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Gaussian mixtures provide a convenient method of density estimation
that lies somewhere between parametric models and kernel density estima-
tors. When the number of components of the mixture is allowed to increase
as sample size increases, the model is called a mixture sieve. We establish
a bound on the rate of convergence in Hellinger distance for density esti-
mation using the Gaussian mixture sieve assuming that the true density
is itself a mixture of Gaussians; the underlying mixing measure of the
true density is not necessarily assumed to have finite support. Computing
the rate involves some delicate calculations since the size of the sieve—as
measured by bracketing entropy—and the saturation rate, cannot be found
using standard methods. When the mixing measure has compact support,
using kn ∼ n2/3/�log n�1/3 components in the mixture yields a rate of order
�log n��1+η�/6/n1/6 for every η > 0� The rates depend heavily on the tail
behavior of the true density. The sensitivity to the tail behavior is dimin-
ished by using a robust sieve which includes a long-tailed component in the
mixture. In the compact case, we obtain an improved rate of �log n/n�1/4.
In the noncompact case, a spectrum of interesting rates arise depending
on the thickness of the tails of the mixing measure.

1. Introduction. Statistical inference using mixtures of Gaussians is
used for many purposes including density estimation, clustering and robust
estimation; see, for example, Lindsay (1995), McLachlan and Basford (1988),
Banfield and Raftery (1993) and Robert (1996). When the number of compo-
nents of the mixture is allowed to increase with sample size, the model is called
a Gaussian mixture sieve [Grenander (1981), Wong and Shen (1995)]. These
sieves have been studied by several authors including Geman and Hwang
(1982), Roeder (1992), Priebe (1994) and Roeder and Wasserman (1997).
Related work from a Bayesian point of view is discussed in Escobar and
West (1995). Priebe argues that in many cases, a mixture sieve has many
advantages as a density estimator over kernel density estimates. For exam-
ple, Priebe showed that with n = 10�000 observations, a log-normal density
can be well approximated by a mixture of about 30 normals. In contrast, a
kernel density estimator uses a mixture of 10,000 normals. Despite the ubiq-
uity of mixture sieve models, little is known about their asymptotic properties.
In particular, the rate of convergence of the density estimator of this sieve has
not been established. In this paper, we bound the rate of convergence. Rates of
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convergence for the mixing distribution function have been studied in Chen
(1995). Also, van der Geer (1996) obtains rates for a different mixture model.

Let φ�x�µ�σ� denote a Gaussian density with mean µ and variance σ2.
A finite Gaussian mixture is a density of the form

fθ�x� =
k∑
j=1
pjφ�x�µj� σj��(1)

where θ = �µ�σ�p�� µ = �µ1� � � � � µk�� σ = �σ1� � � � � σk�� p = �p1� � � � � pk�.
Here, the µj’s are real, the σj’s are positive reals, pj ≥ 0 and

∑
j pj = 1.

Let mk, sk and S be positive constants such that mk → ∞ and sk ↓ 0 as
k→∞ and let

�k=
{
f�·� =

k∑
j=1
pjφ�· �µj� σj�� �µj� ≤mk�

and sk ≤ σj ≤ S� j = 1� � � � � k
}
�

(2)

Let kn be a sequence of integers such that kn → ∞ as ∞. The sieve we are
interested in is �kn

. Our estimate of the true density is f̂n�·� = fθ̂�·� where θ̂
is the maximum likelihood estimate of θ in the model (2). We have chosen to
fix S mainly for convenience. This parameter can also be allowed to increase
with k but the results do not change materially.

We will assume that the true density is a “general Gaussian mixture” of
the form

f0�x� =
∫ ∞
0

∫ ∞
−∞
φ�x�µ�σ� dP�µ�σ�(3)

for some probability measure P on the Borel σ-algebra over � × �+� Let
� denote all such densities. Of course, � contains all finite and countable
mixtures as a special case. It is worth noting that the Dirichlet process mixture
prior used in nonparametric Bayesian inference [Escobar and West (1995)]
uses a prior with support in � .

We measure the error in the estimate by Hellinger distance dH�f0� f̂n�
where dH�f�g�2 =

∫ �√f−√g�2. We bound the rate at which dH�f0� f̂n� goes
to 0, in two steps: (i) we bound the likelihood ratio outside Hellinger neighbor-
hoods of the true density and (ii) we compute the rate at which finite mixtures
saturate the set � . The first task is addressed in Section 2 by computing the
“size” of �kn

in terms of its Hellinger bracketing entropy, and then appealing
to recent results of Wong and Shen (1995). The second task is addressed in
Section 3. Calculating the bracketing entropy and the saturation rate is usu-
ally straightforward for finite-dimensional models. However, mixture models
do not behave as nicely as most finite-dimensional parametric families so these
calculations require special attention. In particular, the square root of the
density of a mixture model is not differentiable everywhere so that standard
methods for computing entropy are not available. Hence, we believe that the
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calculations in Sections 2 and 3 might be useful for other nonregular fami-
lies as well. We put these pieces together and compute the rate in Section 4.
Specifically we find tn such that P∗�dH�f0� f̂n� > tn� = o�1�. In section 5 we
discuss an improvement on the sieve. Section 6 contains closing remarks and
unsolved problems.

The main conclusion of this paper is as follows. If the mixing measure
P is compactly supported, then taking Kn ∼ n2/3�log n�2/3 yields the rate
�log n��1+η�/6/n1/6 for every η > 0. If the mixing measure is not compactly
supported then we cannot compute the rate without the adjusted sieve in
Section 5. In this case we get a rate of �log n�1/4/n1/4 for the compact case
and, in the noncompact case, we get a spectrum of rates depending on the tail
behavior of P. We should mention that independently of our work, Li (1999)
and Li and Barron (1999) also obtained a rate of �log n�1/4/n1/4 for mixture
models. More precisely, they obtained a rate in Kullback–Leibler distance,
which corresponds to the above rate in Hellinger. Their proof is quite different
from ours. On the one hand, it is more general since it applies to other mixtures
besides Gaussian mixtures. On the other hand, their results do not directly
apply to our case since their rates contain a constant which can be infinite
and, furthermore, they assume the parameter space has been discretized. The
results of Li and Barron are very interesting and they nicely complement the
results in this paper.

Remark. After a revision of this paper was submitted, Ghosal and van
der Vaart (2000) obtained an improved rate of convergence for this prob-
lem. Our results are driven by the approximation error infg∈�k

D�f0� g� =
O�log k/k� where D�f�g� is Kullback–Leibler distance. This implies that one
needs k�ε� ≈ 1/ε mixture components to approximate an arbitrary f0 to
within ε Kullback–Leibler distance. In bounding this approximation error we
did not make use of the smoothness of the Gaussian densities. Ghosal and
van der Vaart obtained an improved bound infg∈�k

D�f0� g� = O�log k/ek�.
This implies that one needs only k�ε� ≈ log�1/ε� mixture components. As a
consequence, they obtain a near parametric rate of �log n�δ/√n for some δ > 0�
in the case where the variances of the mixture components are bounded below
by a known constant. This result appears to depend strongly on the smooth-
ness of the Gaussians. Ghosal and van der Vaart did not obtain rates in the
case where no such bound is known, though we believe that a n−1/2 rate is not
possible in this more general case. It appears that theO�log k/k� bound on the
approximation error holds quite generally (i.e., without smoothness conditions
on the densities being mixed) and could thus be used to obtain a convergence
rate of �log n/n�1/4 without strong assumptions on the mixands. Indeed, Li
and Barron (1999) obtained a bound of O�1/k� with essentially no conditions
on the mixands, though there are constants in their results which can be infi-
nite in some cases. We suspect that these infinities can be eliminated at the
expense of increasing the O�1/k� term to O�log k/k�. Currently, no results are
available for the case where mk, sk and k are chosen using the data.
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2. Bounding the likelihood ratio. In this section we bound the supre-
mum of the likelihood outside a Hellinger neighborhood of the true density.
Thoughout, we consider densities on the real line with respect to Lebesgue
measure. Let dH�f�g� be Hellinger distance, dTV�f�g� total variation dis-
tance and D�f�g� be Kullback–Leibler divergence; that is,

d2H�f�g� =
∫ (√

f�x� − √g�x�)2 dx = ∫
f�x�dx

+
∫
g�x�dx− 2

∫ √
f�x�g�x�dx�

dTV�f�g� = 1
2

∫
�f�x� − g�x��dx�

D�f�g� =
∫
f�x� log f�x�/g�x�dx�

The following inequalities are well known and will be used in what follows.

Proposition. Consider nonnegative, integrable functions f and g, not nec-
essarily probability density functions and suppose that g�x� ≤ f�x� for almost

all x with respect to Lebesgue measure. Then, dH�f�g� ≤
√
2dTV�f�g� and

dTV�f�g� ≤ dH�f�g�
√∫
f�x�dx�

2.1. The bracketing entropy of �k. In this subsection, we measure the
size of �k using bracketing entropy [van der Vaart and Wellner (1996), Sec-
tion 2.7]. If � is a set of nonnegative, integrable functions and d is a metric
on this set, then an ε-bracketing (with respect to d) is a set of pairs of inte-
grable functions �l1� u1�� � � � � �lm� um� such that (1) for each f ∈ � there exists
�lj� uj� such that lj ≤ f ≤ uj, a.e. with respect to Lebesgue measure and (2)
d�lj� uj� ≤ ε� j = 1� � � � �m.

The smallest number of such brackets to cover � is called the bracketing
number and is denoted by N���ε�� � d�. The bracketing entropy is defined by
H���ε�� � d� = logN���ε�� � d�.

Generally, if � is a parametric model of dimension j, then N���ε�� � d� ∼
ε−j as can be proved using a Lipschitz argument; see, for example, van der
Vaart and Wellner [(1996), Section 2.7.4]. But such arguments require that
the derivative of the square root of the density be bounded by an L2 function.
This is not the case for mixtures. This is easy to see even in a simple mixture
model like �1−p�φ�y�0�1�+pφ�y�0�1/2�; the derivative of the square root of
this density at p = 0 behaves like ex

2/2. Instead, we must bound the entropy
by other methods. The result is given in the following theorem.

Theorem 1. Consider the set �k defined by �2�. If ε ≤ 1, there exists posi-
tive constants c1 and c2, not depending on k or ε, such that

N���ε��k� dH� ≤ c1ck2mkk
(
S

sk

)2k(1
ε

)3k−1
�



CONVERGENCE RATES FOR GAUSSIAN MIXTURE SIEVE 1109

To prove Theorem 1, we need some lemmas.

Lemma 1. Let s, m and S be positive constants and define

� = �φ�·�µ�σ�� �µ� ≤m�s ≤ σ ≤ S��
Then, for S ≥ 1 and ε ∈ �0�1�,

N���ε�� � dH� ≤
128�2m��S/s�2

ε2
�

Proof. Let δ = ε/2 and τ2 = �1+ δ�S2. Let

r =
⌈
4 log

(
S
√
1+ δ/s)

log
(
1+ δ

) ⌉

where �a� denotes the smallest integer greater than or equal to a. Define σ2
j =

τ2�1+ δ�−j/2 for j = 2� � � � � r. Note that σ2
r ≤ s2 ≤ S2 = σ2

2 . For j ∈ �2� � � � � r�
let γj = δσj−2/2, let Ij = �m/γj� and let µij = iγj for i = −Ij� � � � �0� � � � � Ij.
Note that �−m�m� ⊂ �−Ijγj� Ijγj�. For j ∈ �2� � � � � r� and −Ij ≤ i ≤ Ij let

Bij =
{
�µ�σ��µ ∈

[
µij −

δσj

4
� µij +

δσj

4

]
� σ2 ∈

[
σ2
j+1� σ

2
j

]}
�(4)

The Bij cover the parameter space. [A similar construction is used in Tong
and Viele (1998).]

Let

lij�y� = �1+ δ�−1φ
(
y�µij�

σ2
j+1

�1+ δ�1/4
)

and

uij�y� = �1+ δ�φ
(
y�µij� σ2

j�1+ δ�
)
�

We claim that �lij� uij� brackets Bij. This follows, after some algebra, from the
fact that, whenever σ1 < σ2,

φ�y�µ1� σ1�
φ
(
y�µ2� σ2

) ≤ σ2
σ1

exp
{ �µ1 − µ2�2
2
(
σ2
2 − σ2

1

)}�
Next we bound dH�lij� uij�. In general, if f and g are probability density

functions then d2H��1+δ�f� �1+δ�−1g� = d2H�f�g�+δ2/�1+δ� ≤ d2H�f�g�+δ2.
Also, if f�y� = φ�y�µ1� σ1� and g�y� = φ�y�µ2� σ2�, then

d2H�f�g� = 2

[
1−

{
2σ1σ2
σ2
1 + σ2

2

}1/2
exp

{
− �µ1 − µ2�2

4
(
σ2
1 + σ2

2

)}]�
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So,

d2H�lij� uij� ≤ 2

[
1−

√
2
{ �1+ δ�7/8
�1+ δ�7/4 + 1

}1/2]
+ δ2 ≤ 2δ2 ≤ ε2�

The last line holds because of the following inequality:

1−
{

2u
1+ u2

}1/2
= �u− 1�2[

�1+ u2�
(
1+ {2u/�1+ u2�}1/2)] ≤ 1

2
�u− 1�2�

where u = �1+ δ�7/8 > 1 and u− 1 ≤ δ.
Finally we count the number of boxes N. For each j, the number of boxes

is less than or equal to 2m/γj. Thus, we see that

N ≤ 2m
r∑
j=2

1
γj
= 4m

δS
√
1+ δ

r∑
j=2
�1+ δ��j−2�/4 = 4m

δS
√
1+ δ

r∑
j=2
�1+ δ�j/4

≤ 4mr
δS�1+ δ��1+ δ�

r/4 = 4mr
δS�1+ δ�

S
√
1+ δ
s

≤ 16m
δs

log
(
S
√
1+ δ/s

)
log�1+ δ�

≤ 32m
δs

S
√
1+ δ
δs

≤ 256mS
ε2s2

≤ 256mS2

ε2s2
� ✷

Let �k−1 = �p = �p1� � � � � pk�; pj ≥ 0,
∑
j pj = 1� be the k− 1 dimensional

simplex.

Lemma 2 (Bracketing entropy of the simplex). If ε ≤ 1, then

N���ε�Sk−1� dH� ≤
k�2πe�k/2
εk−1

�

Proof. Given p = �p1� � � � � pk� ∈ �k−1, let q = �q1� � � � � qk� where qj =√
pj. Then p ∈ �k−1 if and only if q ∈ Q+ ∩U where U is the surface of the

unit sphere and Q+ is the positive quadrant of �k. By virtue of this mapping,
an ε-L2 bracketing ofQ+∩U corresponds to an ε-Hellinger bracketing of�k−1.

Divide the unit cube in�k into disjoint cubes with sides parallel to the axes
and with sides of length ε/

√
k. Let � = �C1� � � � � CN� be the subset of these

cubes that have non-empty intersection with Q+ ∩ U. Let br be the vertex
of Cr furthest from the origin and let ar be the vertex of Cr closest to the
origin. Note that

∑
j�arj − brj�2 = ε2 so ��a1� b1�� � � � � �aN� bN�� forms an ε-L2

bracketing. It remains to count the number of cubes N.
Let Ta = �q ∈ Q+; �q� ≤ a�. Let C = ⋃

Cj∈� Cj. Note that C ⊂ T1+ε−
T1−ε ≡ A so

Volume �A� ≥ Volume �C� =N
(
ε√
k

)k
�
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Let Vk�a� = akπk/2/6��k/2� + 1� denote the volume of a sphere of radius a.
Then,

N ≤ Volume �A�(
ε/
√
k
)k = 1

2k
�Vk�1+ ε� −Vk�1− ε��(

ε/
√
k
)k

= 1
2k
��1+ ε�k − �1− ε�k�(

ε/
√
k
)k πk/2

�k/2�! ≤
(
πe

2

)k/2 ��1+ ε�k − �1− ε�k�
εk

since x! ≥ xxe−x. Now, �1 + ε�k − �1 − ε�k = k ∫ �1+ε��1−ε� x
k−1 dx ≤ 2εk�1 + ε�k−1.

The conclusion follows. ✷

Lemma 3. Let �l1� u1�� � � � � �lm� um� be any ε Hellinger bracketing. If ε ≤ 1
then

7ε ≡ max
j

∫
uj�x�dx ≤ 1+ 3ε�

Proof. Let u denote one of the upper brackets and let l denote the cor-
responding lower bracket. Then,

∫
u = �√u�22 ≤ ��√l�2 + �

√
u − √l�2�2 ≤

�1+ ε�2 ≤ 1+ 3ε. ✷

Lemma 4. Let �l1� � � � � lk� and �u1� � � � � uk� be nonnegative, integrable
functions and let �a1� � � � � ak� and �b1� � � � � bk� be vectors of nonnegative real

numbers. Let l =∑k
j=1 ajlj and u =

∑k
j=1 bjuj. Then,

d2H�l� u� ≤
k∑
j=1
d2H�ajlj� bjuj��

Proof. Note that

d2H�l� u� =
∑
j

bj

∫
uj +

∑
j

aj

∫
lj − 2

∫ √∑
j

bjuj
∑
j

ajlj

and

k∑
j=1
d2H�ajlj� bjuj� =

∑
j

bj

∫
uj +

∑
j

aj

∫
lj − 2

∫ ∑
j

√
ajbjljuj�

Thus, it suffices to show that∫ √∑
j

bjuj
∑
j

ajlj ≥
∫ ∑

j

√
ajbjljuj
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and for this, it suffices to show that√∑
j

bjuj
∑
j

ajlj ≥
∑
j

√
ajbjljuj(5)

for all x. This follows from the Cauchy–Schwartz inequality. ✷

Theorem 2. Let �j = �fθj � θj ∈ 8j� be a set of density functions for j =
1� � � � � k. Let

�k =
{
f�·� =

k∑
j=1
pjfθj�·�� θj ∈ 8j�pj ≥ 0�

∑
j

pj = 1
}
�

If ε ≥ 1 then

N���ε��k� dH� ≤ k�2πe�k/2
(
3
ε

)k−1 k∏
j=1
N���ε/3��j� dH��(6)

Proof. Let δ = ε/3 and let

�j =
{�lj1� uj1�� � � � � (ljm� ujm)}

be a set of δ Hellinger brackets for �j. Let ��a1� b1�� � � � � �as� bs�� be a δ brack-
eting for the simplex �k−1. Note that each ar and br is a vector of length k.
From Lemma 3, maxj

∫
uj�x�dx and maxr

∑k
j=1 brj are bounded above by

1+ 3δ, where brj is the jth component of the vector br.
Consider h�x� = ∑

j pjfθj�x� ∈ �k. Let a = �a1� � � � � ak� and b = �b1� � � � �
bk� be an ε-bracket for p = �p1� � � � � pk�. Let �lj� uj� ∈ �j be an ε-bracket
for fθj . Define l =

∑
j ajlj and u = ∑

j bjuj. Clearly, l�x� ≤ h�x� ≤ u�x� and
the number of such brackets is bounded by the right-hand side of (6). Now we
show that dH�l� u� ≤ ε.

By Lemma 4, d2H�l� u� ≤
∑k
j=1 d

2
j where dj = dH�bjuj� ajlj�. Now, using

the Cauchy–Schwarz inequality and the fact that
∫
lj ≤ 1 we have

d2j =
∫ (√

ajlj −
√
bjuj

)2
dx

=
∫ (√

bj

(√
lj −

√
uj

)
+
(√
aj −

√
bj

)√
lj

)2
dx

= bj
∫ (√

lj −
√
uj

)2
dx+

(√
aj −

√
bj

)2 ∫
lj dx

+ 2
√
bj

(√
bj −

√
aj

) ∫ √
lj

(√
uj −

√
lj

)
≤ bjδ2 +

(√
aj −

√
bj

)2
+ 2

√
bj

(√
bj −

√
aj

)
δ�
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Thus,

d2H�l� u� ≤
∑
j

d2j ≤
∑
j

bjδ
2 +∑

j

(√
aj −

√
bj

)2
+ 2δ

∑
j

√
bj

(√
bj −

√
aj

)
≤ δ2�1+ 3δ� + δ2 + 2δ

√
�1+ 3δ�δ ≤ δ2�4+ 2

√
3� ≤ ε2� ✷

The proof of Theorem 1 follows from Lemma 1, Lemma 2 and Theorem 2.

2.2. Large deviation bound. Now we use the results of the previous section
to bound the likelihood ratio. We will need the following result from Wong and
Shen (1995).

Lemma 5 [Wong and Shen (1995), Theorem 1]. Let X1� � � � �Xn be i.i.d.
from a distribution P0 with density f0 and define the likelihood ratio

Rn�f� =
n∏
i=1

f�Xi�
f0�Xi�

�

Let � be a set of density functions. There are positive constants c1� c2� c3� c4
such that if

∫ √2ε
ε2/28

H
1/2
�� �u/c3�� � dH�du ≤ c4

√
nε2

then

P∗0

(
sup
f∈B
Rn�f� > e−nc1ε

2
)
≤ 4e−c2nε

2
�

where

B = �f ∈ � � dH�f0� f� > ε��

Theorem 3. Let�kn
be a mixture of kn Gaussians. LetX1� � � � �Xn be i.i.d.

from a distribution with some density f0. Let α� α0� β and β0 be nonnegative
constants such that 2α + β ≤ 1 and 2α0 + β0 ≥ 1. Let kn = nβ/�log n�β0 and
εn = �log n�α0/nα. Suppose that mk/sk = O�kη� for some η > 0. Then, with
probability 1, there exists n0, c1 and c2 such that, for all n ≥ n0,

sup
f∈Bn

Rn�f� < c1e−c2nε
2
n�

where Bn = �f ∈�kn
� dH�f0� f� > εn�.
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Proof. It follows from Theorem 1 thatN���εn��kn
� dH� � �r/εn�3kn where

r  (
S2mkn/s

2
kn

)1/3. Let a = √
2 log�r/�ε√2�� and b = √

2 log�28r/ε2� and use
the substitution u2 = 2 log�r/x� to see that

J�ε� ≡
∫ √2εn
ε2n/28

H
1/2
�� �u/c3��kn

� dH�du �
√
kn

∫ √2εn
ε2n/28

√
log
r

x
dx

= r
√
kn/2

∫ b
a
u2e−u

2/2 du ≤ r
√
kn/2

∫ ∞
a
u2e−u

2/2 du

= r
√
kn/2

[
ae−a

2/2 +
∫ ∞
a
e−u

2/2
]
du ≤ r

√
kn/2

[
ae−a

2/2 +
√
2π
a
e−a

2/2
]

≤ r
√
kn/2

[
ae−a

2/2 + ae−a2/2
]
≤ 2

√
2εn

{
kn log

r√
2εn

}1/2
�

With kn, εn and mk/sk chosen as in the statement of the theorem, it fol-
lows that J�εn� �

√
nε2n. The result follows from Lemma 5 and the first

Borel–Cantelli lemma. ✷

3. Saturation rate. In this section we establish the saturation rate of
the sieve in both Kullback–Leibler distance and χ2 distance. It turns out that
the saturation rate depends on tail conditions on f0, and mixtures turn out
to require some special treatment. The usual saturation rate arguments used
in function estimation theory do not readily apply.

Recall that the true density is assumed to be of the form

f0�y� =
∫ ∞
0

∫ ∞
−∞
φ�y�µ�σ�dP�µ�σ��

Let mk� sk be sequences of positive real numbers with sk > 0. Define

Rk = ��µ�σ�� �µ� < mk� sk < σ < S�
and let δk = P�Rck�. The following lemma will be useful.

Lemma 6 [Barron and Yang (1995)]. If f/g ≤ V then

D�f�g� ≤ �2+ logV�d2H�f�g��

In what follows, it will be convenient to make a slight change in the defini-
tion of the sieve. Specifically, we now define �k to be mixtures of k+1 compo-
nents instead of k components. This makes some bookkeeping in Theorem 4
simpler. Note that Theorem 3 is still true with this change.

Theorem 4. Let mk → ∞ and sk → 0. Let rk =
√
8mk/�ksk� and assume

that rk = o�1� as k→∞ and that

EP
(
σ−1

)
<∞�
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Let ak be the smallest real number such that

EP

(
1
σ
eµ

2/a2k

∣∣∣Rck) ≤ ak�(7)

where the expectation is taken to be the essential supremum over Rk if
P�Rck� = 0. Then, for rk < 2�5,

inf
f∈�k

D�f0� f�≤2δk
[
2+ log

(
1+ ak

√
S2 + a2k

)]
+ log�1+ δk� + 2rk ≡ ωk

(8)

Proof. Let

fk�y� =
∫ S
sk

∫ mk
−mk

φ�y�µ�σ�dP�µ�σ� + δkφ0�y��

where φ0�y� is a normal density with mean 0 and variance S2 + a2k. Given a
set of points ��µ1� σ1�� � � � � �µk� σk�� and a partition �A1� � � � �Ak� of Rk, to be
chosen later, define

gk =
k∑
j=1
pjφ�y�µj� σj� + δkφ0�

where pj =
∫
Aj
dP. Let hk = gk/�1 + δk�. Then hk ∈ �k, D�f0� hk� =

D�f0� gk� + log�1+ δk� and

D�f0� gk� = D�f0� fk� +
∫
f0 log

fk
gk
�(9)

To bound D�f0� fk�, it is helpful to first bound f0/fk. To this end, let

γ = µ/σ2

1/σ2 − 1/�S2 + a2k�
and note that

f0
fk
=

∫
Rk
φdP∫

Rk
φdP+ δkφ0

+
∫
Rck
φdP∫

Rk
φdP+ δkφ0

≤ 1+ 1
δk

∫
Rck

φ

φ0
dP

≤ 1+
√
S2 + a2k
δk

∫
Rck

1
σ
exp

{
− 1

2

[�x− µ�2
σ2

− x2

S2 + a2k

]}
dP

≤ 1+
√
S2 + a2k
δk

∫
Rck

1
σ
exp

{
− 1

2

[
1
σ2
− 1

S2 + a2k

]
�x− γ�2

}

× exp

{
µ2

σ2�S2 + a2k��1/σ2 − 1/�S2 + a2k��

}
dP
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≤ 1+
√
S2 + a2k
δk

∫
Rck

1
σ
exp

{
µ2

S2 + a2k − σ2

}
dP

≤ 1+
√
S2 + a2k
δk

∫
Rck

1
σ
eµ

2/a2k dP ≤ 1+
√
S2 + a2k ak�

where the last inequality follows from (7). By Lemma 6, and the fact that
d2H�f0� fk� ≤ 2dTV�f0� fk� ≤ 2δk, we have

D�f0� fk� ≤ 2δk

[
2+ log

(
1+ ak

√
S2 + a2k

)]
�

Thus we have bounded the first term in (9). Next we bound the second term.
Consider any Aj in the partition. Let φj�x� = φ�x�µj� σj� and define

v−2 = 1
σ2
− 1

σ2
j

and γ = µ/σ
2 − µj/σ2

j

1/σ2 − 1/σ2
j

�

Then∫
Aj

φdP = φj
∫
Aj

φ

φj
dP = φj

∫
Aj

σj

σ
exp

(
− 1

2

[�x− µ�2
σ2

− �x− µj�
2

σ2
j

])
dP

= φj
∫
Aj

σj

σ
exp

(
− 1

2v2
�x− γ�2

)
exp

(
1
2

�µ− µj�2
σ2
j − σ2

)
dP

≤ φj
∫
Aj

σj

σ
exp

(
1
2

�µ− µj�2
σ2
j − σ2

)
dP�

Below we will show that(
σj

σ

)
exp

(
1
2

�µ− µj�2
σ2
j − σ2

)
≤ �1+ rk�2�(10)

It then follows that ∫
Aj

φdP ≤ �1+ rk�2pjφj�

Hence,

fk
gk

=
∑
j

∫
Aj
φdP+ rkφ0∑

j pjφj + rkφ0
≤ �1+ rk�

2∑
j pjφj + rkφ0∑

j pjφj + rkφ0
≤ �1+ rk�2

and so ∫
f0 log

fk
gk

≤ 2 log�rk + 1� ≤ 2rk�

It remains to be shown that (10) holds and that gk ∈�k.
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Let

v1 < v2 < · · · < vJ ≡ S�
where

vj = vj−1
√
1+ rk and σj = vj

√
1+ rk�

Here, J is the largest integer such that sk ≤ v1. Also, for σ ∈ �vj−1� vj�, divide
�−mk�mk� into intervals of length ξj where

ξj = vj
√
2rk log�1+ rk��(11)

Then, for σ ∈ �vj−1� vj�, σj/σ ≤ σj/vj−1 = �1+rk�. Also, for σ2
j −σ2 ≥ rkv2j.

Hence,

exp
{
1
2

�µ− µj�2
σ2
j − σ2

}
≤ exp

{
1
2

ξ2j

rkv
2
j

}
≤ �1+ rk�

using (11). Thus,

σj

σ
exp

{
1
2

�µ− µj�2
σ2
j − σ2

}
≤ �1+ rk�2

which confirms (10).
To ensure that gk ∈ �k we have to make sure that the above scheme

partitions Rk into no more than k pieces. For fixed σj, the number of divisions
of µ is

total length
ξj

= 2mk
vj
√
2rk log�1+ rk�

�

So, using the fact that rk < 2�5, the total number N of rectangles is

N = 2mk√
2rk log�1+ rk�

[
1
v1
+ · · · + 1

vJ

]

= 2mk√
2rk log�1+ rk�

[
1
sk
+ 1
sk�1+ rk�1/2

+ 1
sk�1+ rk�

+ · · · + 1
sk�1+ rk�J/2

]

≤ 2mk
sk
√
2rk log�1+ rk�

∞∑
j=0

(
1

1+ rk

)j/2
= 2mk
sk
√
2rk log�1+ rk�

√
1+ rk√

1+ rk − 1

≤
(
mk
sk

)
4
√
2√

rk log�1+ rk�
1
rk
≤ 8mk
skr

2
k

≤ k� ✷

Corollary 1. Let hk be as defined in the proof of Theorem 3. Then∫
f0�y�

(
log
f0�y�
hk�y�

)2

dy ≤ ωk logVk�
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where

Vk =
(
1+ ak

√
S2 + a2k

)
�1+ rk�2�1+ δk��

As noted in Wong and Shen (1995), it is sometimes useful to have the sat-
uration rate in a distance that is stronger than Kullback–Leibler. Corollary 2
records the χ2 saturation rate. Recall that the χ2 distance is defined by

χ2�f�g� =
∫ �f− g�2

g
�

Lemma 7. If f/g < V then

χ2�f�g� ≤ 2�1+V1/2�2dTV�f�g��

Proof.

χ2�f�g� =
∫ �f− g�2

g
=
∫
�
√
f−√g�2

(
1+

√
f

g

)2

≤ �1+V1/2�2d2H�f�g� ≤ 2�1+V1/2�2dTV�f�g�� ✷

Corollary 2. Under the conditions of Theorem 3,

ρk ≡ inf
f∈�k

χ2�f0� f� ≤ 2�1+V1/2
k �2

{
2δk

[
2+ log�1+ ak

√
S2 + a2k�

]
+ 2rk

}
�

where

Vk =
(
1+ ak

√
S2 + a2k

)
�1+ rk�2

and ak is as defined in �7�.

Proof. Define fk and hk as in Theorem 4. Then from the proof of
Theorem 4 we see that

f0
hk
= f0
fk

fk
hk
≤ Vk�

Then, from Lemma 7 and Theorem 4,

ρk ≤ χ2�f0� hk� ≤ 2�1+V1/2
k �2dTV�f0� hk� ≤ 2�1+V1/2

k �2D�f0� hk�

≤ 2�1+V1/2
k �2

{
2δk

[
2+ log�1+ ak

√
S2 + a2k�

]
+ 2rk

}
� ✷
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4. Rate of convergence. Here we combine the results of the previous
sections to compute the rate.

Theorem 5. Let α�β > 0 and α0� β0 ≥ 0 be such that 2α + β ≤ 1 and
2α0 + β0 ≥ 1. Let kn = nβ/�log n�β0 . Define ωk as in �8� from Theorem 4
and let

tn = max
{�log n�α0

nα
�

2

c
1/2
1

ω
1/2
kn

}
�(12)

Define rk as in Theorem 4. Then,

P∗�dH�f0� f̂n� > tn�

≤ 4e−c2nt
2
n +

4 log
(�1+ akn√S2 + akn��1+ rkn�2�1+ δk�

)
c1nt

2
n

�

(13)

Proof. This proof parallels the argument in Theorem 3 of Wong and Shen
(1995). Let hk ∈ �k be the density defined in the proof of Theorem 4. Let
Bn = �f ∈�kn

� dH�f0� f� > tn�. Then,

P∗�dH�f0� f̂n� > tn� ≤ P∗
(
sup
f∈Bcn

n∏
i=1

f�Yi�
hkn�Yi�

≥ e−c1nt2n/2
)

≤ P∗
(
sup
f∈Bcn

n∏
i=1

f�Yi�
f0�Yi�

≥ e−c1nt2n
)

+P
( n∏
i=1

f0�Yi�
hkn�Yi�

≥ e−c1nt2n/2
)
= P1 +P2�

Now, P1 ≤ 4e−c2nt
2
n by Theorem 3. We bound P2 using Chebyshev’s inequal-

ity, Theorem 4 and Corollary 1. Specifically, let Dn = D�f0� hkn� and let

γn =
∫
f0�y�

(
log

f0�y�
hkn�y�

)2

dy�

Note that Dn ≤ ωkn ≤ �c1/4�t2n. Define Vk as in Corollary 1. Then,

P

( n∏
i=1

f0�Yi�
hkn�Yi�

≥ ec1nt2n/2
)
=P

( n∑
i=1

log
f0�Yi�
hkn�Yi�

≥ c1nt2n/2
)

=P
( n∑
i=1

(
log

f0�Yi�
hkn�Yi�

−Dn
)
≥ n�c1t2n/2−Dn�

)
≤ nVar

(
log�f0�Y�/hkn�Y��

)
n2�c1t2n/2−Dn�2

≤ 16

c21n

γn
t4

≤ 16

c21n

ωkn logVkn
t4n

≤ 4
c1

logVkn
nt2n

� ✷
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Now we consider some special cases.

4.1. Compact support. An important special case studied in Roeder (1992)
is when the mixing measure P has compact support. Thus, suppose that
P�R� = 1 where R = ��µ�σ�� s < σ < S� −m < µ < m� and s�S and m
are positive constants. This class is still fully nonparametric but the condi-
tions rule out infinite spikes and constrain the density f0 to have thin tails.

First suppose that we take mk→∞ and sk ↓ 0 in such a way that mk/sk =
kη for some η ∈ �0�1�. By Theorem 4, δkn = 0 for large n so that ωkn ∼ rkn .
Hence,

tn  max
{�log n�α0

nα
� r

1/2
kn

}
 max

{�log n�α0
nα

�
�log n�β0�1−η�/4
ηβ�1−η�/4

}
�

The expression is minimized by taking β = 1− 2α, β0 = 1− 2α0 and α = α0 =
�1/2��1− η�/�3− η� giving the rate

tn  
(
log n
n

)��1−η�/�3−η��/2
which can be made arbitrarily close to �log n/n�1/6. We suspect that the log n
can be eliminated by replacing the bracketing entropy with local entropy; see
the comment after Theorem 1 of Wong and Shen (1995). In Section 5.1 we
show how this rate can be improved to �log n/n�1/4.

Now consider choosing mk and sk so that mk/sk = �log k�η for η > 0. Then,
an analysis like that above yields the rate

tn  max
{�log n�α0

nα
�
�log n�β0/4
nβ/4

�β log n− β0 log log n�η/4
}

 
(
log n
n

)1/6

�log n�η/6�

where the best rate is obtained by taking α = 1/6, β = 1− 2α, α0 = �1+ η�/6
and β0 = 1 − 2α0. In summary, choosing kn ∼ n2/3/�log n�1/3 yields the rate
�log n��1+η�/6/n1/6.

Now we consider data based choices of mk and sk. A reasonable restriction
on mkn is m̂n = max �Xi� and it is easy to show that eventually �−m�m� ⊂
�−m̂n� m̂n�. From Roeder (1992), m̂n = O�

√
log n� a.s. Next we estimate s. For

this, we let ŝn be the strongly consistent estimate from Theorem 4.2 of Roeder
(1992), denoted by ĥn in her paper. Her model is slightly different from ours
but it can be shown her estimate of s is still consistent in our setting. It follows
that m̂n/ŝn = O�

√
log n� almost surely for all large n. This corresponds to the

above analysis with η = 1/2 giving a rate �log n�1/4/n1/6.
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4.2. Noncompact support. To see how the tails ofP affect the rate, consider
the simplified case where s = S = 1, say, so that f0�x� =

∫
φ�x�µ�1�dP�µ�.

Let P have density p with respect to Lebesgue measure. Suppose that p is
such that either (1) p�µ� ∝ e−λµ or (2) p�µ� ∝ �µ�−λ for λ > 0 and �µ� large.
In both these cases, the ak defined in Theorem 4 is infinite, which precludes
us from finding a rate. Indeed, we conjecture that the estimate might even
be inconsistent. This is not too surprising. To our knowledge, all sieve-based
maximum likelihood estimates assume either a compactly supported density
or a thin-tailed density. Similar, problems occur with kernel density estimates
under Kullback–Leibler loss [Hall (1987)]. A remedy for this problem is dis-
cussed in the next section.

5. Improving the rate. As we have seen, when the mixing P does not
have compact support, the rate of convergence is heavily affected by tail behav-
ior of P. The sensitivity to the tails can be mitigated as follows. Let ψ0�x� be
the density of a t-distribution with 1 degree of freedom and scale parameter
S̃ = 4

√
π/2.

Remark. In general, we can take ψ�x�λ�µ� σ� to be the density of a
t-distribution with 1/λ degrees of freedom centered on µ with scale, parame-
ter σ . But this extra freedom does not appear to be needed.

Define a new sieve �̃kn
by

�̃k=
{
f�·� = p0ψ0�x� +

k∑
j=1
pjφ�·�µj� σj��

�µj� ≤mk and sk ≤ σj ≤ S� j = 1� � � � � k
}
�

(14)

Theorem 6. Assume that the conditions of Theorem 4 hold except instead
of ak we define ãk = E�µ2/σ � Rck�. Then,

inf
f∈�k

D�f0� f� ≤ 2δk �2+ log�1+ ãk�� + 2rk ≡ ω̃k�(15)

Proof. For any µ and σ > 0,

φµ�σ�x�
ψ0�x�

= S̃
√
π

2
1
σ
exp

(
− 1

2

(
x− µ
σ

)2
)
�1+ �x− µ+ µ�2/S̃2��(16)

Note that e−au
2�u + b�2 for a > 0 and any b attains a maximum that is less

than or equal to �b+ 1/
√
a�2. Hence,

φµ�σ�x�
ψ0�x�

≤ 1
σ
2π
[
1+ �µ+ σ

√
2�2/S̃2](17)

≤ µ
2

σ
for �µ� ≥ 4 and σ ≤ 1�(18)
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Now, if we replace φ0 by ψ0 everywhere it appears in the proof of Theorem 4,
we have the following. First,

f0
fk
≤ 1+ 1

δk

∫
Rck

φ

ψ0
dP(19)

≤ 1+ 1
δk

∫
Rck

µ2

σ
dP(20)

= 1+ ãk�(21)

By Lemma 6, it follows that D�f0� fk� ≤ 2δk�2+ log�1+ ãk��. This bounds the
first term in (9). The argument bounding the second term proceeds exactly as
before with ψ0 in place of φ0. This proves the theorem. ✷

Note that changing φ0 to ψ0 in the sieve does not increase the bracketing
entropy of the sieve, since ψ0 is a fixed function. In other words, �ψ0� is a
set of functions with bracketing number 1 (for all ε) and hence contributes a
factor of 1 to the product in (6). We have immediately the following analogue
of Theorem 5.

Theorem 7. Let α� α0� β�β0 > 0 be such that 2α+β ≤ 1 and 2α0 +β0 ≥ 1.
Let kn = nβ/�log n�β0 . Define ω̃k as in �15� from Theorem 4 and let

tn = max
{�log n�α0

nα
�

2

c
1/2
1

ω̃
1/2
kn

}
�(22)

Define rk as in Theorem 4. Then,

P∗�dH�f0� f̂n� > tn� ≤ 4e−c2nt
2
n + 4 log��1+ ãkn��1+ rkn�2�

c1nt
2
n

�(23)

Proof. Substitute Ṽk = �1+ ãk��1+rk�2 for Vk in the proof of Theorem 5
and use the gk as modified in Theorem 6. The calculation then proceeds exactly
as before. ✷

5.1. Compact support revisited. Now we show that, in the adjusted sieve,
ifP has compact support, then the bound on inff∈�k

D�f0� f� can be improved.
This leads to an improved rate of convergence.

Theorem 8. Suppose that there exists 0 < s < S < ∞ and 0 < m < ∞
such that P���µ�σ��−m ≤ µ ≤m�s < σ < S�� = 1. Then

Dk ≡ inf
f∈�k

D�f0� f� = O
(
log k
k

)
�

Proof. Let f0�x� =
∫
φ�x�µ�σ�dP�µ�σ�. Define a probability measure Q

on the real line by

Q��−∞� t�� =
∫ t
−∞
P
(
µ+

√
σ2 − s2z ≤ t

)
φ�z�dz�
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where φ�z� ≡ φ�z�0�1�. We claim that f0�x� =
∫
φ�x� t� s�dQ�t�. To see

this, let �µ�σ��Z1�Z2�Z3 be independent with �µ�σ� ∼ P and Z1�Z2�Z3 ∼
N�0�1�. Then,

X
d=µ+ σZ1

d=µ+
√
σ2 − s2Z2 + sZ3

d=T+ sZ3�

where T ∼ Q.
Set ck = m + 7k where 72k = 2b2�log k − log log k� and b2 = S2 − s2. Let

fk�x� =
∫ ck
−ck φ�x� t� s�dQ�t� + δkψ0�x�. Arguing as in Theorem 6,

D�f0� fk� ≤ 2δk�2+ log�1+ ãk���

where δk = Q��T� > ck� and ãk = s−1EQ�T2� �T� > ck�. Let Z denote a stan-
dard normal random variable. Now,

Q�T > ck� = Pr�µ+
√
σ2 − s2Z > ck�

≤ Pr�µ+
√
σ2 − s2�Z� > ck�

≤ Pr�m+
√
S2 − s2�Z� > m+ 7k� = Pr

(
�Z� > 7k

b

)

≤ 2b√
2π7k

exp
{
− 1

2
72k
b2

}
�

Hence,

δk ≤
4b√
2π7k

exp
{
− 1

2
72k
b2

}
= 2√

π

1
�log k− log log k�

log k
k

≤ log k
k

for large k.
By a similar argument,

E�T2 � �T� > ck� ≤
4b7k√
2π

exp
{
− 1

2
72k
b2

}
≤ 4b2 log k√

πk
�

So, for large k,

D�f0� fk� ≤ 2δk�2+ log�1+ ãk�� ≤
6 log k
k

�

Let Bk = 2�m + 7k�/k and define A1 = �−ck�−ck + Bk�� A2 = �−ck +
Bk�−ck + 2Bk�� � � � �An = �ck − Bk� ck�. Let tj be a point in Aj and define
gk�x� =

∑
j pjφ�x� tj� sk� + δkψ0�x� where pj =

∫
Aj
dQ�t� and

s2k = s2
(
1+ log k

k

)
�
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Let φj�x� ≡ φ�x� tj� s�. Then,∫
Aj

φ�x� t� s�dQ�t� = φj
∫
Aj

φ�x� t� s�
φj

dQ�t�

≤ φj
sk
s

∫
Aj

exp
{
1
2

�t− tj�2
s2k − s2

}
dQ�t�

≤ pjφj
sk
s
exp

{
1
2
B2
k

s2k − s2
}

= pjφj
{
1+ log k

k

}1/2
exp

{
1
2
4�m+ 7k�2k
k2s2 log k

}

≤ pjφj
{
1+ log k

k

}1/2(
1+ 4�m+ 7k�2k

k2s2 log k

)
for large k since ex ≤ 1+ 2x for 0 < x < 2. For large k, we thus have that∫

Aj

φ�x� t� s�dQ�t� ≤ pjφj
(
1+ log k

k

)3/2

�

Hence,

fk
gk

≤
∑
j

∫
Aj
φ�x� t� s�dQ�t�∑
j pjφj

≤
(
1+ log k

k

)3/2

�

Thus,

D
(
f0� gk

) ≤ D�f0� fk� + sup
x

log
fk
gk

≤ 15
2
log k
k

for large k. Finally, we must check that gk ∈�k. For this to be true, it suffices
that the number of elements N in the partition A1� � � � �AN is less than or
equal to k. ButNBk = length�−ck� ck� = 2�m+7k�. So,N = 2�m+7k�/Bk = k
from the definition of Bk. ✷

Combining this result with Theorem 5 leads to the following.

Corollary 3. Assume the conditions in Theorem 8 above. Then choosing
kn  

√
n/ log n yields the rate of convergence εn ∼ �log n/n�1/4.

5.2. Noncompact support case revisited. The revisited sieve allows us to
compute a rate whenP has noncompact support. Consider again the simplified
case where s = S = 1, so that f0�x� =

∫
φ�x�µ�1�dP�µ�. Let P have density

p with respect to Lebesgue measure such that p has regularly varying tails,
that is, either (1) p�µ� ∝ e−λ�µ� or (2) p�µ� ∝ �µ�−λ, for λ > 0 and �µ� large.

In case (1),

δk ∝ e−λmk and ãk ∝ �1+ �λmk + 1�2��(24)
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for any λ > 0. It follows that

ω̃k = ce−λmk
{
2+ log�1+ �1+ c′�λmk + 1�2��}+ rk(25)

∼ c′′e−λmk log�mk� + rk�(26)

for some constants c� c′� c′′ > 0 and where the second statement holds for large
enough mk. If mk = kη for 0 < η < 1, then

e−λmk log�mk�
rk

∝ exp
[
1
2
�1− η� lnk− λkη

]
log�k� → 0(27)

as k → ∞. hence, ω̃k  rk and we recover the rates from the compact case.
On the other hand, ifmk = log�k�, then the size of λ determines the dominant
term. Specifically,

e−λmk log�mk�
rk

∝ k1/2−λ log log k√
log k

�(28)

If λ ≥ 1, rk again dominates and we recover the rate from the compact case.
If on the other hand λ < 1, then ω̃k ∝ k−λ log log k. Hence,

ω̃
1/2
kn
∝ n−βλ/2�log n�β0λ/2

√
log�β log n− β0 log log n��(29)

Choosing exponents to calibrate equation (22) gives us that

tn  
(
log n
n

)�λ/�1+λ��/2√
log log n�(30)

Similarly, in case (2),

δk ∝m1−λ
k and ãk ∝m2

k�(31)

for λ > 3. If λ ≤ 3, then ãk is infinite, and we cannot compute a rate. It follows
that when λ > 3,

ω̃k = cm−�λ−1�
k

[
2+ log

(
1+ c′m2

k

)]+ rk(32)

∼ c′′m−�λ−1�
k log�mk� + rk�(33)

for some constants c� c′� c′′ > 0.
If mk = kη for 0 < η < 1, then rk dominates whenever λ > ��1+η�/η� and

we recover the rates in the compact case. This happens whenever η > 1/2
because λ > 3. If λ ≤ ��1+ η�/η�, then

ω̃kn  k
−η�λ−1�
n log kn(34)

= �log n�β0η�λ−1�n−βη�λ−1��β log n− β0 log log n��(35)
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Calibrating exponents as above, the best rate is obtained with β0 and β =
1/�1+ η�λ− 1��. This yields

tn 
(
log n
n

)�η�λ−1�/�1+η�λ−1���/2
log n�1/�1+η�λ−1���/2

=n−�η�λ−1�/�1+η�λ−1���/2
√
log n�

(36)

Since λ ≤ �1+ η�/η the exponent in the rate is no faster than 1/4.
If mk = log k, then m−�λ−1�

kn
= �β log n − β0 log log n�−�λ−1� log�β log n −

β0 log log n� while rkn ∝ �β log n − β0 log log n�1/2n−1/2, so the first term in
ω̃kn dominates for large enough kn. Taking β0 = 0, α0 = 1/2 and any α�β > 0
satisfying the conditions of the theorem, we obtain

tn  �log n�−�λ−1�/2
√
log log n�(37)

where the exponent is negative because λ > 3.

6. Concluding remarks. We have established an upper bound on the
rate of convergence for this mixture of Gaussian sieves. Our results suggest
there is value in including long-tailed components in the sieve. The results
are also interesting because the entropy calculations and saturation rate are
nonstandard. We hope that these calculations will be useful for others working
in the area of mixture asymptotics.

Finally, we mention three outstanding problems that form the subject of
our current work. First, there is the question of whether the rate we have
obtained is also a lower bound. (Authors’ note: see the remark at the end
of the introduction for recent developments on this question.) Second there
is the problem of choosing the number of components kn from the data. We
find the current methods for computing rates when the sieve index is chosen
from the data—as in Barron and Yang (1995) for example—do not directly
apply to finite mixtures. Third, we believe that some log terms in the rates can
be eliminated by using local entropy instead of entropy. Again, for mixtures,
calculating the local entropy appears to be nontrivial. We hope to report on
these issues in a future paper.
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