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ANTITHETIC COUPLING OF TWO GIBBS SAMPLER CHAINS!
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Two coupled Gibbs sampler chains, both with invariant probability
density m, are run in parallel so that the chains are negatively corre-
lated. We define an asymptotically unbiased estimator of the 7-expectation
E(f(X)) which achieves significant variance reduction with respect to the
usual Gibbs sampler at comparable computational cost. The variance of
the estimator based on the new algorithm is always smaller than the vari-
ance of a single Gibbs sampler chain, if 7 is attractive and f is monotone
nondecreasing in all components of X. For nonattractive targets =, our
results are not complete: The new antithetic algorithm outperforms the
standard Gibbs sampler when 7 is a multivariate normal density or the
Ising model. More generally, nonrigorous arguments and numerical experi-
ments support the usefulness of the antithetically coupled Gibbs samplers
also for other nonattractive models. In our experiments the variance is
reduced to at least a third and the efficiency also improves significantly.

1. Introduction. Markov chain Monte Carlo (MCMC) algorithms allow
the approximate calculation of expectations with respect to multivariate prob-
ability density functions m(x), x € ) defined up to a normalizing constant.
We refer the reader to Gilks, Richardson and Spiegelhalter (1996) as a start-
ing point for a vast literature about MCMC methodology. The underlying idea
is to construct an ergodic discrete time Markov chain with invariant density
function 7, whose trajectory is easy to simulate without normalizing =. In
order to approximate the expectation E(f(X)) < oo of a function f(x) with
respect to 7, one just needs to compute the empirical average of f along
the generated trajectory X!, ..., X”. To avoid strong dependence on the ini-
tial conditions, an initial part is dropped. The sample mean with burn-in of
length T,

1 TotT t
f=7 X X,

t=Ty+1

is used. In this paper we propose a new algorithm for the estimation of
E(f(X)). The idea is to simulate two MCMC trajectories in parallel, both
invariant with respect to 7, which are coupled in such way that variance
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ANTITHETIC GIBBS SAMPLING 1129

reduction can be achieved. We use the Gibbs sampler, a particular MCMC
scheme where samples from a one-dimensional conditional density computed
from 7 are drawn.

After the burn-in we continue the simulation by running two parallel Gibbs
sampler chains, both ergodic with respect to 7. Let us denote the two chains X*
and Y! for ¢ = Ty+1, Ty+2, .... Marginally, the two chains are ordinary Gibbs
samplers, but their joint probability measure is constructed in such a way that
f(X%) and f(Y!) have negative covariance. The coupling is simple, based on
using a common sequence of random numbers. Specifically, if X! uses a uniform
[0, 1) random number U’ to proceed to X‘*1, then Y uses 1 — U to proceed to
Y!*1, This coupling is well known to reduce the variance of empirical averages
of i.i.d. samples. A pleasant fact of the antithetically coupled Gibbs sampler
is that, starting from the code of the usual Gibbs sampler, the modifications
required in order to implement the new algorithm are simple if () is discrete.
If the needed conditional univariate distribution functions cannot be inverted
analytically, then the implementation requires either numerical inversion or
some more advanced techniques.

We combine the output of the two coupled chains into the asymptotically
unbiased estimator

A To+T
" iy O ¢ 700
t=To+

To make a fair comparison between this algorithm and the usual, single tra-
jectory Gibbs sampler, we have to take into consideration that each iteration
of the new algorithm takes twice the computing time of a single Gibbs sampler
iteration. Hence we allow the single Gibbs samplerAto turn for twice as many

iterations as the new algorithm. This means that f in (1) has to be compared
with
1 Tot2T

(2) f=ﬁ > X

t=Ty+1

We define precisely the new algorithm in Section 2. In Section 3 we assume
that X7o and Y7o are independent and w-distributed. Hence (1) and (2) are

unbiased and we prove that Var( f ) < Var( f ), for component-wise monotone
functions f, attractive 7, and for all T'. Not surprisingly, the key point is the
sign of the cross-covariances between the two coupled chains. Under the given
conditions, we prove that the cross-covariances are all negative. Section 4 is
devoted to a study of the multivariate normal density and the Ising model.
These distributions are not necessarily attractive but have a certain local

symmetry property. If f is linear, then as 7' — oo, we have Var( f ) < Var( f )
even when 7 is not attractive. In Section 5 we discuss the joint asymptotic
properties of the coupled chains and the existence of a unique joint stationary
measure. In Section 6 we present some heuristic arguments supporting the

claim that Var(f) < Var(f) for other nonattractive targets 7 and give some
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precise results for a nonattractive example that mimics the behavior of the

new algorithm. The variance reduction, defined as Var(f)/Var(f), seems to
depend only mildly on the mixing property of the single Gibbs sampler chain;
if the single Gibbs sampler chain is slowly mixing, then the joint Gibbs sampler
will also be slow; however, the variance reduction remains roughly the same.
In Section 7 we discuss some practical implementation issues and we test our
new algorithm on two data sets: the hierarchical Poisson model [Gelfand and
Smith (1990)] and the ordered normal means example [Gelfand, Hills, Racine-
Poon and Smith (1990)]. The experiments show that the antithetically coupled
Gibbs sampler is significantly better than the standard one. The variance
reduction is often larger than five and always larger than three. In practice
XTo and Y7o are not w-distributed. Hence, we include bias in our comparison

and find that the ratio (bias(f)2 + Var(f))/(bias(f) + Var(f)) is larger than 10
in our experiments. Looking beyond the Gibbs sampler, we apply the antithetic
coupling to Metropolis—Hastings and show empirically that improvement can
still be achieved, although with a variance reduction of about 2. Comments
are in Section 8.

2. The new algorithm. Let(Q) =SxSx..--x8 = S" be the n-fold product
space of a set S, which may be either discrete or continuous. For simplicity
we consider two cases: () = R" and 7 is a probability density function that is
absolutely continuous with respect to, say, Lebesgue measure, or S is discrete
and 7 is a discrete probability. Let X = (X, X, ..., X,). The random scan
Gibbs sampler for sampling from 7 is a Markov chain X%, X!, ... constructed
as follows. Given X’ = x’, one component in {1, 2, ..., n} is chosen uniformly
at random. Denote this component by I*. Only X, will be updated by sampling

the new value X tﬁl from the conditional density
(3) ’7T(.’X,'It | X?p =X71t),

where x_, ={x;: 1 € A}, for A C {1, ..., n}. The remaining components are
left unchanged, Xt_J},l = x' ;,. We assume (3) to be strictly positive, so that the
resulting Markov chain is ergodic and 7r-variant. The transition of a random
scan Gibbs sampler can be written as

(4) Xt+1 — (I)(Xt, It’ Ut),

where U°, U, ... is a sequence of i.i.d. random numbers, uniformly distributed
in [0, 1), and I°1I',... are iid. random numbers uniform in
{1,2,...,n}, that identify the component to be updated at step ¢ + 1. The
I'th component of the vector function ® is the inverse distribution function
corresponding to the local conditional density (3),

q)It(Xt, It, Ut) = (I)p(Xt_p, Ut) = lnf{x e R: 7T(X1t <x | Xt_ll) = Ut},

where the inf is needed only if S is discrete. The other components of ® are
identity functions & (X*, I*,U*) = X f]-, for j # I'. We will also give results
for another visitation schedule, where each component is updated in a raster
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scan. Then we shall adopt a similar notation using lowercase letters i’ for the
site to be updated at time ¢, i* = (¢ — 1)(mod n) + 1.

We now define the companion chain. It is marginally a 7-stationary Gibbs
sampler with the same type of scan and transition rule as (4),

5) Y = (Y, I, 1-UY),

but the common random numbers U’ and I’ couple the two chains and make
X! and Y!*! dependent. We call the coupling antithetic because we use
1 — U’ in (5). The same component I’ is updated in both chains. Looking to the
coupled chains jointly, notice that X ?[1 is conditionally independent of Y’ ,
given X’ ,, because of (4) and (5) and since U’ is independent of Y* ;. The

two coupled Gibbs sampler chains allow us to construct the estimator f in (1)
which we shall compare to f given in (2) in the rest of this paper.

When () is discrete, or when () is continuous and the conditional distribu-
tions m(X; < x | X_;) can be inverted analytically, the implementation of the
new algorithm is straightforward. If this is not the case, even if formally X’ can
be represented as inverse transform of uniform variables as in (4), there might
be no closed form for ®. Then, one has to numerically invert #(X; < x | X_,),
which is generally easy and can be efficiently performed off-line. Alternatively,
accept—reject mechanisms can be used. We shall come back to these practical
issues in Section 7.

3. Comparing variances for attractive target densities. We assume
that the two chains are started at time 7', = 0 in the marginal stationary dis-
tribution X° ~ 7, Y° ~ 7, independently, and then coupled. We shall return

to this assumption later in this section and again in Section 7. Then both f
and f are unbiased. Hence, to evaluate the performance of the antithetically

coupled Gibbs sampler, we compare the variance of f with the variance of f
(both assumed to be finite). In comparing variances we shall need both auto-
covariances for the marginal chains, and cross covariances for the two chains
jointly. Let v, = Cov(f(X°), f(X*)), 2 = 0,1,... be the marginal stationary
autocovariance at lag & of one of the two components. We do not assume sta-
tionarity of the joint (bivariate) Markov chain, hence the cross covariances
B(t, s) = Cov(f(X), f(Y?)) depend on time.

We consider a special class of target distributions 7 and functions f. The
target 7 is assumed to be attractive; see Mgller (1999) for several examples.
A model 7 is attractive if #(X; < x; | x_;) < m(X; < «x; | X_;), for x_; >
x ;, Vx,x € (), assuming the partial ordering of () given by x, > x/, if
x; > x; for all i € A. We assume from now on and without loss of generality
that the expected value of f(X) is zero. To be able to study the two estimators

f and f, we need to restrict the space of functions f, too. Our algorithm
induces antithetic dependency between X! and Y’; we want this structure to
transfer to /(X*) and f(Y") as well. For this we require f € &, where  is the
class of nonconstant functions f: ) — R which are monotone nondecreasing
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in all components. In practice, often f(x) = >, g,(x;) where the g;(-)’s are
monotonic increasing functions. If the function of interest is decreasing in,
say, component i, we can replace X; with —X; to obtain a function in 7 and
change 7 accordingly.

THEOREM 1. Suppose [ €  and w7 is attractive. Consider the coupled
Gibbs sampler chains given in (4) and (5) using a random scan or a raster
scan. If X° and Y° are independent and distributed according to 1, then

6) Var(f) — Var(f) = 0
for every T > 0.

Proofs are collected in the Appendix. The theorem is based on Lemma 1,
which is interesting in itself. It states that under the same assumptions of
Theorem 1, B(¢,s) < 0 for all £ and s. For the raster scan we prove (6) also
under the different assumption that all components of X° and Y° are indepen-
dent, but X° and Y° are not required to be distributed according to 7. This
condition is more appealing in practice. See the Appendix for details. In the

next section we move to nonattractive models to see if the variance of f is still
smaller than the variance of f.

4. Comparing variances for some nonattractive target densities.
We first consider a multivariate normal target distribution: 7 is normal with
mean vector zero and inverse covariance matrix Q = (q;;). We assume with-
out loss of generality that the diagonal of Q consists of ones. When updating
component i, the Gibbs sampler samples from a univariate normal density
with mean -3, q; J-xtj and variance 1. Note that the off-diagonal terms in Q
can be both negative and positive, allowing for nonattractive 7.

In a Bayesian setting, the posterior density of X given m data points often
tends to a normal with mean equal to the maximum likelihood estimator
of X and variance of order 1/m, as m — oo. Then we can Taylor expand
f(X) around the maximum likelihood estimate to first order, so that a linear
approximation of f is enough.

THEOREM 2. Let 7 be the multivariate normal density. Let f be a linear
function with zero w-mean. Assume a deterministic scan for the Gibbs sampler.

For T large enough, Var(f) > Var(f) Moreover, Var(f) O(T2)as T — oc.

The last part of the statement of Theorem 2 is curious because it shows that
in this special case, coupling two Gibbs sampler chains reduces the variance
by a full order of magnitude, since for the single stationary chain Var(f) =
&(T~1). The reason is the following. As shown in the proof of Theorem 2, we
have that

(7) XH—l + Yt+1 Z qlJ(Xt + Yt)
J#i:
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This means that in the limit as ¢ — oo, the process (X!, Y?) is attracted and
trapped in the set {(x,y) € Q x Q|x +y = 0}. Once (X, Y’) lies in this
set, then B(¢,t + k) = —v,. Because of the deterministic nature of (7), the
process with probability 1 will never get to the set, unless started there. (If
X% +Y? = 0, then the variance is zero.) The setting is indeed special. Theorem
2 holds also for other target densities than the multivariate normal, if they
satisfy the following symmetry condition: 7(x; | x_;) = ,;(x; — £;), Vi, where
Y;(-) is symmetric around zero, and %; is the median in 7(x; | x_;) which
can be written as &; = alx_; for some vector a;. Not all models that satisfy
this symmetry condition are attractive. The multivariate normal satisfies this
condition because the conditional median equals the conditional mean which
is linear in x_;, and the conditional variance does not depend on x_;. Another
7, sometimes used for smoothing, that satisfies the symmetry conditions is
m(x) oc exp(—3; ;b;(x; — xj)k), where b;;, > 0, the off-diagonal coefficients
b;; must be chosen appropriately, k is even (say 4), and x, is fixed. Though a
different proof would be needed, we think that Theorem 2 remains valid for a
random scan.

We conclude this section with a second (discrete) example, the two-
dimensional Ising model, for which we obtain a result similar to the multivari-
ate normal case. When 7 is the Ising model the n variables x; are positioned
on the sites of a finite squared grid, and 7(x) = exp(§ ;- x;x;)/Z, where
x; € {—1, +1}, the sum is taken over the four nearest neighboring pairs and Z
is the normalizing constant. The so-called inverse temperature 6 can be either
positive, in which case the model is attractive, or negative, which gives a repul-
sive interaction model. We shall consider our algorithm with a deterministic
scan. Define the set C = {(x,y) € Q x Q|x +y = 0}. We observe that C is an
absorbing set for the joint chain: if (X!, Y) € C then also (X%,Y®) € C for s > ¢,
because of the antithetic coupling and the form of the conditional distribution
7(x; | X_;). Furthermore, C is reachable from any initial state within one full
sweep with a probability larger than p = [exp(—8|6]|)/(1 + exp(—8|§|))]" > O.
Hence the random time 7 at which C is entered is stochastically dominated
by a geometric random variable v with mean 1/p and finite variance. For any
linear f with zero mean, we have, as ¢t — oo,

n min{T, 7}
Var(f) = Var(% (R + f(Yf))) < g eB((7)) = 6(T),

t=1

where c is a finite constant.

5. Joint properties of the coupled Gibbs sampler chains. The cou-
pled Gibbs samplers (X!,Y?) form a Markov chain evolving on Q x Q that
updates components blockwise, the block being B; = (X, Y;). Although each
marginal component is a Gibbs sampler chain, (X?, Y) does not need to be. An
algorithm that updates a component B; using a conditional probability that
does not depend on the current value in B; is not necessarily a Gibbs sampler.
The full conditionals have to satisfy complicated consistency conditions.



1134 A. FRIGESSI, J. GASEMYR AND H. RUE

It is interesting to know if the joint chain (X!, Y?) is ergodic and if so
what the properties of the stationary measure are, which of course has 7 as
marginals. The difficulty is well illustrated by the multivariate Gaussian case.
As explained in Section 4, if there is a limit distribution w(x, y) of (X!, Y?), as
t — oo, then its support must be

(8) supp(p) = {(x,y) € A x Q|x +y = 0}.

In this case, when ¢ — oo, the density of (X!, Y?) is attracted towards the
subspace x = —y. Hence () x () can be decomposed into a transient class and
an ergodic one and w is singular with respect to = x 7. For general state space
Q x Q, the picture could be more complicated: it could be that the marginal
components converge (to 7) while jointly they do not converge, or that there
is more than one ergodic class. We are not able to exclude such situations.
However the asymptotic behavior of the joint chains does not influence the
efficacy of the new algorithm.

The theory in the Appendix of Arjas and Gasbarra (1996) can be used to
prove that if the joint chain (X’, Y?) is started in the ergodic class then there
exists a unique stationary distribution u on this class. In the multivariate
normal case, this means that if (X, Y?) is such that X° = —Y?, then there
exists a unique stationary distribution w on the set x = —y. We give the
precise statement; see Arjas and Gasbarra (1996) for more information on the
assumptions.

THEOREM 3. Let X! and Y! be positive recurrent Markov chains on a com-
plete separable metric space Q. Let Z! = (X!, Y?) be a ¢-irreducible Markovian
coupling of X! and Y!. Consider the closure (with respect to the product topology
of QO x Q) supp{¢} with the relative topology inherited from the product topol-
ogy. Let (X°,Y%) € supp{¢}. If, as a Markov chain on supp{¢}, Z' is weakly
Feller with respect to the relative topology, and if supp{¢} contains an open
set (with respect to the relative topology), then Z' is positive recurrent.

It can be seen that the coupled Gibbs samplers (X!, Y’) realize a
Markovian coupling. In the multivariate normal case ¢ can be chosen to be
the Lebesgue measure. We have not experienced more than one ergodic class
in our numerical experiments. What can we say about the form of the sup-
port of u? In the Gaussian and Ising models it is the symmetry of the condi-
tional density with respect to the median, which is linear in the conditioning
components, that makes the limiting support of the joint chain of the type
{(x,y): y = H(x)}. It is interesting to note that if there is such a function H
and if m(x) > 0 for all x € (), then this function must act componentwise, that
is, ¥; = h;(x;) for all i, as happens in the Gaussian case; see Theorem 4. Note
that if 7 is an n-fold product measure on ) = S”, that is mw = 7 x --- x m,,
then (X?, Y’) has a stationary distribution reached after one single sweep with
support y; = h;(x;), i = 1,..., n, where the functions &; are nonlinear. Hence
constant x + y is not the only possible form for a degenerate supp(u).
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6. Nonrigorous variance comparison for general nonattractive tar-
get densities. Because we are not able to extend rigorous theory beyond
attractive 7’s, we present some rough arguments and conjectures. We assume
that the coupled chains have been started in an ergodic class, on which there
exists a joint stationary measure u. Denote by B, = B(t, t + k) the stationary
cross covariances. Let f € . and assume a random scan. We argue that all
Bx, k> 0, have the same sign as B,. The heuristic argument is based on the
approximations

Cov(f(Y"), F(Y"))

©) BV | Y ~ =g g T = SLAY),
a0 B Yo~ IR v = By

Approximation (9) is explained as follows: among all quantities cf(Y?), linear
in f(Y'), the one given in (9) minimizes the mean squared error,
Ey:E((cf(Y!) — £(Y™%))2 | Y!). The same argument applies to (10). The
k-step conditional expectation is the best predictor for f(Y‘**) in terms of
mean squared error, but is not generally linear in f(Y?). If f is linear, f(Y!) =
a’Y!, and if 7 is multivariate normal, then the k-step conditional expectation
is linear in Y! and approximately linear in a”Y* unless the dependency among
the Y,’s is very strong.
We obtain the following expression for B:

Br=E(fX)f(Y*)) = Ex E(f(X)f(Y*) | Y)

- =Ey.[E(F(X) | Y)E(F(Y™*H) | Y]

wEY{&f(W)ﬁﬂYﬁ)} = Bo 2k,
Yo Yo Yo

using (9), (10) in the last line and conditional independence. If (9) and (10) are
good, so will (11) be. For a random scan Gibbs sampler Liu, Wong and Kong
(1995) show that vy, > 0 for all %, regardless of the attractivity. If (9) and (10)
were correct, B, would have the same sign as B, for all £ > 0. Figure 3 shows
a plot of the estimated values of 8;/v, and the approximation Byvy;/ yg for the
pump example described in Section 7.1. The fit is very good.

Using (11), and the expressions for Var( f ) and Var( f ) given in the proof of

Theorem 1, we calculate the variance reduction factor of f with respect to f
when T — oo, as

Var(f) N 1

(12) - :
Var(f) 1+ Bo/vo

The antithetic algorithm is always better if B, < 0 and (9) and (10) (approx-
imately) hold. We conjecture that this is true in many cases. For example,
suppose the cross-autocorrelation at lag zero B,/vy, is equal to, say, —2/3.
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Then the variance reduction factor is circa 3. In Section 7 we observe esti-
mated variance reduction factors larger than 3. Note further that the ratio
(12) does not depend on vy;, £ > 0, which may indicate that the efficiency of
the new algorithm does not depend on the mixing properties of the marginal
chains.

Next we present a nonattractive example that mimics the behavior of the
new algorithm but that allows for rigorous analysis. The two coupled chains
are stationary non-Gaussian autoregressive processes. Since the approxima-
tions (9) and (10) are exact, the sign of B, follows the sign of B,. The variance
reduction (12) is valid and is not influenced by the mixing properties of the
marginal chains. Besides being nonattractive, the process does not satisfy the
symmetry condition used in Section 4. Let X! be the real valued process.

(13) Xt=¢pX 146, ¢t>0,

started in equilibrium at time zero, with |¢| < 1. Let & be ii.d. zero—one
binary variables with p(&’. = 1) = p > 1/2. This is not a Gibbs sampler, but it
has the same flavor; see (20). We choose f(x) = x with the aim of estimating
the mean E(X) = p/(1 — ¢). The variance of [ is

(14)  Var(f) = Var<2T X ) ~7,./(2T) where 7, = vy, +2 Z Vi
k=1

is the integrated autocovariance time. Also, 7, = y,(1 + ¢)/(1 — ¢) where
Yo = p(1 — p)/(1 — ¢?). We compare the variance in (14) with that obtained
using two realizations of (13), X’ and Y?, where X! is sampled using the
uniform random variable U’ and Y is sampled using 1 — U?. We get

T
1 Xt+Yt> ( ZZ)~TZ/T.

Var(f) = V.

ar(f) ar( T t:Zi 3

Z' is an autoregressive process of the same form as (13), with £ equal to either
1, with probability 2p — 1, or to 1/2 otherwise. We get 7, = (p — 1/2)(1 — p)/

(1 — ¢2). Hence, we obtain the factor of variance reduction of (f) w.rt. f as
Var(f) 7, B 1
Var(}‘%) 27'2 2—1/p

where we make use of the exponentially decaying autocovariances of X? and
Z!. This shows that the antithetic estimate is always better, and that the vari-
ance reduction factor tends to co as the symmetry increases; that is, p — 1/2.
It tends to 1 as the symmetry decreases, p — 1. For p = 1/2 (perfect sym-

(15) p>1/2,

metry), the variance of f is again #(T2). Notice that the joint and marginal
chains require a burn-in of similar length, as both are autoregressive processes
of the same form (13). For the cross covariances we get

Br=— ¢|k‘
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and (11) and (12) hold exactly. Furthermore, B8, is minimal for p = 1/2, it
takes value By = 0 if p = 1, and the efficiency in (15) increases as 3, becomes
more negative.

7. Practical implementation and numerical experiments. Accord-
ing to Theorem 1, we should start the two marginal chains independently in
7. Only if a raster scan is used can all components of X° and Y° be sampled
independently. The latter method is easy, while sampling X° and Y° inde-
pendently from 7 requires the independent running to convergence of two
ordinary Gibbs Sampler chains. The bias of the two estimators is influenced
by the initialization. In general, the asymptotic mean squared error of either
estimator is determined by the variance, which is of order 7!, and by the
squared bias, which is of order 7-2. We discuss more about the bias in our
first example. In practice, we run a single Gibbs sampler for 7', steps. We
keep XTo and discard the rest. Let Y70 = X0, start two (dependent) trajecto-
ries, one using (4) and the other (5) and terminate the coupled chains after a
further T transitions. In this way we fail to fulfill precisely the requirement
of XTo and Y7o in Theorem 1 (independence and m-distributed). Nevertheless,

we will compare this algorithm, which gives an estimator f based on a total
of 2T Gibbs sampler updates, with a single Gibbs sampler chain of length 27,
started in X7o. If the burn-in is long enough, the two estimators will be approx-
imately unbiased. We shall apply our algorithm to two well-studied data sets,
the hierarchical Poisson model [Gelfand and Smith (1990)] and the ordered
normal means example [Gelfand, Hills, Racine-Poon and Smith (1990)]. The
main purpose is to evaluate the performance of the new algorithm and to
quantify its variance reduction and the efficiency w.r.t. the usual Gibbs sam-
pler. We also introduce antithetically coupled Metropolis—Hastings chains and
discuss their performance.

7.1. Hierarchical Poisson model. Gelfand and Smith (1990) present counts
s=(sq,...,8,) of failures in n = 10 pump systems at a nuclear power plant,
where the times of operation ¢t = (¢4, ..., ¢,) for each system are known. The
hierarchical model assumes s; ~ Poisson(A.£;), and a common Gamma prior
for the failure rate A, of each pump, A, ~ I'(¢, B). The problem is to make
inferences about o and the inverse scale 8 computing the posterior means.
Here o has exponential prior distribution with mean 1, and g a I'(0.1, 1.0)
distribution.

The conjugate priors ensure that A; is I'-distributed conditional on the
remaining variables, as are A,,..., A, and B. It is therefore easy to update
each of these variables using a Gibbs sampler. The conditional density for «
is, however, nonstandard since

(| Ay, ..., Mg, B) x exp(aa — nlog'(a))

(16) "
where a =nlog B+ > log A, — 1.

k=1
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In this case it is most natural to perform a Metropolis—Hastings step for the
a-parameter update. This means that, using a proposal density, a new value
for « is proposed and then accepted or rejected. We suggest three different
updating strategies for a:

1. Gibbs sampler update. To implement the full Gibbs sampler, we compute
numerically F~'(u;a,) and F~1(1-u;a,), where F is the cumulative con-
ditional distribution function for a.

2. Hastirlgs update. We approximate the conditional density (16) with a nor-
mal (F) with the mean and variance matching the mode and the curvature
in the mode. We update « using a Hastings step, proposing to move the cur-
rent values of a to F;!(u) and F;l(l — u), respectively. We accept—reject
the proposals using a common uniform variate and get an 90% average
acceptance rate for a.

3. Metropolis update. We update « using a random walk Metropolis step and
propose a new state from a uniform density centered at the old state using
u and 1 — u. We accept the proposals using the same uniform variate. The
width of the proposal density is determined to obtain an average acceptance
rate for « close to 50%.

To verify the robustness with respect to various scanning schedules, we
apply each of these three updating rules for a with three different visiting
schedules: random scan (RS), where we look to 12 variable updates as one
step; random permutation scan (RPS), where at each iteration we update our
12 variables in a random permutation and deterministic scan (DET), where
at each iteration we update Aq, ..., Ay, @, B and then «a, Ay, ..., Aq.

We run a single Markov chain using 7', = 1000 iterations as burn-in, and
then we split the chain into two components and run it according to (4) and (5)
for Aq, ..., Ayg, B. For a, we run it according to one of the three above methods.
The algorithm is set to perform a further T' = 100,000 iterations. Figure 1
shows small parts of the sample paths for the 8 variables in the two chains,
denoted by B%and ,va, respectively, where we use the Gibbs sampler also for
a and RPS. The paths show a clear negative correlation. In Figure 2(a) we
plot the sampled points (o, ag) of the two coupled chains to show the shape
of empirical joint density, using 5000 subsequent samples. The second panel
of Figure 2 illustrates the empirical joint density of (8%, B@) The negative
cross-correlation structure is clearly visible. Figure 3 shows how good the
approximation of the cross covariances given in (11) is, for @ and B (using
Gibbs sampling to update also «).

To give a quantitative measure of the variance reduction using the anti-
thetic chains, we estimate the integrated autocovariance time using all 100,000

iterates; see Geyer (1992). The ratios Var( f )/Var( f ), for f projecting on the
single components « and B, are listed in Table 1 for the three different updat-
ing rules and the three visitation schemes. These ratios do not seem to depend
significantly on the visitation schedules. The variance reduction factors for
the Gibbs samplers are around 9 and 6 for « and B, respectively. The variance
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4.0

200.0

Fic. 1. The sample-paths of the B component of the two antithetically coupled Gibbs sampler
chains show a clear negative correlation. 200 consecutive iterations.

reduction of the two other algorithms (Hastings update and Metropolis update)
drops to around 2-2.5 for «. This occurs despite the fact that the acceptance
rate was 90% for the Hastings update. A further experiment using a random
walk Metropolis update, for @ with a uniform proposal with larger width and
an acceptance rate of 25%), still gave a variance reduction around 2. The reason
for this is that the two antithetic chains get out of phase when an antithetic
proposal is rejected by one chain but not by the other; the antithetic coupling
between the two chains weakens. We do not adjust for this in later iterations,
since only shared random numbers are used to introduce antithetic depen-
dency between the two chains and the current states of the two chains are not
considered in the proposal. The antithetic Gibbs sampler is also better than
a single hybrid 2T long chain, using Gibbs sampling for A, ..., Ay, 8 and a
Hastings update for a. The asymptotic variance of such a hybrid sampler is
larger than that of a single pure Gibbs sampler.

We now include the biases in our analysis. Let the efficiency be defined as
the squared bias plus the variance and consider the ratio

bias(f)2 + Var(f)
bias(f)2 + Var(f)
The estimated ratios (17) regarding the estimation of « and B, for the pure
Gibbs sampler and the deterministic visitation scheme are 30.9 and 12.1,
respectively. The true posterior mean values of @ and B, needed in the bias

calculation, were estimated with a very long (antithetic) run (4,000,000 full
sweeps). Exact sampling or numerical integration could also have been used

a7
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F1G. 2. Point plots of 5,000 samples from the two antithetic Gibbs sampler chains for (a) a and
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(b) B. The support of the joint density and a clear negative correlation are illustrated.



ANTITHETIC GIBBS SAMPLING

OL ° > —o—0—0—0—0—9
-05 } 1
[
-1 A A
0 5 10 15 20
(a)
0F —0—0-—0—0—0
-05 } 4
[
_1 L 1
0 5 10 15 20

()

1141

FiG. 3. The estimated cross-autocorrelation (solid line) for a [in (a)] and B [in (b)] together with
the approximated cross-correlation (dots) based on approximation (11), for the pump example using
the Gibbs sampler and the visitation schedule DET. The approximation is very good.
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TABLE 1
Hierarchical Poisson model: estimated Var (f)/Var(f) for f equal to a or p*

Gibbs sampler Gibbs-Hastings Gibbs-Metropolis

Estimated

Var(f)/ Var(f) RS RPS DET RS RPS DET RS RPS DET
a 9.53 9.00 9.64 233 223 246 231 213 2.05
B 6.56 6.40 6.05 3.05 297 260 272 250 2.39

*Three different ways of updating the parameter « and three different scan strategies are com-
pared using 100,000 iterates. The antithetic coupling is very convenient for the pure Gibbs sam-
pler, but the variance reduction decreases using a Hastings-update or a Metropolis-update for a.

for this purpose. We can conclude that the new antithetic algorithm is still
better than a single long chain. This is surprising, but it seems that the bias
of the average based on the X! chain has the opposite sign to the bias of the
estimator based on the antithetic Y? chain, so that these contributions to the

bias of f cancel. This seems to be a further advantage for the new method. In
Figure 4 we plot the bias of these two chains. Observe the antithetic sign. In
the same figures (one for o and one for 8) we have also plotted the total bias of
the antithetic Gibbs sampler, which oscillates around zero. To avoid a further
figure we have shrunk the time of this total bias, so that it can be compared
to the bias of the estimate based on X! (or on Y?). This now corresponds to the
bias of a single, twice as long, run. The bias is smaller.

7.2. The ordered normal means problem. Gelfand, Hills, Racine-Poon and
Smith (1990) use the Gibbs sampler to estimate the mean and precision in
normal populations, when the ordering of the means is known in advance. We
have repeated their example using the antithetic Gibbs sampler to investigate
its variance reduction and efficiency in estimating the posterior mean of the
parameters of interest.

Let Y;; be the jth observation (j = 1,...,n;) from the ith group (i =
1,...,n.). Assuming conditional independence throughout, let Y;; ~ N(6;,
1/7;),0; ~ N(u,1/7g), 7; ~ T(ay,b1), 75 ~ I'(ag, by), and p ~ N(pg, 1/7).
Here 7, 7,, 7y denote the precision or inverse variance. A priori it is known
that the means 6; satisfy the constraint 6; < 6 < --- < 6, . Gelfand, Hills,
Racine-Poon and Smith (1990) demonstrate that the Gibbs sampler is easy
to implement even in this case. We refer to Gelfand, Hills, Racine-Poon and
Smith (1990) for details about the Gibbs sampler and for the specific choices
of the (flat) priors of the hyperparameters.

We simulated data using n, = 5 and sampled from the ith population n; =
2i+4 observations from N(i, i2). Table 2 lists the empirical mean and variance
within each group. Note that the observed ordering of the means is not in
agreement with the a priori constraint. We used the deterministic schedule

DET with a burn-in of 1000 cycles. The variance reduction factor Var(f)/( f: )
was estimated using the following 50,000 iterates of the coupled chains as
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FIG. 4. Bias in estimation of the posterior mean for « [in (a)] and B [in (b)] for each of the two
Gibbs sampler chains Xt and Y (dashed and dot—dashed lines) and the antithetic Gibbs sampler
(solid line) as a function of number of iterations (counting two for the antithetic Gibbs sampler). The
bias for the antithetic Gibbs sampler is scaled so the amount of computational work is comparable.
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TABLE 2

Ordered normal means problem: characteristics of the simulated data*

Sample values 1 2 3 4 5
n; 6 8 10 12 14
Y, 0.645 2.212 3.576 2.401 4.195
S? 1.473 2.279 3.452 20.186 11.330

*Note the exchange in the empirical ordering of the means.

in Section 7.1 Table 3 displays the estimated ratios for (6, 7;),i =1,..., ng.
The new antithetic Gibbs sampler gives a significant speedup with variance
reduction between 2.97 and 6.69 with an average of 4.7. Similar results were
obtained for the other visiting schedules.

8. Conclusions. We have suggested a simple way to couple two Gibbs
sampler chains in order to reduce the variance of the empirical average as an
estimator of an expectation. The coupling induces negative cross covariances.
The new estimator is also asymptotically unbiased and the reduction of the
variance can be remarkable with respect to the simple Gibbs sampler run for
the same time. The coding of the proposed algorithm is easy, given a standard
Gibbs sampler implementation.

Other authors have introduced antithetic behaviors into a single MCMC
chain. If the density 7 is symmetric around zero, Geweke (1988) proposes
using the estimator (1/7) ZtT:/ f (fXH) + f(—=X*)) and proves that its asymp-
totic variance is smaller than Var ( f ). Barone and Frigessi (1989) propose a
variation of the Gibbs sampler where each step moves antithetically to the cur-
rent state and show a faster weak convergence rate in some cases. Neal (1998)
improves the single updating step further. Green and Han (1992) show that
in such a way the asymptotic variance could also be reduced in certain special
cases. We show that with two chains a more authentic antithetic behavior can
be established.

As the example showed, it is not trivial to extend equally successfully the
antithetic idea to Metropolis—Hastings type algorithms. It is more difficult
to induce antithetic correlation when an accept-reject step may well reject
a proposed antithetic move. More research is needed in order to understand
how to couple such chains properly.

TABLE 3
The estimated variance reduction of the estimates based on antithetic coupled Gibbs
sampler w.r.t. the estimates based on a simple Gibbs sampler in the ordered normal
means problem using 50,000 iterates

Estimated Var(#)/ Var(f) 1 2 3 4 5

0; 5.44 4.02 2.97 3.09 4.31
4.20 5.08 4.71 6.69 6.53

i
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The Gibbs sampler is rarely the fastest MCMC algorithm. In fact, other
Metropolis—Hastings schemes have often a smaller asymptotic variance. How-
ever, the new antithetically coupled Gibbs sampler may compete with such
algorithms. A further interesting idea, suggested to us by an Associate Editor,
is to apply the antithetic chains to slice sampling, which relies on uniform
distributions.

It is also possible to couple more than two chains. Four chains could share
the random variates U, 1-U, (U+0.5) mod(1), (1-U —0.5) mod(1) and so on.
This is likely to lead to a further gain, though we expect that the advantage
with respect to only two chains is not large.

APPENDIX
A.1. Proof of Theorem 1.

LEMMA 1. Suppose f € & and let w be attractive. Consider the coupled
Gibbs sampler chains given in (4) and (5). If the components X9, ..., X9,
Y(l), ..., Y% are generated independently and if a deterministic raster scan is
used, then B(t,t+ k) < 0 and Cov(f(X?), f(X***)) >0 forall t >0 and k > 0.
The same assertions hold true if X° and Y° are drawn independently from
and either a deterministic raster or a random scan is used.

PROOF OF LEMMA 1. The proof relies on the construction of sets of associ-
ated random variables. We shall use properties of associated random variables
referenced as P1 to P4 in Esary, Proschan and Walkup (1967).

Deterministic scan. First assume that X9, ..., X9, Y9,...,Y? are indepen-
dent. The component i’ is updated in the transition from (X’ Y’) to
(X1, Y1), which happens according to X4 = ®;(X!,,U?) and Yi' =
®;(Y",,,1-U"). Then ®; (-, -) is nondecreasing in each variable, by attractivity
and because of the monotonicity of inverse conditional distribution functions.
Now suppose

(18) (XL, XL, -Y Yty

is a set of associated random variables. Then also S = {X¢, ..., Xt, —Ytl, e,
—Y!,U"} are associated, since U’ is independent of the other variables (P2).
By the monotonicity of ®;. it follows that X Efl and —Yffrl are nondecreasing
functions of the variables in S?. For j # if, X tj“ and —Y'}*l are trivially non-

decreasing functions of the variables in S*. Hence { X", ..., X1, —y‘ |
—Yt11 is also a set of associated random variables (P4). Now if X9, ..., X9,
Y(l), ..., Y2 are independent, then in particular S° is associated (P2), and by
induction it follows that (18) is a set of associated random variables for all ¢.
For fixed ¢, it follows in the same way that {X?,..., X!, —th“k, co, YERL g
associated for each 2 > 0. We now use induction on %, changing only —Y ;i1x1
in the kth step.
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Define two functions, g(x, —y) = f(x) and h(x, —y) = —f(y) = —f(—(=¥)).
Because [ is nondecreasing, then g and A are nondecreasing functions of
{%1,.-r %, —¥15---»—¥,}, and it follows by associativity [Esary, Proschan
and Walkup (1967), Definition 1.1] that

Cov(f(X!), —f(Y**)) = Cov(g(Xt, =Y), h(X!, =Y!**)) > 0.

Changing the sign gives the asserted nonpositivity of the cross covariances for
each ¢.

An induction argument similar to the one above shows that the sets
(X4, ..., Xt, X\ ..., Xt+tk} are associated for each % > 0 and each ¢ > 0.
Replacing the function 4 in the preceding argument by A(x, y) = f(y), we
obtain Cov(f(X?), f(X!*#)) = Cov(g(X*, X!**), h(X?, X!**)) > 0. Taking the
limit as ¢ — oo we also have that vy, > 0.

We move now to the actual assumption of Theorem 1, that { X9, ..., X%} and
{Y9,..., Y%} are w-distributed and independent. Since 7 is attractive, for i =
1,...,n and arbitrary x;, we have that P(X,; > x;|X; = x1,..., X;,_1 = x,_1)
is nondecreasing in xq, ..., x;_; if X is distributed according to 7. This means
that the variables X, ..., X, are conditionally nondecreasing in sequence.
By Barlow and Proschan (1975) they are associated. Since association is pre-
served by multiplying all variables by —1, the same holds for —X,,..., - X,.
Therefore, if the initial state (X°, Y°) is obtained by drawing X° and Y° inde-
pendently from m, the set {X9,..., X%, —Y9 ..., -Y?} is associated. There-
fore, the same argument used for the case of independent components in the
initial state can be followed.

Random Scan. Let the initial states X° and Y° be 7-distributed and inde-
pendent. Let I = (I°,..., I'"1) be the site updating sequence. Then it holds
that

Cov(f(X"), f(Y"F)) = E(Cov(f(X"), F(Y*) | I*F)

19

4 + Cov(E(F(X!) | '), E(f(Y'HF)[IFHF)).

If X° is distributed according to 7, then X! given I'*t* is also w-distributed
for all ¢. Hence, E(f(X?) | I*"*) = E(f(Y'**) | I***) = 0 and the second term
in (19) is zero. The proof for the deterministic scan shows that the first term
in (19) is nonpositive. By the same argument, Cov(f(X?), f(X***)) > 0 for all
k>0, t>0if X is drawn from 7 and a random scan is used. Again, letting
t—>oowegety,>0forall 2>0. O

PROOF OF THEOREM 1. We compute first Var(f) and Var( f: ) as functions of
B(t, s)and vy;. Then Theorem 1 follows using Lemma 1. The variances are as
follows:

. 1 2T 1 1 27-1 k
— t — _ -
Var(F) = Var( 7 X FO) = gm0 X (1 57)
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2 1 T
Var(f) = Var<ﬁ S(FXH) + f(Yt)))
=1

T-1
=grot 1 2n(1-7) * o7 T Y B0

t=1s=1

Thus, T(Var(f) — Var(f)) = S — D, where

271 A 1 T-1
S= 3 v l-55 ZkYk, D——ZZB(St)
k=T 2T T 5.4
We can now study the sign of S — D When 7 is attractive and f € .7, in the
case of random or raster scan. Using Lemma 1 we have that vy, > 0 for all 2
and B(s, t) <0 for all s and ¢, hence S > 0 and D < 0 for all 7. This concludes
the proof. O

Notice that the proof of Lemma 1 does not require that the components to be
updated in the two chains are the same. Hence variance reduction is achieved
also if the two chains update different components at each step. However, we
expect strongest variance reduction when the components are the same.

PROOF OF THEOREM 2. When the ith component is updated, we can write
the usual Gibbs sampler in matrix notation as

(20) X+ = (1-D,Q)X’ + ¢,

where Q is the inverse covariance matrix, D; is a matrix of zeros, except for a
single 1 in ith position along the diagonal and &’ is a vector of zeros except for
&! which is a normal variate with zero mean and variance 1. Similarly, Y/*! =
(I-D;Q)Y’+ n'. Due to the antithetic coupling and the normal assumption,
n! = —&’. Hence

(21) X 4 YS! = (I-D,Q)(X! +YY).

It is shown in Barone and Frigessi (1989) that the spectral radius q of the
matrix

(22) A =I-D,Qx---x(I-D;Q)

that governs a full deterministic raster scan is strictly smaller than one. The
spectral radius of the single components I — D;Q is smaller or equal to 1.
Consider a linear function f with zero 7-mean. We can write (for T' a multiple
of n)

N lT/nlnl

A

f=gr X L(F&™)+ (X)),

k=0 s=0
so that

A
~

n T/n-1
1= 0n 3 aFE)+ (Y]
k=0
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and

2
A cn? (1 —qT/m
AV by e S
ar(f) < 4T2< 1-g
for some positive constant ¢, which gives Var( }5 ) = #(T~?). Furthermore,
Var(f) ~ ¢’/T for some constant ¢’. Hence for T large enough, Var(f) >

Var(f). O

PROOF OF THEOREM 3. Wefollow Arjas and Gasbarra(1996). A ¢-irreducible
Markov chain has to be either transient or recurrent. If Z’ is recurrent, it
has to be positive recurrent since the marginals are positive recurrent. We
show that it cannot be transient. Fix a starting point z = (x,y) € supp{¢}.
For each %, the joint k-step transition kernel K7(z,-) is a coupling of the
marginal k-step transition kernels K% (x, -) and K%(y, -). Since the marginal
chains are positive recurrent, it follows that the sequences of probability
measures {K%(x,:), & € N} and {K%(y,-), k € N} are tight [see, e.g.,
Meyn and Tweedie (1993)]. This implies tightness of the sequence of cou-
plings {K ’%(z, ), & € N} in the product space, as well as the tightness in
suppq{ ¢} with the relative topology. This is because if A is a topological space,
B is a closed subset and K is compact in A, then BN K is closed w.r.t. the
relative topology. In particular, there is a compact set C (compact w.r.t. the
relative topology) such that K }é(z, C) > 1/2, Vk. It is not a restriction to take
z € C (add z to C if necessary). Since > 77 ; K’}(z, C) = o0, C is a compact set
which is not uniformly transient. By the lemma in the Appendix of Arjas and
Gasbarra (1996), it follows that the Markov chain Z¢ is not transient. O

THEOREM 4. Let P(- | (x,y)) be a transition kernel on ) x Q) which updates
only one block component (x;, y;) at each transition, and which is ergodic with
Jjoint stationary measure w. Suppose that w(x) >0 forallxe Q3 =Sx---x S
and supp(p) = {(x,y) € Q x Q|Y = H(X)}. Then this support can be defined
componentwise: for each i, y; is function of x; only.

PrOOF. We proceed by induction. At step i, consider (y{,...,y;) =
hi(xq, ..., x;) for some function A;. This is true for i = n with s, = H. Suppose
that the chain is stationary at time ¢, and (X!, Y!) = (x, y). Assume that I’ = i.
Then (X1, Yi+1) = ((«}, x_;), (¥}, y*)) belongs to the support of u, by station-
arity. Hence, the induction assumption says that (yq,..., y;) = h;(xq, ..., x}).
In particular (y;, ..., y;_1) = h;(xq, ..., x})_; is a function of (x4, ..., x;). But
we also have (yy,...,¥;,_1) = h;(x1,...,x;)_;. By the assumption on =, x|
could be any point in S, and it follows that &;(x;,..., x;_1)_; is constant as a
function of x;. Hence (y1,..., y;_1) is determined by (x4, ..., x;_;) only. Pro-
ceeding by induction back from i = n to i = 1, it follows that y; is a function
of x;. The ordering of the components is arbitrary, so that y, is a function of
x;, only, and the theorem follows. O
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