with attribute vector t at base-
line will be found to have a pigmentary abnormality in at least one eye, at
baseline. Pigmentary abnormalities are an early sign of age-related macular
degeneration and are defined by the presence of retinal depigmentation and
increased retinal pigmentation. See Klein, Klein, Jensen and Ritter (1994),
Klein, Klein and Linton (1992). 11.88% of the n = 2585 cohort studied here
showed evidence of a pigmentary abnormality. The six “predictor” variables
are shown in Table 2.
The model fitted here is

f�t� = C+ f1�sys� + f2�chol� + f12�sys, chol�
+dage · age+ dbmi · bmi+ dhorm · I1�horm� + ddrin · I2�drin��

(38)

Table 2
Predictor variables for the Beaver Dam Pigmentary Abnormalities Model

Variable units code

current usage of hormone replacement therapy yes/no horm
history of heavy drinking yes/no drin
body mass index kg/m2 bmi
age years age
systolic blood pressure mmHg sys
serum cholesterol mg/dL chol
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Table 3
Quantiles of the predictor variables

Percentile Min 12.5 25 37.5 50 62.5 75 87.5 Max

sys 71 108 116 123 129 137 145 157 221
chol(mg/dL) 102 191 210 225 237 251 266 290 503
bmi (kg/m2) 15 22.5 24.3 25.9 27.5 29.5 31.6 35.2 68.4
age (years) 43 48 52 58 62 67 71 77 86

I1 and I2 are indicator variables. Thus, there are 5 smoothing parameters
[3 for the f12 interaction term which consists of linearsys ⊗ smoothchol,
smoothsys ⊗ linearchol and smoothsys ⊗ smoothchol terms, see Wahba,
Wang, Gu Klein and Klein (1995)]. Originally, age and bmi were fitted as
smooth main effects, but visual inspection of the smooth terms f3�age� and
f4�bmi� indicated that they indistinguishable from linear terms, so that they
were set to be linear in the final model.
Figures 9 and 10 give the estimated probability of finding pigmentary ab-

normalities as a function of chol, for various values of bmi, age and sys. In
Figure 9, (horm, drin) = (no,no) and in Figure 10 (horm, drin) = (yes,no). Fig-
ure 11 gives cross sectional plots of the estimated probabilities along with the
Bayesian confidence intervals intervals as a function of chol for four values
of age, and both values of horm.
For reference, Table 3 gives the quantiles of the continuous predictor vari-

ables. A protective effect of hormones is evident, and a suggestion of a (non-
linear) protective effect of cholesterol, particularly at older values of age in
the horm = no group may be seen as a result of fitting this model.

8. Summary and conclusions. We have proposed a new method, the
randomized Generalized Approximate Cross Validation (ranGACV) for choos-
ing multiple smoothing parameters in the Bernoulli case. A clustering proce-
dure for selecting an approximating set of basis functions is also proposed.
These two techniques, taken together, make possible the fitting of Smoothing
Spline ANOVA models for very large data sets. We have shown by example
that the randomization technique coupled with the use of the approximat-
ing set of basis functions can substantially reduce computing requirements,
without any appreciable loss of accuracy in solving the SS-ANOVA penalized
likelihood equations. Furthermore the minimizer λ̂ of ranGACV is shown via
a series of simulation experiments to be a good estimate of the smoothing
parameters minimizing the CKL distance of the distribution defined by the
estimate fλ̂ to the distribution defined by the true f. Care was taken that some
of the simulations involved data scattered in a manner realistic of other, sim-
ilar demographic studies. Our examples have demonstrated that the downhill
simplex method coupled with computer experimental design techniques al-
low the efficient searching for optimal smoothing parameters in the multiple
smoothing parameter case. The Bayesian “confidence intervals” are derived
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Fig. 9. Estimated probability of pigmentary abnormality as a function of cholesterol by three
levels of bmi and age and four levels of sys, horm=no, drin=no.
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Fig. 10. Estimated probability of pigmentary abnormality as a function of cholesterol by three
levels of bmi and age and four levels of sys, horm=yes, drin=no.
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Fig. 11. Bayesian confidence intervals as a function of chol, age, horm. bmi, sys fixed at their
medians and drin = no.
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for the SS-ANOVA case based on the approximating set of basis functions fol-
lowing an argument of Silverman. It is shown that they are easily computed
along with the estimate itself, but more importantly, the numerical experi-
ments show that they appear to possess the “across the function property”
common to their counterparts based on the entire set of basis functions. Fi-
nally, we have demonstrated that the overall algorithm can be applied to an
important data set, with results that provide interesting insights into the data
set. It is concluded that the techniques developed here provide a useful and
effective method for statistical model fitting with favorable statistical prop-
erties as judged by the observed comparative Kullbak-Liebler distance and
coverage properties of the Bayesian “confidence intervals.” We also argue that
the suite of techniques presented has potential for model fitting as well as
model selection in more general settings than those studied here.
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