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AN ALGORITHM FOR CALCULATING �-MINIMAX DECISION
RULES UNDER GENERALIZED MOMENT CONDITIONS1

By Roger Fandom Noubiap and Wilfried Seidel

Universität der Bundeswehr Hamburg

We present an algorithm for calculating a �-minimax decision rule,
when � is given by a finite number of generalized moment conditions. Such
a decision rule minimizes the maximum of the integrals of the risk func-
tion with respect to all distributions in �. The inner maximization problem
is approximated by a sequence of linear programs. This approximation is
combined with an elimination technique which quickly reduces the domain
of the variables of the outer minimization problem. To test for convergence
in a final step, the inner maximization problem has to be completely solved
once for the candidate of the �-minimax rule found by the algorithm. For an
infinite, compact parameter space, this is done by semi-infinite program-
ming. The algorithm is applied to calculate robustified Bayesian designs
in a logistic regression model and �-minimax tests in monotone decision
problems.

1. Introduction. Let us consider a class of statistical decision rules for a
parameter θ which varies in a σ-compact subset � of a Euclidean parameter
space. Assume that each decision rule can be represented by a pair �k�y�.
Here, k is a discrete variable, for example a vector of sample sizes or a vector of
numbers of dose levels in experimental design, and y is an additional variable
(discrete or continuous) that characterizes the strategy (a vector of critical
values, say). Given a loss function, the risk function R�k�y�θ� of the decision
rule �k�y�, given θ, can be obtained in the usual way; it describes the average
loss associated with �k�y�, if θ is the true value of the parameter. Let � be
a class of probability measures on �. For each distribution π ∈ �, the Bayes
risk of �k�y� with respect to π is r�k�y�π� = ∫� R�k�y�θ�dπ�θ�. The �-Bayes
risk of �k�y� is

rsup�k�y��� = sup
π∈�

r�k�y�π� �(1)

where the supremum over an empty set is defined as −∞. A �-minimax
decision rule �k�� y�� minimizes rsup�k�y��� [Berger (1985)]. For a function
g � �→ �,

mg�π� =
∫
�
g�θ�dπ�θ�(2)
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is the generalized moment of g with respect to π. We shall assume that � is
given by r generalized moment conditions, that is, it is of the form

� = 
π� gi is π-integrable and mgi
�π� ∈ Ii� 1 ≤ i ≤ r�(3)

for certain functions gi and closed intervals Ii, 1 ≤ i ≤ r. The aim of the
paper is to develop an algorithm for calculating �-minimax strategies under
generalized moment conditions.
The �-Bayes risk of a strategy �k�y� and �-minimax strategies are of inter-

est, for example, in robustness studies in Bayesian statistics. Given a prior π,
a Bayes strategy minimizes r�k�y�π�. It may depend strongly on the prior, and
often there is not enough knowledge for a precise specification of π. According
to Berger �1990�, “prior elicitation typically involves the actual specification of
only a finite number of features of the prior,” and in particular, conditions on
a finite number of generalized moments of the prior distribution can be used
as a tool to study robustness properties of Bayesian decision rules [Berger
(1990); Betrò, Ruggeri and Mȩczarski (1994)]. A �-minimax rule is usually a
Bayes rule that is compatible with the specified prior information, and it is
usually robust over � [Berger (1985)].
A lot of work has been done on the development of theory and algorithms

for optimization under generalized moment constraints. A classical text is
the paper by Kemperman (1987). In the context of Bayesian robustness and
decision analysis, algorithms have been proposed by Dall’Aglio and Salinetti
(1994), Smith (1995) and Betrò and Guglielmi (1996). In Betrò, Ruggeri and
Mȩczarski �1994�, results of Winkler �1988� have been used to calculate
extrema of certain posterior functionals. However, we will employ methods for
inner maximization which are more similar to those in Betrò and Guglielmi
(1996).
Now calculating �k�� y�� is a minimax problem, where inner maximization

of r�k�y�π� with respect to π ∈ � has to be combined with outer minimization
of rsup�k�y��� with respect to �k�y�. A good algorithm for inner maximization
is necessary, but in general not sufficient for an efficient solution of such a
minimax problem. The reason is that for minimization with respect to k and
y, rsup�k�y��� has to be computed so often that it may be impossible or at
least inefficient to search for a good approximation to it in every instance. On
the other hand, if one stops inner maximization too early, one might minimize
a completely wrong goal function in the outer minimization problem. In this
case the solution proposed by the algorithm may be totally different from
�k�� y��.
The focus of the paper is on the development of a safeguarded strategy

for the minimax problem that keeps control of the interaction between inner
maximization and outer minimization. It is based on an increasing sequence
of lower bounds for rsup�k�y��� together with upper bounds for rsup�k�� y����.
For inner maximization, in principle any algorithm can be used that results
in such a sequence of functions, converging from below to rsup�k�y��� and
with the property that each element can be minimized with respect to �k�y�.



1096 R. F. NOUBIAP AND W. SEIDEL

We found that in many situations an approach based on linear programming
is suitable:
If � is finite, rsup�k�y��� is the solution of a linear program with variables

π�
θ��� θ ∈ �. Even in this case, however, it would be inefficient to calculate
the exact value of rsup�k�y��� for each �k�y� needed for the minimization
algorithm, as the number of variables in the linear programmight be too large.
If � is large or infinite, we shall approximate it by an increasing sequence
��l�l∈� of finite subsets such that ∪
�l� l ∈ �� is dense in �. Let

�l = 
π ∈ �� π is concentrated on �l��(4)

Then rsup�k�y��l� can be calculated by linear programming in a fast and reli-
able way. Linear programming also has the advantage that it can be easily
implemented and that large sets of moment conditions can be incorporated.
For each �k�y�, the sequence �rsup�k�y��l��l∈� is nondecreasing, and in each
approximation step l, rsup�k�y��l� is based on a discretization of the param-
eter space which is independent of �k�y�. At stage l, let �kl� yl� = �k�l� y�l� be
a decision rule that minimizes rsup�k�y��l�.
A key feature of our algorithm is an elimination strategy that, in the first

approximation steps, drastically reduces the size of the search domain for k
in the outer minimization problem. It makes use of the fact that rsup�k�y��l�
is increasing in l. If an exact solution of the inner maximization problem is
possible, it may be used for a final test of convergence. For infinite, compact �,
this maximization problem is solved by semi-infinite programming. For intro-
ductions into this rapidly growing area see, for example, Hettich and Kortanek
(1993), Goberna and López (1998) or Reemtsen and Rückmann (1998).
We will give sufficient regularity conditions for the following convergence

properties, as l→∞:

C1. rsup�k�y��l� converges to rsup�k�y��� for each �k�y�.

C2. �kl� yl� converges (in some sense) to �k�� y�� and rsup�kl� yl��l� con-
verges from below to rsup�k�� y����.

Now consider the following regularity conditions:

R1. k varies in a finite setK. For each k ∈K, y is an element of a compact
subset �k of �� ∪ 
±∞��ν for some ν and R�k�y�θ� is continuous on �k × �.
Moreover, gi is continuous for 1 ≤ i ≤ r.

Often �k is a real interval or rectangle. In the simplest case, k is an integer
and y a real number. However, in “sequentially planned decision procedures,”
for example, k and y have a more complicated structure [see Schmitz �1992�].
If k is related to a sample size, it is in general possible to restrict its domain
to a finite set: for example, there may be a threshold where sampling costs
exceed the losses caused by wrong decisions (see Section 3).
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If R1 is satisfied, C2 follows from C1. Property C1 is trivial, if � is finite. In
general, it seems at first glance that C1 follows from R1, because each measure
π ∈ � can be approximated arbitrarily well with respect to the weak topology
by measures πl on �l, and since R�k�y�θ� is continuous on �, r�k�y�πl� con-
verges to r�k�y�π�. However, πl need not satisfy the moment conditions. The
following simple example shows that for � �= � it is even possible that all sets
�l are empty.

Example 1.1. Let � = �0�1�, θ0 ∈ �, r = 1, g1�θ� = �θ − θ0� and I1 = 
0�.
If θ0 is not an element of ∪�l, then �l = � for each l, whereas � contains
exactly one element, namely the unit measure that puts mass 1 to the point
θ0. Consequently, any attempt to approximate rsup�k�y��� for some �k�y� by
rsup�k�y��l� must fail.
Sufficient conditions for C1 are given in Sections 5 and 6. It may be hard

to verify these in practical applications, but at least for compact �, this is not
really necessary: the algorithm provides a lower and an upper bound for the
function value in the minimax point, and if both coincide, we know that the
desired solution has been found. For compact � and � �= �, convergence has
been observed in all examples considered so far.
As an application of our algorithm, we calculate robustified Bayesian designs

in a nonlinear regression model, where the space of designs considered is
restricted in a suitable way. The model is introduced in Section 2; computa-
tional details and results are presented in Section 8. A general class of decision
problems for which the regularity conditions are usually satisfied and where
our approach works very efficiently is the class of so-called monotone decision
problems. These are outlined together with applications to quality control in
Section 3; numerical examples are given in Section 9.

2. Robustified Bayesian designs for binary data. Consider a binary
response experiment, where for i = 1� � � � � s, ni subjects are administered a
stimulus at dose level xi. Let n =

∑s
i=1 ni be the total sample size. We assume

that each experiment results in a binary outcome with success probability
pi = F�zi� = 1/�1+ e−zi�, where zi = β�xi − µ� is the standardized dose.
Within this parameterization β represents the slope of the dose–response

curve and µ is the median effective dose, defined as the concentration that is
expected to produce a response in 50% of the experimental units. The param-
eter space is � = 
θ = �µ�β�� β > 0�.
Any exact design may be represented as a probability measure ξ, where

ξ�xi� = λi = ni/n denotes the relative proportion of total observations at xi.
Let ! denote the space of designs considered. A design is chosen to minimize
some real-valued function R of the asymptotic variance–covariance matrix
of the maximum likelihood estimates of the model parameters, given as the
inverse of the information matrix

I�ξ� θ� = n

(
β2S0 −S1
−S1

1
β2

S2

)
�
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withS0 =
∑s

i=1 λiw�zi�,S1 =
∑s

i=1 λiw�zi�zi,S2 =
∑s

i=1 λiw�zi�z2i andw�zi� =
�F′�zi��2/F�zi��1−F�zi�� = e−zi/�1+e−zi�2, whereF′�z� denotes the derivative
of F at the point z.
Design criteriaR ofmain interest are theD-criterionR�ξ�θ�=−det I�ξ� θ�=

−n2�S2S0 − S21�, minimizing the generalized variance of the parameter esti-
mates, and the C-criterion R�ξ�θ� = c′I�ξ� θ�−1c with c ∈ �2, minimizing the
variance of a linear combination of the parameter estimates. Unfortunately,
in nonlinear models the information matrix usually depends on the unknown
parameters. Therefore many concepts for the construction of optimal designs
use prior information about these parameters, for example, by considering
a prior distribution (Bayesian designs) or a “good guess” θ0 (locally optimal
designs). However, analyses into the robustness of such designs show that
their efficiency can be quite poor, if the prior information is misspecified.
In the model considered here, Sitter (1992) starts from an initial guess

θ0 = �µ0� β0� for the parameter θ = �µ�β� and constructs robustified versions
of locally optimal designs by introducing a rectangular region around θ0 that
reflects the experimenter’s uncertainty in the prior information about θ and
by applying a minimax criterion. He observes, however, that the correspond-
ing optimization problem is mathematically intractable and numerically too
difficult, if the set ! of designs considered is too rich (e.g., the set of all designs
symmetrical about µ0). Therefore he restricts ! to the set of balanced designs
that allocate an equal number of observations to each of s points symmet-
rically placed about µ0, with constant distance between adjacent points. He
calculates the designs by nesting Nelder–Mead simplex algorithms [see Nelder
and Mead (1965)] and it is not clear if there are mechanisms to protect against
problems resulting from multimodality.
We will restrict ! in several steps. The most general set is that of all designs

symmetrical about µ0, with fixed total sample size n. We will start from points
u1 ≤ u2 ≤ · · · ≤ us, placed symmetrically about zero, and put xi = µ0 + ui/β0.
Then such a design can be represented by two vectors k and y: k = �n1� � � � � ns�
is the vector of sample sizes such that ni = ns+1−i, i = 1 � � � s and n1+· · ·+ns =
n. Let di = xi+1 − xi. Then di = ds−i, and there are r = s/2 different values
if s is even, and r = �s − 1�/2, if s is odd. Therefore the design points are
uniquely represented by the vector y = �d1� � � � � dr� with di > 0.
In a second step, we will assume constant dose spacings d1 = · · · = dr = d.

Then y simplifies to a one-dimensional variable y = d. Finally, we will assume
that in addition, n1 = · · · = ns. In this balanced case, we have λi = 1/s for all
i and k reduces to the one-dimensional integer k = s. Here we may set n = 1
w.l.o.g. The latter are the designs considered by Sitter (1992).
Using the above representation, the standardized doses can be simplified

to yield zi = β�xi − µ� = b�ui −m� with m = β0�µ − µ0�, b = β/β0. Since
the transformed parameter space is only dependent on m and b, the design
problem can be solved for the special case µ0 = 0 and β0 = 1 without loss of
generality. From these results the minimax design for any other value of θ0
can be obtained.
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Sitter (1992) models the experimenter’s uncertainty in the prior informa-
tion about θ by a rectangular region around θ0. As a common generalization
of robustified locally optimal and of Bayesian designs, we will model uncer-
tainty by a set � of distributions π on � with expectation θ0 and which meet
certain constraints on their variance and covariance. It will be described by
moment conditions in the following way: for i = µ�β, let gi�1�µ�β� = i,
m1�i� = mgi�1

�π�, gi�2�µ�β� = i2, m2�i� = mgi�2
�π�, gµβ�µ�β� = µβ and

m2�µ�β� = mgµβ
�π�. Then m1�i� is the expectation and m2�i� − �m1�i��2 the

variance of i; m2�µ�β� −m1�µ�m1�β� the covariance of µ and β. Let I1�i�,
I2�i� and I2�µ�β� denote the closed intervals representing information about
the moments m1�i�, m2�i� and m2�µ�β�. We shall assume that the expecta-
tions are equal to the initial guesses, that is, I1�µ� = 
0� and I1�β� = 
1�.
Then m2�µ� and m2�β� − 1 are the variances of µ and β, respectively, and we
will consider different bounds on these variances. Moreover, m2�µ�β� is here
the covariance of µ and β. Usually there will be no prior information about
covariances; however, for fixed variances of µ and β we may study the effects
of low or high correlation by different choices of I2�µ�β�.

3. Monotone testing problems and sampling inspection. Let � ⊂ �
and let la�θ� and lr�θ� be bounded loss functions associated with the two
possible final decisions of a test, labelled a (“accept”) and r (“reject” a certain
hypothesis). For fixed sample size k, the decision is based on a real-valued
test statistic X, usually a sufficient statistic. In a monotone testing problem
the distribution of X is assumed to have a monotone likelihood ratio for each
k, and the loss functions reflect a one-sided test for θ in the sense of (8.9) in
Berger [(1985), page 529]. We will in addition assume that sampling costs s�k�
are given, considered as nondecreasing and unbounded in k.
For example, in sampling inspection, a (r) means accepting (rejecting) a

certain batch. Here the parameter θ is closely related to quality; in fact, qual-
ity is measured by a “fraction nonconforming” p�θ� ∈ �0�1� in the batch or in
the production process, it is assumed to be a function of θ. A variety of loss
functions can be transformed into the so-called Stange cost model: assume
that (relative) sampling costs per item q > 0 and a break even quality level
p0 are given. Then the sampling costs are s�k� = k×q, and the loss functions
are la�θ� = max
0� p�θ� − p0� and lr�θ� = max
0� p0 − p�θ�� . Consequently,
a fraction nonconforming less than p0 should be accepted, otherwise rejected.
Together with a Stange cost model, the distributions considered below consti-
tute monotone testing problems; Example 3.2 shows that sometimes models
with more than one parameter can be reparametrized in terms of a monotone
testing problem.
Theorem 6 in Chapter 8 of Berger (1985) implies that in a monotone testing

problem, the class of monotone decision rules is essentially complete. These
are of the form “accept (reject) if X < y (X > y), with possible randomization
if X = y” for some y ∈ �.
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Randomization is only necessary in discrete models. Here y is discrete; how-
ever, interpolating its range using the randomization probability results in a
continuous variable. Therefore in a monotone testing problem, optimal strate-
gies can be characterized by a pair d = �k�y�, where y is one-dimensional.
In quality control, �k�y� is also called a sampling plan. An important prop-
erty for optimization is that rsup�k�y��� is unimodal in y: it can be proved
exactly in the same way as in Thyregod [(1974), Theorem 2] that for nonran-
domized decision rules, the Bayes risk r�k�y�π� is a quasiconvex function of
y for each distribution π and each sample size k [a real-valued function f is
called quasiconvex, if f�y� ≤ max
f�x�� f�z�� holds for all x < y < z in the
domain of f]. It is then easy to see that this property also holds for a suit-
able representation of randomization, resulting in piecewise linearization. As
the supremum of each family of quasiconvex functions is quasiconvex, it also
holds that rsup�k�y��� is a quasiconvex function of y for each sample size k
and each set � of probability measures on �.
The �-minimax principle has been proposed in sampling inspection

by Krumbholz (1982); he considers prior information essentially of type
P�p�θ�≤a�≥γ. With our approach, �-minimax sampling plans �k�� y�� can
be calculated for arbitrary generalized moments of the prior distribution. In
particular, we considered the following types of models.

Example 3.1 (Sampling by attributes). This means that the decision is
based on the number X of nonconforming items in a sample of size k. In
the hypergeometric model, θ is the number and p�θ� the fraction of noncon-
forming items in a batch of size N. Then � = 
0�1� � � � �N� is discrete and
conditionally on θ, the observation has a hypergeometric distribution. In the
binomial model, � = �0�1� and p�θ� = θ, usually considered as the fraction of
nonconforming items in the production process. Conditionally on θ, X has a
binomial distribution with parameters k and θ.

Example 3.2 (Sampling by variables, upper specification limit). Here, an item
is considered as nonconforming if a continuous quality characteristic ξ exceeds
an upper specification limit U. It is assumed that ξ is normally distributed
with expectation µ and variance σ2, which are parameters of the production
process. Then the fraction nonconforming is given as p�µ�σ2� = P�ξ > U� =
2��µ − U�/σ�, where 2 denotes the cumulative distribution function of the
standard normal distribution. In a sample of size k, let ξk be the sample
mean and Sk the sample standard deviation. If σ2 is unknown, the usual test
statistic is X = √

k�ξk −U�/Sk; it has a noncentral t distribution with k− 1
degrees of freedom and noncentrality parameter λ = √

k�µ−U�/σ . Thus the
fraction nonconforming and the distribution of X depend on µ and σ only in
terms of θ = �µ −U�/σ . Here it is not advantageous to restrict to a compact
parameter space from the beginning, as small values of σ (which represent a
favorable production process) tend to inflate θ�
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In monotone testing problems with continuous loss functions, it is often
possible to assume that for each k, y varies in a compact set �k [in Example
3.2 �k = �−∞�∞�, with the obvious interpretation of �k�−∞� and �k�∞�,
namely rejecting and accepting regardless of the outcome of the sample] such
that R�k�y�θ� is continuous on �k ×�.
Moreover, k can be restricted to a finite setK: let lmin�θ� = min
la�θ�� lr�θ��

and r�lmin��� = supπ∈�
∫
� lmin�θ�dπ�θ�. For an arbitrary decision rule �k�y�,

let ksup�k�y� = min
k̃� s�k̃� + r�lmin��� ≥ rsup�k�y����. Then it is easy to see
that k� ≤ ksup�k�y�. In discretization step l, klsup�k�y� may be defined in the
same way; it is an upper bound for kl.

4. Outer minimization for compact �. The next sections deal with the
solution of the general minimax problem stated in the introduction under the
assumption that the regularity conditions R1 in the introduction are satisfied.
We will first consider only compact parameter spaces (Sections 4 and 5).

Theorem 4.1. For each k, the function rsup�k�y��� and the functions
rsup�k�y��l� are continuous in y.

Proof. The assertion follows because for each k, the function R�k�y�θ� is
uniformly continuous on the (compact) set �k ×�.

The results of this section will be proved under the assumption that for each
�k�y�, the sequence �rsup�k�y��l��l∈� is nondecreasing and converges from
below to rsup�k�y��� (sufficient conditions for this will be given in Section 5).
Since K is finite and for each k the function rsup�k� ·��l� is continuous on

the compact set �k, existence of a (global) minimizer �kl� yl� of rsup�k�y��l� is
guaranteed, although it need not be uniquely determined (of course, the cor-
responding function value is uniquely determined). Moreover, each sequence(
kl� yl

)
l=1�2���� has an accumulation point �k∗� y∗�, which is a solution of the

minimax problem, as the following theorem shows. If �k∗� y∗� is not unique, it
is irrelevant which value is chosen.

Theorem 4.2. Each accumulation point �k∗� y∗� is a minimal point of
rsup�k�y���, and rsup�kl� yl��l� converges frombelow tomink∈K�y∈�k

rsup�k�y���.

Proof. Let Ropt = mink∈K�y∈�k
rsup�k�y��� and R

opt
l = rsup�kl� yl��l�. As

K is finite and �k is compact for each k, the sequence
(
rsup�k�y��l�

)
l
con-

verges uniformly from below to rsup�k�y���. From this, monotone convergence

of Ropt
l to Ropt may be easily deduced. To show that �k∗� y∗� is a minimizer

of rsup�k�y���, we may assume w.l.o.g. that the sequence
(
kl� yl

)
l
converges

to �k∗� y∗�. Obviously, rsup�kl� yl��� converges to rsup�k∗� y∗���. Let εl =
�rsup�·� ·���−rsup�·� ·��l��∞. Then εl → 0 and rsup�kl� yl��� ≤ R

opt
l +εl ≤ Ropt+

εl; therefore rsup�kl� yl��� converges to Ropt. This proves rsup�k∗� y∗��� = Ropt.
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4.1. Successive elimination. The approximation technique presented above
yields an efficient minimax algorithm, if it is combined with a strategy for
excluding values of k during the computation of �kl� yl�, using information on
kl−1. Let

Ml�k� = min
y∈�k

rsup�k�y��l��

Existence of Ml�k� follows because rsup�k� ·��l� is continuous on the compact
set �k. If rsup�k� ·��l� is quasiconvex, as for example in monotone decision
problems, each strict local minimum is also a global one. In all other cases,
one has to safeguard against multimodality, for example by using some version
of a multistart strategy. However, in this case it is even more important to
be able to reduce the inner maximization problem to a drastically simplified
version for most of the values of k, because it has to be solved much more
often.
We construct a sequence �ml�k��l=1�2���� of lower bounds forMl�k� as follows:

l = 1. Compute M1�k� and set m1�k� = M1�k� for each k ∈ K. Calculate
�k1� y1�.

l ≥ 2. Assume that for each k ∈ K a lower bound ml−1�k� for Ml−1�k� is
known and that �kl−1� yl−1� has been computed in the previous step. Calculate
Ml�kl−1�. For all k ∈Kl = 
k ∈K� ml−1�k� <Ml�kl−1�� computeMl�k�. Put

ml�k� =
{
Ml�k�� if k ∈Kl ∪ 
kl−1�,
ml−1�k�� otherwise.

For calculating �kl� yl� all points k which are different from kl−1 and do not
belong toKl can be excluded; since rsup�k�y��l� ≥ rsup�k�y��l−1� for all �k�y�,
it holds for each k ∈K\Kl that

Ml�k� ≥Ml−1�k� ≥ml−1�k� ≥Ml�kl−1� ≥Ml�kl��
Therefore Ml�k� is calculated only for kl−1 and those k which belong to Kl,
and kl is chosen among these values. Observe that a value of k that has been
excluded in a previous step may well be included. Using information about
the particular structure of the problem, a considerable further reduction of
the set of possible values of k is often possible; see Section 8.1.

4.2. Stopping criterion. A possible strategy might be to stop the algorithm
if

rsup�kl� yl��l+1� − rsup�kl� yl��l� ≤ ε(5)

for some ε > 0. This, however, does not necessarily guarantee convergence. On
the other hand, if one is able to compute for pregiven �k�y� the exact value
of rsup�k�y���, the special structure of minimax problems can be exploited to
derive a more reliable criterion. This is based on the following lemma.



CALCULATING �-MINIMAX DECISION RULES 1103

Lemma 4.1 (Stopping criterion).

(a) If rsup�kl� yl��� = rsup�kl� yl��l� then:
(i) �kl� yl� is a minimal point of rsup�·� ·��� and
(ii) rsup�kl� yl��l� = mink∈K�y∈�k

rsup�k�y���.
(b) If rsup�kl� yl��� ≤ rsup�kl� yl��l� + ε for some ε > 0, then

min
k∈K�y∈�k

rsup�k�y��� ≤ rsup�kl� yl��l� + ε�

Proof. The assertion follows because

rsup�kl� yl��l� ≤ min
k∈K�y∈�k

rsup�k�y��� ≤ rsup�kl� yl����

In the algorithm, the stopping criterion is applied as follows: as we do
not want to perform exact inner maximization too often, we proceed with
the iteration until (5) is satisfied for some ε = ε1. Then we compute either
the exact value of rsup�kl� yl��� by solving the corresponding linear program,
if � is finite, or a “good approximation” r̃sup�kl� yl��� of rsup�kl� yl��� using
Algorithm 1 in Section 5.2, if� is not finite. If rsup�kl� yl���−rsup�kl� yl��l� ≤ ε2
or r̃sup�kl� yl���−rsup�kl� yl��l� ≤ ε2 for some ε2, then we set �k�� y�� = �kl� yl�
and stop. ✷

5. Inner maximization for compact �. In this section, we deal with
calculation of rsup�k�y��� for fixed �k�y�, the primal optimization problem, if
� is an infinite, compact set. The regularity conditions R1 in the introduction
are assumed to be satisfied.
On several occasions, we have to state theorems simultaneously for � and

for �l. Recall that �l is finite, thus compact; we shall introduce the necessary
concepts for an arbitrary compact subset 6 of �. In this case, gi and R�k�y�θ�
denote the restrictions of the corresponding functions to 6. For a probability
measure π on 6 and for real numbers ci, 1 ≤ i ≤ r, the vectors m�π� and c
are defined bym�π� = �mg1

�π�� � � � �mgr
�π�� and c = �c1� � � � � cr�. Let � be the

set of probability measures on 6 restricted bym�π� = c (equality constraints)
or by m�π� ≤ c (inequality constraints). We shall give a sufficient condition
for convergence of rsup�k�y��l� to rsup�k�y��� and present an algorithm for
calculating rsup�k�y���, both for 6 = � and for �l being defined by (4).

5.1. The dual problem. We define c0 = 1 and g0�θ� = 1 for all θ ∈ 6.
Then each probability measure π ∈ � satisfies the additional condition∫
6 g0�θ� dπ�θ� = c0. Depending on the structure of �, let S be the set

S =
{
s = �s0� s1� � � � � sr� ∈ �r+1�

r∑
i=0

sigi�θ� ≥ R�k�y�θ� ∀ θ ∈ 6
}
�

if � is defined by equality constraints, or the restriction of this set to all s
with s0 ∈ � and sj ≥ 0� j = 1� � � � � r, if � is defined by inequality constraints.
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These sets are not empty, since they contain the point �s̄0� s̄1� � � � � s̄r� defined
by s̄0 = 1+maxθ∈6 R�k�y�θ� and s̄i = 0, i = 1�2� � � � � r. Consider the following
linear semi-infinite problem:

find I�S� = inf
{ r∑
i=0

cisi� s ∈ S
}
�(6)

It is the dual problem of the calculation of rsup�k�y���: obviously, rsup�k�y��� ≤
I�S� holds. If � �= �, then rsup�k�y��� = I�S�. For equality constraints, this
result is well known; see, for example, Chapter 8 in Goberna and López (1998)
or Theorem 1 in Gustafson �1973�. For inequality constraints, see, for example,
Theorem, 2.1 in Lai and Wu �1992�.

5.2. Main results and algorithms. For g = �g0� g1� � � � � gr�, let

C�g�6�� =
{
z ∈ �r+1� z =

q∑
j=1

αjg�θj�� θj ∈ 6�αj ≥ 0� q <∞
}

denote the convex cone generated by g�6� and

Mg�6� =
{
z ∈ �r+1�

∫
6
gi�θ�dπ�θ� = zi� i = 0�1� � � � � r for

at least one nonnegative finite measure π on6
}

the moment cone of the moments of measures on 6 with respect to g. It is well
known thatMg�6� = C�g�6�� [see, e.g., Gustafson (1973), Lemma 3].

Assumption 5.1. For some s0 ∈ S, the lower level set N�s0�c� S� =

s ∈ S� ∑r

i=0 cisi ≤
∑r

i=0 cis
0
i� is compact.

Remark 5.1. Assumption 5.1 will be needed because it guarantees the
existence of a point s∗ ∈ S with

∑r
i=0 cis

∗
i = I�S� �= rsup�k�y����. In general,

such a point need not exist, in contrast to the primal problem, where there is
always a (discrete) measure which maximizes the goal function, if the latter
is bounded on the feasible region.

Theorem 5.1. A sufficient condition for Assumption 5.1 is that
�1� c1� � � � � cr� ∈ int C�g�6��, where int A denotes the interior of a set A. If
the moment conditions are defined by equality constraints, the condition is
also necessary.

Theorem 5.1 is proved in Section 5.3.

Remark 5.2. Suppose that c = �c0� c1� � � � � cr� has a maximal represen-
tation, that is, that c = ∑r

j=0 tjg�θj� for certain points θ0� θ1� � � � � θr in �
with tj > 0 and such that the vectors g�θ0�� � � � �g�θr� are linearly indepen-
dent. Then c ∈ int C�g�6�� for each subset 6 of � that contains the points
θ0� θ1� � � � � θr.
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Definition 5.1. ForM> 0, let

I�S�M� = inf
{ r∑
i=0

cisi� s ∈ S� �si� ≤M� i = 0�1� � � � � r
}
�

Let 6 = �. Calculation of I�S�M� is a semi-infinite optimization problem.
Below, we present a standard algorithm based on a given finite discretization
�l0

of �. This algorithm is examined in Reemtsen and Görner (1998) under
the name of implicit one-point exchange algorithm and has been employed
in a Bayesian context in Betrò and Guglielmi (1996). For s ∈ S, let G�s� =∑r

i=0 cisi.

Algorithm 1. Let �0 = �l0
. A sequence �sn�n∈� in S and a sequence

��n�n∈� of finite subsets of � is calculated as follows:

(a) G�sn� = min
G�s�� s ∈ Sn−1�M��, where Sn−1�M� = Seq = 
s� ∑r
i=0 si×

gi�θ� ≥ R�k�y�θ�� θ ∈ �n−1� �si� ≤ M� i = 0�1� � � � � r�, if � is defined by
equality constraints, and Sn−1�M� = Seq ∩ 
s� si ≥ 0� i = 1� � � � � r�, if � is
defined by inequality constraints.
(b) �n = �n−1 ∪ 
θn�, where θn is defined by
(c)

∑r
i=0 s

n
i gi�θn� −R�k�y�θn� = min
∑r

i=0 s
n
i gi�θ� −R�k�y�θ�� θ ∈ ��.

Theorem 5.2.

(a) The sequence �G�sn��n∈� converges from below to I�S�M�.
(b) Each accumulation point s∗ of the sequence �sn�n∈� is a minimal point

of G�s� subject to s ∈ S, �si� ≤M� i = 0�1� � � � � r.

Theorem 5.2 can be proved in the same way as Theorem 2�8 in Reemtsen
and Görner (1998).

If Assumption 5.1 is satisfied for 6 = �, then for each �k�y�, rsup�k�y���
can be calculated by Algorithm 1: let s∗ be given as in Remark 5.1 and let
M∗ = max
�s∗i �� i = 0�1� � � � � r�. Then for eachM ≥M∗, Algorithm 1 converges
to rsup�k�y���. In our implementation, we stop the iteration if

∑r
i=0 s

n
i gi�θn�−

R�k�y�θn� ≥ −ε̃, where ε̃ is a pregiven positive constant. Observe that if∑r
i=0 s

n
i gi�θn� −R�k�y�θn� ≥ 0� then sn ∈ S and G�sn� = I�S�M� holds. This

stopping criterion can be found, for example, in Goberna and López [(1998),
Algorithm 11�4�1]. In part (c) of Algorithm 1, a global optimization problem has
to be solved. If � is a low-dimensional set and if the functions gi and R�k�y�·�
are sufficiently smooth (which is usually the case in statistical applications),
this can be done by considering only the values at a sufficiently fine grid �̂
on �. Note, however, that this yields the dual solution of the linear program
for �̂, so it is equivalent to calculating rsup�k�y�̂�� by the primal LP (linear
program).
Usually Algorithm 1 is embedded into the main algorithm; rsup�k∗� y∗��l0�

has been calculated for some �k∗� y∗� and some discretization level l0. Then
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one may start Algorithm 1 at �l0
, and if the vector s̃ of the dual variables of

the optimal solution of the primal problem is provided by the LP-algorithm,
s1 = s̃ may be used in part (a).

Remark 5.3. In Reemtsen and Görner (1998) it is mentioned that Algo-
rithm 1 suffers in practice from the monotonic growth of the constraint set and
the large number of costly computations of global minimizers in step (c). More-
over, instability may occur especially when step (c) picks a point θn very close
to some point already included in the finite set �n−1. In such a case the finite
linear program may encounter big problems because the set of constraints is
“almost” linearly dependent. Alternative methods for which convergence has
been proved can be found in Goberna and López [(1998), Algorithm 11.4.2] and
in Hettich and Zencke [(1982), Algorithm 5.2.10]. Roleff (1979) proposed an
algorithm (without convergence proof) which intends to overcome the mono-
tonic growth of the constraint set by eliminating some old constraints in each
step. Convergence of a special case of Roleff ’s algorithm is shown in Lai and
Wu (1992). However, the alternative methods mentioned in this remark also
have certain disadvantages. Up to now, there is no algorithm that overcomes
all drawbacks of Algorithm 1 simultaneously.

The next theorem, which can be proved using duality and Corollary 2�9 in
Reemtsen and Görner (1998), gives a sufficient condition for convergence of
rsup�k�y��l� to rsup�k�y���.

Theorem 5.3. Let ��l�l∈� be an increasing sequence of subsets of � such
that ∪
�l� l ∈ �� is dense in �. Assume that for some index l0, Assumption
5.1 holds for 6 = �l0

. Then rsup�k�y��l� converges from below to rsup�k�y���.

Clearly it is hard to verify that Assumption 5.1 holds for some 6 = �l0
,

and l0 may depend on �k�y�. However, according to Theorem 5.1, a sufficient
condition is that �1� c1� � � � � cr� ∈ int C�g��l0

�� [in this case, l0 is independent
of �k�y�]. In fact, more can be said.

Theorem 5.4. Let ��l�l∈� be an increasing sequence of subsets of � such
that ∪
�l� l ∈ �� is dense in �. If �1� c1� � � � � cr� ∈ int C�g���� , then there is
an index l0 such that �1� c1� � � � � cr� ∈ intC�g��l0

��.

Theorem 5.4 can be proved using Theorem 5.1 in this paper and part (b) of
Corollary 2�5 in Reemtsen and Görner (1998).

In our main algorithm, rsup�k�y��� is approximated by rsup�k�y��l� for an
increasing sequence ��l�l∈� of subsets of �. An actual candidate �kl� yl� for
�k�� y�� and a lower bound L = rsup�kl� yl��l+1� for rsup�kl� yl��� is calculated
in each step. To test for convergence (see Section 4.2), I�S�M� is calculated
for sufficiently large M, starting with the discretization �l+1. Now suppose
that M has been chosen too small or that Assumption 5.1 is not satisfied for
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�, meaning that Algorithm 1 need not converge to rsup�kl� yl���. However, in
this case it converges to I�S�M� > rsup�kl� yl���, hence L < I�S�M�, and
the main algorithm does not stop. Moreover, it cannot stop, if the sequence
�rsup�kl� yl��� − rsup�kl� yl��l��l∈� does not converge to zero. Conversely, if it
stops, then �k�� y�� or at least a good approximation to it has been found.

5.3. Proof of Theorem 5.1. The proof of Theorem 5.1 is based on Lemmas
5.1 and 5.2 and Remark 5.4 below.

Lemma 5.1 [cf., e.g., Hettich and Zencke �1982�, Theorem 3.1.11]. LetV ⊂
�n be such that the convex cone C�V� generated by V is closed. Then for all
c ∈ �n exactly one of the following two statements holds true:

(a) c ∈ int C�V�; that is, c belongs to the interior of C�V�.
(b) The system

∑n
i=1 cixi ≥ 0!

∑n
i=1 vixi ≤ 0 ∀v ∈ V has a solution x �= 0.

Lemma 5.2 [cf. Hettich and Zencke �1982�, Theorem 3.2.7]. LetX ⊆ �n be
nonempty, convex and closed and let c ∈ �n. Then the following properties are
equivalent:

(i) The system
∑n

i=1 ciξi ≤ 0� ξ+X ⊂X� where ξ+X ⊂Xmeans ξ+y ∈X
for all y ∈X� has no solution ξ �= 0.
(ii) There exists x0 ∈X such that the lower level set N�x0�c�X� = 
x ∈X:∑n

i=1 cixi ≤
∑n

i=1 cix
0
i� is compact.

(iii) For all x0 ∈X the lower level set N�x0�c�X� is compact and the solu-
tion set Xopt = 
x̄ ∈X� ∑n

i=1 cix̄i = inf x∈X
∑n

i=1 cixi� is nonempty, convex and
compact.

Remark 5.4. Let ���S� be a dual pair as defined in Section 5.1 and let
s = �s0� s1� � � � � sr�. If S corresponds to equality constraints, it holds that s +
S ⊂ S↔ ∑r

i=0 sigi�θ� ≥ 0 ∀ θ ∈ 6. If S corresponds to inequality constraints,
it holds that s+S ⊂ S↔ s0 ∈ �, si ≥ 0� i = 1� � � � � r,

∑r
i=0 sigi�θ� ≥ 0 ∀ θ ∈ 6.

Proof. “←−” is easy to see, so let us show “−→.” Let s + S ⊂ S, then for
all x ∈ S and for all n ∈ � it holds that ns+ x ∈ S, that is,

n
r∑

i=0
sigi�θ� +

r∑
i=0

xigi�θ� −R�k�y�θ� ≥ 0 ∀ θ ∈ 6�(7)

Suppose now that
∑r

i=0 sigi�θ̃� < 0 for some θ̃ ∈ 6. Then we choose n so
big that n

∑r
i=0 sigi�θ̃� +

∑r
i=0 xigi�θ̃� −R�k�y�θ̃� < 0 and obtain a contradic-

tion to (7). Furthermore, si ≥ 0, i = 1� � � � � r, if S corresponds to inequality
constraints, because for all n, nsi + xi ≥ 0, i = 1� � � � � r. ✷

Proof of Theorem 5.1. The set C�g�6�� is closed, as it coincides with the
closed set Mg�6�. By Lemma 5.1, �1� c1� � � � � cr� ∈ int C�g�6�� if and only if
the system

∑r
i=0 cisi ≤ 0,

∑r
i=0 sigi�θ� ≥ 0 ∀ θ ∈ 6 has no solution. By Remark

5.4 this implies that the system
∑r

i=0 cisi ≤ 0, s + S ⊂ S has no solution;
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for S corresponding to equality constraints these conditions are equivalent.
The set S is nonempty, closed and convex; therefore the assertion follows from
Lemma 5.2. ✷

6. �-compact parameter space. Let � be a σ-compact subset of an
Euclidean parameter space and assume that the regularity conditions R1 in
the Introduction are satisfied. Moreover, we shall assume that the risk func-
tion R�k�y�θ� is bounded on � for each �k�y�, then rsup�k�y��� is finite for
each set �. Note that rsup�k�y��� is continuous in y, if � is concentrated on a
(finite or) compact subset of �, whereas it need not be continuous for arbitrary
sets �.
Often it is argued that in practice, it is always possible to assume that the

parameter space is compact. In presence of moment conditions, however, this
is not obvious.

Example 6.1. Let � = � and assume that for g�θ� = θ, � is given by
the condition mg�π� = 0. Consider a sequence �xn� in � such that R�k�y�xn�
converges to Rsup = sup
R�k�y�θ�� θ ∈ ��. Let yn = �1 − n�xn and let πn be
the measure that puts mass 1/n to the point yn and mass 1 − �1/n� to the
point xn. Then mg�πn� = 0 and r�k�y�πn� converges to Rsup. Consequently,
rsup�k�y��� = Rsup, and the �-minimax strategy is the same as the minimax
strategy without prior information. For a compact subset of �, however, this
assertion does not necessarily hold.

Let �6l�l∈� be an increasing sequence of compact subsets of � such that
∪
6l� l ∈ �� = �, and let �̃l be the restriction of � to measures concentrated
on 6l.

Lemma 6.1. For each �k�y�, rsup�k�y��̃l� converges from below to
rsup�k�y���.

Proof. In Winkler �1988� it is shown that rsup�k�y��� can be approxi-
mated arbitrarily well by r�k�y�ν� for measures ν with finite support. For
each of these measures, however, there exists an index l such that ν is con-
centrated on 6l. ✷

It can be shown that the sequence of �-minimax strategies for ��̃l� converges
in some sense to a �-minimax strategy for the original set �. Therefore, one
could start with a large compact set 6∗, calculate a �-minimax strategy, calcu-
late another strategy for a set 6+ ⊃ 6∗, and iterate this procedure, until con-
vergence seems to be achieved. Each strategy is approximated by a sequence of
linear programs, and we will show now that there is some kind of a “diagonal
sequence” that approximates the desired strategy.
Let�l be an increasing sequence of finite subsets of� such that ∪
�l� l ∈ ��

is dense in �, and let �l be the restriction of � to measures concentrated on
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�l. For each l, let �kl� yl� be a �l-minimax strategy. There exists for each l
a compact set 6l such that �l ⊂ 6l and 6l ↑ �. For each i� l, let �i�l be the
set of all measures in � concentrated on �i ∩6l and �

∗
l the restriction of � to

measures concentrated on 6l.

Theorem 6.1. Assume that for each l,

lim
i→∞

rsup�k�y��i�l� = rsup�k�y��∗l �

holds for all �k�y�. Then the sequence �kl� yl�l∈� has an accumulation point

�k̃! ỹ�; each accumulation point �k̃� ỹ� is a minimal point of rsup�k�y��� and
rsup�kl� yl��l� converges from below to mink∈K�y∈�k

rsup�k�y���.

Proof. For each l, rsup�k�y��l�≤ rsup�k�y��� and therefore rsup�kl� yl��l�
≤ inf k∈K�y∈�k

rsup�k�y���. The sequence rsup�kl� yl��l� is nondecreasing and
bounded from above by inf k∈K�y∈�k

rsup�k�y���. Thus it converges to some limit
G with

G ≤ inf
k∈K�y∈�k

rsup�k�y��� ≤ rsup�k̃� ỹ����(8)

Now we show that rsup�k̃� ỹ��� ≤ G [then it follows that rsup�k̃� ỹ��� =
G = inf k∈K�y∈�k

rsup�k�y��� and the theorem is proved]. Suppose that
rsup�k̃� ỹ��� > G. Let ε = rsup�k̃� ỹ��� − G �> 0�. By Lemma 6.1 there exists
ν ∈ � such that rsup�k̃� ỹ��∗ν� ≥ rsup�k̃� ỹ���−ε/4. Moreover, by the assumption
of the theorem there exists ρ ∈ � such that rsup�k̃� ỹ��ρ�ν� ≥ rsup�k̃� ỹ��∗ν�−ε/4.
Thus

rsup�k̃� ỹ��ρ�ν� ≥ rsup�k̃� ỹ��� − ε/2�(9)

We assume w.l.o.g. that �kl� yl�l converges to �k̃� ỹ�, and since rsup�k�y��ρ�ν�
is continuous in y and there are only finitely many k, there exists τ ∈ �,
τ > ρ such that rsup�kτ� yτ��ρ�ν� ≥ rsup�k̃� ỹ��ρ�ν� − ε/4. Taking relation (9)
into account we obtain rsup�kτ� yτ��ρ�ν� ≥ rsup�k̃� ỹ���−3ε/4 = rsup�k̃� ỹ���/4+
3G/4 > G. On the other hand, from τ > ρ we have rsup�kτ� yτ��ρ�ν� ≤
rsup�kτ� yτ��τ� ≤ G. This is a contradiction. ✷

As a consequence of Theorem 6.1, we can approximate �k�� y�� by our algo-
rithm, where the elimination technique described in Section 4.1 can be applied.
There is, however, no upper bound for rsup�k�y��� which could be used as a test
for convergence. Consequently we stop the algorithm, if the “weak” criterion (5)
in Section 4.2 is satisfied for some ε > 0. In addition, one can calculate the
exact value of rsup�kl� yl �̃�� for the restriction �̃ of � to a “large” compact subset
of �.

7. Comments on the regularity conditions. Convergence of the algo-
rithms has been proved under certain regularity conditions. If possible, these
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should be checked before running the algorithm. This is not always possible,
and then some care is needed to interpret the results.
As an example, let us discuss compactness of the space �k. In many appli-

cations, it is not compact from the beginning. Consider Example 3.2 (sam-
pling by variables, upper specification limit). Here it can be shown that with
�k = �−∞�∞� and the obvious interpretation of �k�−∞� and �k�∞�, the risk
function R�k�y�θ� can be extended to a continuous function on �k×�. Quasi-
convexity of rsup�k�y��l� and rsup�k�y��� in y guarantees that a minimum in
the interior of �k is found or convergence to ±∞ can be established, at least
within statistically meaningful bounds.
If K is finite and �k is not compact, but the regularity conditions for

convergence hold for each compact subset of each �k, then the following is
easy to prove: if there exists a sequence �kl� yl�l=1�2���� of global minimizers of
rsup�k�y��l� that has an accumulation point �k∗� y∗�, then �k∗� y∗� minimizes
rsup�k�y���. Of course neither the existence of global minimizers nor that of an
accumulation point is guaranteed in this case. However, if one finds a global
minimizer in each iteration step, the above stopping criteria are satisfied at
step l and the difference between �kl−1� yl−1� and �kl� yl� is small, then a
solution of the minimax problem has been found.
Another crucial point is that the stopping criterion may never be satisfied,

for example, due to a bad choice of the constantM in the inner maximization
algorithm or because Assumption 5.1 is not satisfied. Then the lower and the
upper bound for the function value in the candidate for the minimax point
may not coincide and the algorithm may not stop or even the “weak” stopping
criterion may not be satisfied. We are grateful to a referee who showed a
way out of this difficulty: one should try to find a “good” starting set �0. This
might be chosen in the case that � is defined by equality constraints such that
it has r+1 points and, if g��0� denotes the matrix 
gi�θ0j��, the linear system
g��0�x = c has a unique solution, that is, det g��0� �= 0 and x = g��0�−1c.
In the case of inequalities, one may choose some c′ ≤ c. In this case, c (resp.
c′) has a maximal representation (see Remark 5.2) and Assumption 5.1 is
satisfied.
A last remark refers to the stopping criterion motivated by Lemma 4.1. If �

is not finite, an approximation r̃sup�kl� yl��� of rsup�kl� yl��� is calculated using
Algorithm 1. If sn is not a feasible point (see Algorithm 1 and the discussion
of its stopping criterion), there will be an approximation error. Although the
distance between r̃sup�kl� yl��� and rsup�kl� yl��� will usually be small, the
inequality for mink∈K�y∈�k

rsup�k�y��� in part (b) of Lemma 4.1 is satisfied in
a strict sense only if rsup�kl� yl��� is equal to r̃sup�kl� yl���.

8. Robust Bayesian designs: computation and examples.

8.1. Computational issues.
8.1.1. Outer minimization. In general, rsup�k�y��� is not unimodal in y.

For example, if y is one-dimensional (equidistant design points), then in many
cases rsup�k�y��l� has two or three local minima. Sometimes it depends on the
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discretization �l which minimum is the global one. Moreover, rsup�k�y��� is
not necessarily differentiable in y (it is a general property of minimax prob-
lems of type miny supz f�y� z� that even for differentiable f, the maximum
function supz f�y� z� is often not differentiable, especially in the local mini-
mizers ỹ). Taking into account these properties, we started a local minimizer of
Nelder–Mead simplex type, which is especially suitable for nondifferentiable
functions [see Nelder and Mead (1965); Parkinson and Hutchinson (1972)],
from a grid of initial points. For one-dimensional y, we used 
0�1�1�2� � � � �10�;
for y ∈ �0�∞�r, we used 
0�1�2�4�6�8�r.
Let � denote the space of all possible values of y; it is not compact. More-

over, K is not finite, if k is one-dimensional; in our algorithm, we restricted it
to a finite set (depending on the problem) in this case (for unbalanced designs
with fixed total sample size, K is finite from the beginning). From our choice
of starting values, our numerical observations (only a few local minima of
rsup�k�y��l� with respect to y and convergence to the same minima from dif-
ferent starting points, components of the local minimizers ỹ bounded away
from zero and not too large), and in the spirit of the discussion in Section 7, one
may conclude that the calculated designs are minimax at least in the space of
designs with k restricted to the considered set and components of y not much
larger than the largest component of the starting values. The assumption that
these designs are minimax in the class of all designs of the considered type
is of heuristic nature only, although it is supported by additional numerical
experiments (also with respect to the variable k).
For stopping the algorithm, criterion (5) in Section 4.2 is used with ε = 10−6.

As an additional condition (see Section 7) we checked if kl−1 = kl and yl−1 ≈ yl

by tracing �kl� yl� without using a formal criterion. To make balanced and
unbalanced designs comparable, the criterion function is always calculated
with n = 1.
8.1.2. Inner maximization. The most important feature here is the choice

of the discretization of �. Consider positive integers nβ�nµ and equidistant
discretizations pi� i = 1� � � � � nβ and qj� j = 1� � � � � nµ of �0�1�. These were
transformed into a discretization 
�µi�j� βi��� i = 1� � � � � nβ� j = 1� � � � � nµ� of
� as follows:

1. Let G denote the cumulative distribution function of some (prior) distribu-
tion of β. Then βi = G−1�pi�.

2. µi�j is defined by the relations qj = 1/�1+exp�−zi�j�� and zi�j = βi�x−µi�j�,
where x = 0.

For G, we used the cumulative distribution function of the lognormal distri-
bution with expectation 1 and variance vβ, where vβ is chosen as the upper
bound for the variance of β in the moment conditions defining �.
To define the discretization �l in step l, we chose this discretization with

parameters nlβ and n
l
µ, depending on l. Usually we started with n

1
µ = n1β = 70

or = 140 and updated it according to nl+1µ = 2× nlµ and n
l+1
β = 2× nlβ.
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8.2. Results for the D-criterion. Let us first start with some symmetri-
cal designs with possibly different dose spacings. We considered a maximum
number of six design points; that is, we calculated the designs for a total sam-
ple size of n = 6. The �-minimax risk is divided by n2 to make the results
better comparable with the balanced case, where we assumed n = 1. For
I2�µ� = �0�0�1� and I2�β� = �1�1�1� we obtained a two-point design with
k� = �3�3�, y� = d1 = 2�926 and rsup�k�� y����/n2 = −0�040275. For I2�µ� =
�0�0�5� and I2�β� = �1�1�5�, the design is concentrated on six points with k� =
�1�1�1�1�1�1�, y� = �d1� d2� d3� = �2�461�1�711�2�551� and rsup�k�� y����/n2
= −0�018190.
As the number of starting points for minimization in y gets very large

with increasing dimension r of this problem, the number s of different design
points that can be considered by this version of the algorithm is restricted
to values not much larger than ten (these designs may also be applied for
a larger total sample size; however, then they need not be optimal. A more
sophisticated version of the algorithm might apply the elimination strategy
also to the range of y). Usually there are local minima y∗ of rsup�k�� y���
different from y� but with almost the same function value; moreover, there
are often also equidistant designs with a not much larger value of the design
criterion. In the next step we will consider only equidistant designs.
For a total sample size of n = 14, the set K of the vectors of admissible

sample sizes consists of 127 elements. Table 1 shows some selected equidis-
tant D-optimal designs for different bounds on the variances. The resulting
designs are often nearly balanced, which might be an additional argument
for considering balanced designs. Moreover, these are good examples where
the elimination method is efficient: starting from a discretization of 140×140
points, we obtain 280×280 points for l = 2. In this second step, the size of the
set of values of k that has to be considered is usually drastically reduced (one
or three nearly balanced designs with different values of s, say). Sometimes
the algorithm stops in the next step, sometimes it needs one additional iter-
ation. Therefore, a large number of vectors k which result in a high risk are
ruled out already at an early approximation step without wasting too much
computing time.

Table 1
Equidistant designs for total sample size n = 14

I2��� I2��� k� y� rsup�k�� y����/n2

�0�0�1� �1�1�1� �7�7� 2.926 −0�040275
�0�0�1� �1�2� �1�2�1�2�1�1�2�1�2�1� 0.374 −0�013219
�0�0�5� �1�1�1� �6�2�6� 1.707 −0�034700
�0�0�5� �1�1�5� �4�3�3�4� 1.172 −0�018215
�0�1� �1�1�1� �4�1�1�2�1�1�4� 0.698 −0�030473
�0�1� �1�1�5� �2�1�1�2�2�2�1�1�2� 0.599 −0�015423
�0�1� �1�2� �2�2�3�3�2�2� 0.946 −0�007771
�0�5�0�5� �1�5�1�5� �4�3�3�4� 1.174 −0�018216
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Table 2
Equidistant, balanced designs

I2��� I2��� k� y� rsup�k�� y����
�0�0�1� �1�1�1� 2 2.926 −0�040275
�0�0�1� �1�2� 12 0.305 −0�013211
�0�0�5� �1�1�1� 2 3.104 −0�034402
�0�0�5� �1�1�5� 4 1.236 −0�01823
�0�1� �1�1�1� 3 1.982 −0�030131
�0�1� �1�1�5� 4 1.372 −0�015342
�0�1� �1�2� 10 0.519 −0�007517
�0�5�0�5� �1�5�1�5� 4 1.241 −0�018232

If unbalanced designs are admitted, the number of elements in K grows
very fast with n. Therefore even equidistant designs can be calculated only
for moderate values of n, although the results are applicable as an approxima-
tion for arbitrarily large total sample sizes. If the set of designs considered is
further reduced, arbitrary values of n can be considered. Table 2 shows optimal
balanced designs for the same types of prior information as in Table 1. Obvi-
ously the results are comparable. For the interpretation from a statistical point
of view, observe that I2�µ� = �0�0�1� and I2�β� = �1�1�1� represents strong
belief in the initial guess. According to Sitter (1992), the locally optimal design
is concentrated on two points, in the same way as the designs in our examples.
When less is known about the parameters a priori, the recommended design
is more spread out and has more design points. This observation has already
been made by Sitter in his model.
To give an example of the effect of correlation, let I2�µ� = 
0�5� and

I2�β� = 
1�5�, so the variance of µ and β is assumed to be 0.5. The designs
and the �-minimax risk are nearly identical to those for I2�µ� = �0�0�5� and
I2�β� = �1�1�5�. Now let I2�µ�β� = �0�0�05�, which means that the corre-
lation between µ and β does not exceed 0.1. It turns out that this condition
has no influence at all. On the other hand, for I2�µ�β� = �0�45�∞� (i.e., the
correlation between µ and β is at least 0.9) we obtain k� = �4�1�2�2�1�4�,
y� = 0�674 and rsup�k�� y����/n2 = −0�019790 in the unbalanced and �k�� y�,
rsup�k�� y����� = �3�1�618�−0�019604� in the balanced case.

9. Monotone testing problems in sampling inspection: examples.
In attributes sampling (Example 3.1), hypergeometric model, � is discrete and
the inner maximization problem is a linear problem which can in principle
be solved exactly. However, considerable gains in computation time can be
achieved by our elimination technique compared to a naive approach where
the inner maximization problem is solved exactly for all �k�y� needed for the
solution of the outer minimization problem (for certain types of prior informa-
tion, it was possible to cut down the computing time from several hours to a
few minutes). In the binomial model, � is a compact interval and rsup�kl� yl���
is calculated using Algorithm 1 in Section 5.2.
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Fig. 1.

Let us now show some typical �-minimax sampling plans for sampling by
variables, σ2 unknown (Example 3.2). Let � represent exact knowledge of the
first ordinary moments of the prior and let a Stange cost model be given with
parameters p0 = 0�05 and q = 10−4 (note that the value of q in this version
of the Stange cost model is the normalized value of “real” sampling costs).
For illustration purposes only, we assume for simplicity that the true prior

π isN�a� τ2�, the normal distribution with expectation a and variance τ2. We
choose τ2 = 0�03, which means that the dispersion of the prior is about 17%
of the dispersion of the quality characteristic. To illustrate a in terms of the
fraction nonconforming, observe that p�a� is the fraction nonconforming if θ
coincides with its expectation a [however, p�a� is not the expectation of the
fraction nonconforming]. Therefore p�a� may be considered as an interpreta-
tion of the location parameter a in terms of the fraction nonconforming. In our
examples, we show the sampling plans corresponding to the first moments of
π =N�p−1�pm��0�03� for pm varying in the interval �0�0�1�.
To measure the quality of prior information, let us start from the minimax

sampling plan. This corresponds to the situation when no prior information
is available, it minimizes the maximum value of the risk function. Here it is
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given by �k0� y0� = �17�−6�9� with a maximum risk of 0.005964. The range
of the gains that may be achieved by using �k�� y�� instead of �k0� y0� is
delimited by S� = sup
r�k0� y0�π� − r�k�� y��π�� π ∈ �� (maximum gain)
and by I� = inf
r�k0� y0�π� − r�k�� y��π�� π ∈ �� (minimum gain). If � is a
singleton, S� and I� coincide. These bounds are shown together with R� =
rsup�k�� y���� in Figure 1. Parts (a)–(c) correspond to the situation where the
first two moments are known, whereas (d) shows the risk functions, when the
first four moments are known. Here �k�� y�� = �0�0� for pm (roughly) ≤ 0�04
and �k�� y�� = �0�−1� for pm ≥ 0�06. For the interpretation, observe that
�k�y� = �0�−1� �= �0�0�� means rejecting (accepting) without sampling. The
smallest possible sample size not equal to 0 is k = 2.
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