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ON CONVERGENCE IN PROBABILITY
TO BROWNIAN MOTION

BY RICHARD DROGIN
Columbia University

Several methods for embedding discrete martingales in Brownian
motion by means of stopping times have been presented. Various con-
ditions on the increments of the martingales are sufficient to insure that the
trajectories of the embedded process and the Brownian motion are close.
This paper will characterize all discrete stochastic processes, which can be
constructed on some probability space supporting a Brownian motion, in
such a way that the constructed process and the Brownian motion are
close in probability, under suitable normalization. These are exactly the
processes {S;|j =0, 1, ---} such that, forany ¢ >0and M =0,1, --- the
conditional probability that the (M + 1)st change in size of at least 1 com-
pleted by the trajectory 0, Si/n, Sa/n, - -+ isin [1, 1 + €] (or [—(1 + ¢), —1]),
given the process up to the Mth such change, converges in probability to
% as n—oo. It is not required that any moments exist, or even that
E(Sj+1]81, -+, Sj) = Sj, a.s. In proving the main result, a new technique
for constructing discrete processes from Brownian motion is presented.

1. Introduction. Several methods for embedding discrete martingales in
Brownian motion by means of stopping times have been presented. (For exam-
ple, see [2], [5], and [6].) Various conditions on the increments of the martin-
gales are sufficient to insure that the trajectories of the embedded process and
the Brownian motion are close ([3], [7], [8]). This paper will characterize all
discrete stochastic processes, which can be constructed on some probability space
supporting a Brownian motion, in such a way that the constructed process and
the Brownian motion are close in probability, under suitable normalization.
These are exactly the processes {S;|j = 1,2, - ..} such that

1) forany ¢ > 0and M =0, 1,2, ..., the conditional probability that the
(M + 1)st change in size of at least 1 completed by the trajectory 0, S,/n, Sy/n, - - -
isin[1, 1 4+ ¢] (or [—(1 + ¢), —1]), given the process up to the Mth such change,
converges in probability to 1 as n — oo.

It is not required that any moments exist, or even that E(S;,,|S,, - - -, S;) = S,.

In proving this result a new technique for constructing discrete processes from
Brownian motion is presented. Roughly speaking, any process satisfying (1) may
be approximated by a martingale whose increments have a 2 point, mean 0 dis-
tribution, conditionally upon the past. This martingale can easily be embedded
in a Brownian motion by the usual hitting times. Then, a process with the same
distribution as the given one is extrapolated from the embedded martingale, by
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CONVERGENCE TO BROWNIAN MOTION 255

auxiliary randomization. In general, this method will not construct each incre-
ment of the given process strictly in succession. However, it does construct the
process in a forward manner, by constructing successive groups of increments
in which the process does not change much. (See (4¢) and (4f) for a formal
statement.)

The main result in this paper is an analogue to (4) in [1], which deals with
weak convergence. Here it was shown that, for any process {S;|j = 1,2, ...}

) there exists a time change {7,|0 < ¢ < oo} such that the distribution of
{Sg,,/nt|0 < t < 1} converges weakly to Brownian motion (on [0, 1]) as n — oo

if and only if

3) for any M, the distribution of the first M changes of at least 1 completed
by the trajectory 0, S,/n, S,/n, - - - converges weakly to the distribution of Mi.i.d.,
fair, + 1 random variables as n — co.

It follows that, when S;, S, — S, - - - are independent, weak convergence of the
suitably normalized trajectories to Brownian motion is equivalent to their con-
vergence in probability (possibly on another space).

Assuming {S;|j = 1,2, - - -} is a martingale, (15) specifies a Lindeberg type
growth condition on the increments which is necessary and sufficient to insure
that the suitably normalized trajectories of {S;|j = 1,2, ...} converge in L,-
norm to a Brownian motion. In this case the process may be normalized in the
usual way, involving conditional variances of increments given the past.

2. Main result. Formally, let {S;|j=10,1,2, ---} be a process on a proba-
bility space (Q, .7, P). Always assume S, = 0. Use — to denote convergence
in probability, and take 1, to be the indicator of the set 4. This paper will
consider when

4) there exists a probability space (@', %", P’) which supports processes
(B,|]0 St < o0}, {S/]j=0,1,2,.- -}, {r, |k =1,2,..-},and {T,[|0 < t < oo},
with an increasing family {7, |0 < t < oo} of sub-g-fields of %7 such that

(a) the P-distribution of (S,, S;, - - -) equals the P’-distribution of (S,’, S/, - - -),

(b) {B,]0 < t < oo} is Brownian motion, B, is .o7/-measurable, and {B,,, —
B,|0 < 5 < oo} is independent of %7 for 0 < ¢ < o,

() 7, <7, <ty < --- are stopping times with respect to {7} |0 < t < oo},

(d) T, =0 and {T,|0 < t < oo} is a right continuous, non-decreasing, un-
bounded step function, having jumps of size 1, P'-a.s.,

(e) for k =0,1,.-.,8/,8/, -, S'Tf,, is measurable with respect to .77,
where 7] = {Ade '|AN[r, = 1]e 7,0 <1< oo},

(f) sup.; {IS;/ — S’Trkl/n%: T, =j=T.,,7,=n}—p0,asn— oo, and

(8) SUPo<i<i1 |S7,, — Bul/n* —p 0, a8 n — oo.

To state the main result, let I" be the set of functions y: {0, 1, .-} — (— o0, o)
for which y(0) = 0. For yel and j > 0, identify y; with y(j), and define
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o(0, m, y) = 0, let a(k, m, y) be the first time j after a(k — 1, m, y) for which
Vi = Yotk-rm,p] = 2™, and o(k, m, y) = o(k — 1, m, y) when no such j exists,
for k = 1. For unbounded y, think of a(k, m, y) as the first time y completes k
changes in size of at least 2-™. Abbreviate y,, . byy,, . .

Foreachn =1,2,...and j =0, 1, ..., define Z;» = S;/nt. Let Z.*, or sim-
ply Z", denote the trajectoryof {Z*|j =0, 1, ...}. ForeachweQ, Z*(w)eT.
Hence, for each m,n, k Z?, . is a random variable whose value at o is

Z3 ke m, 27 (@)

Denote by & ; the o-field generated by S, S,, - - -, S;. If r is a stopping time,
let & ={de|An[t<jles,,j=0,1,...}. For any set 4¢e.%7, let
P(A4] %) denote a version of the conditional probability of 4 given & .

Say {S;|j =0, 1, - - .} is strongly asymptotically fair if
5 for all M = 0 and ¢ > 0, both

P(Z o100 — Zoww €[ 1+ €] F oun0,2m) —p % and

P(Z30r100 — Zoowo €[—(1 + €)s — 1] F oia0,2m) =2 %
as n — oo.
The main result is
(6) THEOREM 1. (4) and (5) are equivalent.
The proof of (5) implies (4) will be given in Section 3, and that of (4) implies
(5) in Section 4.

3. The construction. Suppose (5) holds, we prove (4). Let (Q', .57, P') be a
probability space which supports a Brownian motion {B,|0 < 7 < o}, and a
sequence of random variables §,, §,, - .- which are i.i.d. uniform on [0, 1].
{$;/1j=0,1, ...} will be constructed on this space.

It will be convenient to look at {Z,*"|k =0, 1, -..}. Accordingly, in order
to simplify notation, define Y, = Z,** = §,/2", for k,n =0, 1, - - ..

Choose a sequence of positive numbers {¢,, |m = 0, 1, - . .} such that 4™, — 0
as m — co. By (5), we may choose a sequence of positive integers {n(m)|m =
0,1, ...} such that

©) 0 = n(0), n(m) < n(m + 1), n(m) — oo as m — oo, and for each m > 1
P |PY S0 — Yoorw €11 1 + ]| Foopm] — 3 S en] 21—,
and similarly for [—(1 + ¢,), — 1], whenever n > n(m). From now on, unless
otherwise stated, we assume m and n satisfy n(m) < n < n(m + 1). So, m will

be understood as a function of n.
Define T(0) = ¢(1,0, Y°) = ¢(1,0,S). Forn=1,2, ... let

T(n)y = o(4™, m, Y™y Vv T(n — 1),

where a VV b and a A b denote the maximum and minimum of a and 5. Observe
that T(n) < T(n 4+ 1). As a consequence of (7), it turns out that P[T(n) =
o(4™, m, Y")] - 1 as n — oo, Think of T(n) in these terms,



CONVERGENCE TO BROWNIAN MOTION 257

For each n = 1,2, ... define M(n) = sup{k|a(k, m, Y*) < T(n — 1)}, the
number of changes in size of at least 2-™ completed by (Y,*|j =0, 1, ---} up
to time T(n — 1). Observe that for each n, M(n) is %, _,,-measurable. Fork =
0,1, ..., 4™ define T(k, n) as follows. Set T(0,0) = 0, T(1, 0) = 4(1, 0, Y°) =
T(0), and T(k, n) = o(k, m, Y") v T(n — 1) for n > 1. Check that

8 T(n— 1) =T@O,n) < T(k,n) < T(k + 1,n) < T(4™, n) = T(n)
for any n and k < 4™, and
ok, m, Y™ = T(k, n) if Mn)+1<k<4m.

We now motivate the definition of a process {S;|j =0, 1, ...}, which will
approximate {S;|j =0, 1, ...} in a nice way. Recall that M(n) is .F, .-
measurable, for k =0, 1, ..., 4™, by (8). First, notice

maxX, 1 msisram S5 — Sra-iml = Sram — Sra—iml -

Secondly, observe that the regular conditional P-distribution of the random
variable (Syg,n — Srgo1,m)/2" = Y — Yiuo1,m» 8IVEN F 1y, is concen-
trated on 0 if 1 < k < M(n) A 4™, and is nearly concentrated on +2-™ with
equal probabilities if M(n) 4+ 2 < k < 4™, for large n, by (7), (The case when
k = M(n) + 1 < 4™ is awkward, but irrelevant when n is large.) So, for each
s {Srm |k =0, 1, ..., 4"} is almost a nice martingale. This suggests defining
{$;1j=0,1, .-} so that (Srtm — Srior,m)/2" is approximately (Sy,. —
Sr-1,0)/2" 85 = Sprm if T(k — 1,n) < j < Tk, n), and {S,., |k =0, ---,
4™} is a martingale.

With this in mind, we define two triangular arrays of conditional probabilities
(except for a factor of 2) x(k, n, +) and x(k, n, —), where n =0, 1, ... and
k=0,1,...,4™ (Remember n(m) < n < n(m 4+ 1).) Let x(0,0, +) = x(0,
0,—-)=0, x(l’ 0, +) = 2P[Y:(1,0) = _1]’ and X(l’ 0, —-)= 2P[Y¢?(l,0) = 1]'
When n > 1, let

x(k,n, +) = x(k,n, =) =0 if 0Zk< M@n)Ad4m.
Let

x(k’ n, +) = 2P[Y7,"l(k,n) - YT’"(‘IE—]) é 2m - (Y;"(n—l) - Y:(M(‘n),m))lﬂT(n—l.‘]
and

X(k, n, —) = 2P[Y7"‘(k,n) - YT,'t(n—l) = 27 — (Y;“(n—l) - Yan(M(n),m))l*ng(n—l)]
if M(n) + 1 = k < 4. Let

x(k’ n, +) = 2P[Y;“(k,m) - Y;'t(k—l,m) é _2—m]‘_7"T(k_1’m)]
and

x(ksny =) = 2P[Y2 i my — Yucrm = 27" | F ricrm]
if M(n) + 2 < k < 4™. These will be used to define a triangular array of random
variables W(k, n) as follows. Set

W0,00 =0,  W(L,0)=x(1,0, +)lyo un— x(1,0, =)0

o1,0="11 "
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Forn=1,2, ... set W(k,n) = 0if 0 < k < M(n), and set

W(ka n) = 2—mx(k, n, +)1[Y?'(k,n)_Y;(n—1)>0]
— 27mx(k, m, _)I[Y?'(k,n)_y?'(n—l)<0] ’ if Mn)+1=Fk<4.
Let
W(k’ n) = 2_"‘X(k’ n, +)1[Y;"(k,n)_yg'(k—l,n)az_m]

— 2-mx(k, n, —)1 if M(n) +2<k<4m.

n n —m
7, m) YT (k—1,m <=2 "1

Set S, = 0,and 8., = 810, = W(1,0). Forn=1,2, ... let Sy, = Sy, +
2" Yk W(j, n), if 0 < k < 4™. By (8), for each w € Q, this defines a function
S.(w) on some subset of {0, 1,2, ...}, say G. (G depends on w.) For j¢G,
let S; = S, where j = sup{k: ke G, k < j}. Some useful properties of {3, |j =
0,1, ...} are contained in

(9) LeEMMA.

(@) E[Srasrm | F raml = S:,T(k,n) a.s., J:O’ k=0,1,...,4" — 1.

(b) If k < M(n) < 4™, then Sy 11,0y — Sritmy = 0, and if M(n) < k < 4™, then
the regular conditional P-distribution of Sy .1, — Sy, given F 4, ., is con-
centrated on 2 points a.s.

(©) 1ribrnm — Spaml < 27702, for k = 0,1, ..., 4» 1.

(d) SUPygicrum,m |S; — 85/2* =0 as n — co.

We now proceed to construct the process {S;’|j =0, 1, .- -} on (@, &7, P").
Assume that {§, |k =0,1,...,4"n=0,1,...}isa triangular array of in-
dependent, identically distributed random variables on (', &7, P’) which are
uniform on [0, 1]. These will be needed for auxiliary randomization. The con-
struction will be done in stages.

First stage. Here we construct a process with the same distribution as S,,
Si v o5 S Let 7(0,0) =0, z(1, 0) = inf {t| B, = 2P[S,,, < —1] or B, =
—2P[S,4,0 = 1]}, and set W'(1,0) = B,,,. Let F'(1,0, +) and F'(1,0, —)
denote the regular conditional cumulative distribution functions of S,a,0> given
[So,0 = 1], and of S, given [S,,, < —1], respectively. These are (non-
random) functions on (— oo, 00). Let F'(1,0, +)~ and F’(1, 0, —)~! denote
their left continuous inverses, respectively. Define

Sra = F'(1,0, +)7 ) v a0z + F'(1, 0, =) Evo)lw a0<o0 -

Clearly, the P'-distribution of 7., equals the P-distribution of S,,,. Now,
generate Sy, S\, - -+, 87,1 _; in such a way as to have the P’-distribution of
(So's -+ +» S7a,0) equal the P-distribution of (S,, - - -, S,,). This may be done
by using the uniform random variables (defined on (Q’, %7, P’)) and the appro-
priate regular conditional cumulative distribution functions.

nth stage. For n > 1, assume S, ---, S}.,_,, and (4™, n — 1) = z(n — 1)
are given, with the P’-distribution of (Sy, - - -, 8}.,_,,) equal to the P-distribution
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of (S, -+ +, Sr(np). We will now construct S}, ), -, Spm,,. Like M(n),
define M'(n) to be the number of changes in size of at least 2-™ completed by
So'/Z", Sl’/zn’ Tt S’T'(n—l)/2”°

If M'(n) = 4, thenset T'(n) = T(n — 1), t(n — 1) = ¢(0,n) = - .. = (4™, n) =
v(n), and go to the (n + I)st stage.

Otherwise, M'(n) < 4™ — 1. Fork =1, ...,4™ suppose Sy, - - -, Sy s> = * *»
St te-1,m> and 7(k — 1, n) are given (¢(0, n) = r(n — 1)). Define x’(k, n, +) and
x'(k, n, —) as functions of Sy, - -+, Sy _, ,, just like x(k, n, 4+) and x(k, n, —)
were computed from S, -- -, S, ,, Let

t(k,n) = inf{t|t = v(k — 1, n), (B, — B._,,,)/2" = 2-™x'(k, n, +) or

= —2""x'(k, n, —)},
and set
Wik, n) = (B e,y — Beoor,m)/2" -

Now, let F(k, n, +) and F(k, n, —) denote the regular conditional cumulative
distribution functions of S, ., — S;_1..), given S;, - - -, Sr-1,m and Sy, . —
Srg-1m = 0, and of Sy . — Sy, given S, ---, Sr-1,m and Sy 4y —
Sri-1,m = 0, respectively. These are functions of S, ---, Sr-1,my» and
g0 (S7k,m) — Sr-1,m)- In the same way, define F'(k, n, +) and F'(k, n, —)
from Sy, -+, 87/41,0» and sgn W'(k, n). Let F'(k, n, +)~* and F'(k, n, —)*
denote their left continuous inverses, respectively. Finally, set

Stieymy — St = F'(k, n, )7 i emsar
+ F'(kyny =) 6w a) Liw a,my<o1 -

Generate S7. ;415 ***» Spigmy—1 iD SUch a way that the P'-distribution of
So's ++ 5 S, €quals the P-distribution of S, - - ., S, ,,. When this procedure
is carried out for k =1, - .., 4™, go to the (n 4 I)st stage.

This method constructs a process {S;’|j =0, 1, ...} satisfying (4a). Define
&7/ to be the smallest o-field with respect to which {B,|0 < s < r} and all the
uniform random variables are measurable. Then compute {T’(k, n) | k, n} from
{S/1j=0,1, ...} just like {T(k, n)| k, n} is computed from {S;|j =0, I, ---}.
To define {T,|0 < ¢ < co} satisfying (4d) let T, ,, = T"(k, n),forn = 0,1, ...
andk = 0,1, ..., 4" Complete {T,|0 < ¢ < oo} so that it has jumps of size 1,
is right continuous, and is non-decreasing. Since {{z(k,n) |k =0,1,...,4™} |n =
0,1, ...} forms a non-decreasing sequence of stopping times with respect to
{]0 < t < oo}, we may relabel them as z,, 7,, - - -, which obviously satisfy
(4c). By construction, (4e¢) is fulfilled. In view of (9), in order to verify (4f)
and (4g), it suffices to show

(10) LEMMA. (4™, n)/4" >, 1 as n — oo.

4. The converse. Suppose (4) holds, we prove (5). Define Z,'» = S,’/n*, and
let &,y ,0,2m, e the o-field generated by Z,/~, Z/~, ..., Z)y - Fix an integer
M = 0,and e > 0. Foreachn, let r, = inf, {r,| a(M, 0,2 < T.) and denote
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by U, the first change in size of at least 1 completed by B./n? after r,. As a
consequence of (4g),

4
MaXogi<o+1,0,2m |St,, — B, |/n* -0 ., a8 n—oo.

Hence, by repeating the argument in (4) of [1] and using (4f), it can be shown

that
PlZ0ty 100 — Zituwo €1, 1 4+ €] F Ju,0,2m]

— P[U, e[1, 1 + ¢]| F )iy0,2m] —p 0 as n— oo .

By (4¢€), F Ju0,2m C ¥ . (5) follows, since P[U, =1|.%] 1= P[U, =1] = 4.

5. Proofs of lemmas.

PROOF OF (9). (a), (b), and (c) follow from the definitions. (d) will be proved
once it is shown that
(11) MaXy;<rm-n |S;/2* =5 0 as n, N - co
withn — N — oo
(12) MaXog;crm-n |S;]/2" —¢ 0 as n— N—oo
with n — N — oo and
(13) MaX,,_msisram |(S; — ST(n—N)) - (S‘] - Sr(n—m)”z” —5p 0

as n — oo, for all N.
(11) follows from the inequality

E[sUPogjsrim 1531/2"] £ E Lo (1/2*M)[8UPrionysjsraw 155 — Sra-nl/24] -
The r.h.s. is bounded independently of n, by (9a), (9b), (9¢), and [4].
For (12), check from the definitions that Y.» satisfies (3) and T(n — N) <
o(4™, m, Y*=7) for any N < n. By the proof of (4) in [1] it follows that
P[SUPogjcoem m,pn-m) | Y| > x] — P'[supyg,s, |B,| > x] as n— oo,
for any N and x. This fact combined with the inequality
MaXogj<rn-m ISj|/2” = (I/ZN) MaXog;<oum,m,yn—N) IY:'”_NI
implies (12).
For (13), let m, satisfy n(m,) < r < n(m, + 1). Then
SuPT(n—N)SjéT(n) I(SJ - ST(‘n—N)) - (gj - S’T(‘n—N))I/Zn
S 27" o+ Dlewey Zi0 (Y — Yiaown) — Wik, 1)
S 27"+ NA™SUp,_yq < SUPsicamr [(Yikyr — Yiwo1,m) — Wik, 1))
By the definition of W(k, r) and (7), it follows that the r.h.s. is bounded by
2 ™n N4"‘nem”, with probability at least 1 — Ne,, , for large n. Let n — oo,
proving the lemma.
PRroOF OF (10). Since (5) implies (3), M(n)/4™ —;  as n — oo is a consequence
of (4), (21), and (25) of [1]. Hence, by (7) and the definition of z(k, n),

i [Bekwy — Beecrm)2"P— 2 in L;-norm, as n — oo .
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Because

{Zi=1 [(z(k, ) — z(k — 1, m)) — (Bt — Br(k—l,n))Z]/4“|j =1...,47
is a martingale, E[z(4™, n)/4"] — 1 as n — co. Now, the hypotheses of (7) in [1]
are easily checked, and (10) follows.

6. Applications.

(14) CoROLLARY. Suppose {S;|j=0,1, ...} has independent increments.
Then (2) and (4) are equivalent.

Proor. Since the increments are independent, (3) and (5) are equivalent.

For (15), suppose {S;|j =0, 1, --.} is a process on (Q, %, P) with X; =
S, — S;;. Assume X, =0. Let {%|j=0,1, ...} be an increasing family of
sub-g-fields of % such that X is .%; measurable. Set v, = ¥ 7, E(X;*| %;_,).
Assume E(X;,,|.%;) =0, EX;) < oo, and v,, — oo as m — co. Define T, =
inf {m|v, = n}. The phrase “without loss of generality” in (15) below is used
in a specific sense (following Strassen [1]), namely: there is a new probability
space on which processes {S;/|j =0,1, ...} and {T,/|0 < t < oo} are defined
such that these processes have the same distribution as {S,;|j=0,1, ...} and
{T,]0 < t < o}, and such that {B,|0 < ¢ < oo} is defined on the new space.

(15) COROLLARY.

(2) E[(1/n) 5% X211y 2500] — 0 asn— oo, forall e > 0, if and only if, without
loss of generality,

(b) there is a Brownian motion {B,|0 < t < oo} such that E[supg,s, |B,, —
Sp J/n*P—0asn— oo.

PRrROOF. Assume (15a). Itsuffices to verify (5), which implies (4), and then check

-

(16) SUPogisa | V2, — YF,| 20 as n— oo
(where {T,|0 < t < oo} is the time change given in (4)) and
17) {supoc;<#, (Y;*)?|n =0, 1, ...} is uniformly integrable.

Assuming (15b), (15a) follows from the main Theorem in [1].
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