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GEOMETRY OF DIFFERENTIAL SPACE!
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By H. P. McKEAN

New York University, Courant Institute of Mathematical Sciences

The purpose of this paper is to explain why it is fruitful to think of
Wiener space as an infinite—dimensional sphere of radius cot. The idea
goes back to Lévy and Wiener and has recently been employed to advantage
by Hida; Hida, Kubo, Nomoto and Yosizawa; Kono; Orihara and Ume-
mura; their results will be reported upon below.

1. Introduction. The purpose of this paper is to explain why it is a fruitful
idea to think of Wiener measure as the uniform distribution on an infinite-
dimensional spherical surface $=(cot) of radius ocot. This picture stems from an
observation of Poincaré [12] and has recently been employed by Hida [4],
Hida, Kubo, Nomoto and Yosizawa [5], Kono [6], Orihara [11], and Umemura
[12], with entertaining consequences to be reported upon below. Poincaré
noticed that if x = (x, - - -, x,) is uniformly distributed on the (n — 1)-dimensional
spherical surface S*~*(nt) of radius n}, then for fixed m < oo,

e—722

. e
lim, ., P[O, (4 < x; < b)] = 821(2—71')—*‘1)( oo §bm oy

The proof is elementary. Pick —n* < @ < b < nt. Then the uniform measure
of the spherical zone a < x, < b is
$o(n — XA tdx B (1 — x*[n)"*tdx,
§rhy (1 — WP dx T §y (1 — Xy dx

and as n 1 co, this ratio approximates

y €% dx
"ot

The proof is finished by making a similar computation for x,’ = y,x; +-- -+ y,x,
Poincaré’s observation is connected to the Wiener measure as follows: if
£: [0, co) — R is the sample path of a standard 1-dimensional Brownian motion
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and if e, e,, - - - is a unit perpendicular basis of L’[0, o), then the map

L= Eo L )
defined by

L = 17 ea(?) dy()
effects an isomorphism between the Brownian motion and the space R~ provided
with the limiting distribution of Poincaré:
e~ dx e~ =t dx

_(2_7_5?...82:__—.

PINM (@ S5 < b)) = (i @)t

The optimist will now hope that objects such as the rotation group O(n), the
spherical Laplacian A, the eigenfunctions of the latter (spherical harmonics),
and the irreducible representations of O(n) implemented by them will “‘stabilize”
as the dimension n approaches co and thereby make sense for the Brownian
motion viewed as a uniformly distributed point of S*(co?). This turns out to be
s0: O(co) is just the orthogonal group of L*[0, oo) acting upon g according to
the rule

£(9) > ¢'(1) = {5 (image of the indicator of 0 < ¢ < r)dy;
the co-dimensional Laplacian is a sum of uncoupled Hermite operators
A = 3 (9*/x? — x;0/0x;) ;
the oo-dimensional spherical harmonics are products of Hermite polynomials

H(x) = H, (x,))H,(x,) - - - pPl=p+p+ - <oo;

and the action of O(co) upon the span of Hermite polynomials of the several
total degrees or weights, n = |p| =0, 1,2,3, ..., produces the irreducible
representations of that group. For fixed n = |p|, the latter span is just the
polynomials chaos of degree n of Wiener [15], so from the present standpoint
Cameron-Martin-Wiener’s functional power series

f(®) = 230 2 1p1=n H@)(P)TELT H,(x)]

for the general Brownian functional { with E(f*) < co appears as an expansion
into spherical harmonics.

I take the point of view that the statement y is uniformly distributed on S=(ocot)
is justified by these facts. Additional confirmation of an elementary nature is
provided by the strong law of large numbers:

P2+ - + 50 = w1 +o()] as nfoo] =1
and by the strong law of P. Lévy [8]:

() 5 (%)
2" 2"
The first should be viewed as a clear statement of the Pythagorean rule in

the coordinates g,: n = 1, the second as a restatement thereof in the new

P[limnym St

2
=t for every rgo]=1.
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“coordinates” dy(f): 0 < t < co. The latter is the (formal but suggestive) point
of view of “differential space” adopted by Lévy [7], [8] and by Wiener in his
early paper [14] and will explain the title of this paper.

The details of the spherical picture will be explained below; as above, the
point of view is determinedly informal; it is also purely expository. The reader
is assumed to be familiar with the elementary facts about Brownian motion
itself and the calculus of Brownian differentials and integrals, as presented, for
example, in McKean [10].

But first a simple caricature may clarify the spherical picture of Brownian
motion. Replace the Brownian motion (white noise) by independent fair
Bernouilli trials g, t,, - -- = +1 and identify (x;, z,, - - -) with a point of the
unit interval 0 < x < 1 in the customary way:

= D3l + )27
The Bernouilli distribution is mapped thereby onto the standard Lebesgue
measure dx, and the trials y,, 1,, - - - are identified as the Rademacher functions.
The point (x, x,, - - -) is now viewed as an element of the (commutative) in-
finite dyadic group G = Z, X Z, X ---, and you observe that this group acts
upon 0 < x < 1 (which happens to be a copy of G) in a self-evident way. The
irreducible representations of the group are its nontrivial characters

Dngplgpggps..' 0<p<p<p< s

alias the Walsh functions, augmented by the unit character, and there are
enough of these to span out the whole of L*0, 1]. The moral is that the Walsh
expansion stands in the same relation to Bernouilli trials as the Cameron-Martin-
Wiener expansion does to the white noise (=Brownian motion).

2. Polynomial chaos. The first item of business is the space Z = L*(W). Here
W is the space of Brownian paths ¢ : [0, co) — R provided with the customary
Wiener measure. Wiener [15] discovered an important perpendicular splitting
of this space:

Z=2'02'®02*®D - - -
Z° is the constants, and for n > 0, Z" is the polynomial chaos of degree n, so-
called, populated by those Brownian functionals {e Z expressible as an n-fold
Brownian integrals:
f() = §& dg(ry) Sa2 dg(ty) - - - Sormrdp(t)f(ty, -5 1) = §7 f A

with a sure integrand f subject to
£ = §5 dty §adty - Sipmrdt, 3ty -+, 1,) < o0 .
The corresponding éxpansion of the general Brownian functional f e Z:
f(x) = E(f) + Z7= 0 fad't

is to be thought of as a functional power series. This is the starting point of
Wiener’s study of non-linear devices; see, for example, [16]. Wiener liked to
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think of { as a “black box” into which you feed the “white noise” i:
i— 1| Z 5 fadr
the (sure) coefficient functions f,, fi, f;, - - - being inner products of a sort, com-
puted by the (formal) recipe
falty, &, - -+, 1) = E[fi(0)i(%) - - - 2(1)] -

This expansion (but not the recipe just above) is now established by a series
of easy steps.

Ster 1. I ||f]| < oo, then | = \7 fd'g € Z and E(F) = ||f||"

Proor. For n = 3.

E(f) = E[§7 di(n) §5 di(t) §o2 de(t)f (1, 1, 1)
X §5 dy() §or di(n) o' dg(6)f(4s 15 1))
= \& dt,E[§gr dy(t;) §5 du(t)f(1s 15, 1)
X §ordy(ry) §¢¢ dy(t)f(t &, )]
= {7 dt, S di, E[§52 dy(1)f (12 1r 1)
X §o2 dy(1)f(1s 6 4)]
= (¢ dt, Sde, S dt, f2(1, 4, 1)
= [If1*-
STEP 2. Ziis perpendicular to Zi if i # j. The proof for, e.g., i =2 and j = 3
runs along the lines of Step 1.
Step 3. Is to introduce the Hermite polynomials
H,(x) = (= 1) e2(djdxyre=="
and prove (for use in Step 5) the addition formula:

Z GH, () H, (%) -+ y» = Hy(x - y) -
The summation extends over p = (py, py, --+) With |p|=p, +p, + -+ =n,
@ =n(plp) )Y x= (%, %, ) ER®, y = (yi )y ---) likewise, y? =
yiPyPr e, Ryt =1hLand x-y = ¥ xy;.
AMPLIFICATION. For the interpretatign of x. y, replace xby r = (£, %5, -+ *) €
S=(oot); for the proof, think of x; and/or y; as being 0 from some i = j on.

Proor. By the definition of the Hermite polynomials, the left-hand side is

. 0 \Pi e
Dipi=a () IT (= 1)rie 22 <}’i W) e—il2

0
0x;

1

= (e 5| Do [epl-i B0
= (- 1)”e"'”’2/2[a”/a(x . y)”]e—(x-y)2/2
= Hn(x * )’) )
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as you can see from the formula
x* = 3 x;’ = (x- y)* + |coprojection of x upon yJ*.
STEP 4. The formula '
§5 e(t) di() (o e(n,) dp(ty) - - - $onre(r,) dg(t,) = (n!)H,(§5 e dx)

for a sure function e with |le||* = 1 is also needed for Step 5. The moral is that
in the present game, it is H, that plays the role of the customary power x".

Proor. Pick a real number y. Then

p(r) = exp[r Seedy — 4r* §i e ds]

is a solution of dy = ey dx, and y(0) = 1, so by a self-evident iteration,

hloo) = 1+ Fo. 7" §5 e(ny) di(r) §r e(ny) dy(ty) - - - 2 e(t,) di(t,) -
But also, by the identity
TE, () HH (X) = ele(smDU — gra-r¥3
you have
h(oo) = XL 7" () HHL (3 e dy) -
Now match like powers of 7.
StTEP §. Brol*=72.

PROOF. Pick y = (yy, yy, ---) € R* with y* = 3 y? = 1, let g, = {7 e;dx with
sure functions e,, e,, - - - making a unit perpendicular basis of L’[0, co), and put
Hyx) = H, (), (&) ---  for |pl=p+p+ - <oo.

Then by the addition formula of Step 3 and the formula of Step 4,
Liipi=n GYH, @)Y = Ho(x - ¥)
= H,({7 e dy)
= nl T e(n)e(t) - - - e(t,) dg,

in which e = } y;e; and the fact that ||e||* = y* = 1 is used for the application of
Step 4 to line 3. This proves that H (r)'c Z" provided only that the total degree
|p| equals n; especially, since the Hermite polynomials span L*(R!, e~**/?) and the
coordinates y; are independent with common density (27)~te~**2, you see by
specializing the functions e; that ® Z” contains every reasonable tame function
of differences g(;) — x(¢;_,) with 1, = 0 < 1, < ¢, - - -. But such tame functions
span Z. The proof is finished.

By Step 5, the expansion can be put into the more explicit form due to
Cameron and Martin [3]:

f() = L0 Zp=n Hy()(P)TE[TH,(9)] -
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The only new ingredient is the easy evaluation

— 2
§=u [Hy (P & dx = n! .

()}

An alternative (somewhat more formal) expression is

H2) = Tipao Hy@)(p!) g_; o),

in which 07/dx? stands for (0/dx,)*1(0/dx,)2 - ..; the derivation is immediate
from
[0°H,/9x%](0) = p! ifg=p
=0 ifg+#p,

and the formula confirms the moral Step 4 above: that it is H,(x) that plays the
role of the customary power x?. From this standpoint, the sum for f is a bona
fide power series.

A third expression for the power series is obtained by means of operators of
creation and annihilation:

—0/ox +x: H, > H,,,
djox: H,—nH,_, .
These are dual in L(R!, e~**%), so (d/0x)*"1 = H,,, and you obtain the formula
_ o \*[ 2
) = Zipizo (551,—> l:gg; (O):I .

You may readily believe that such expansions are difficult to compute. The
following cute example is from Wiener [16]:

exp [y(§5 e dx)’] = Zino (n)7r"(1 — 27)7" " HH, (15 e dy)
for |le]| = 1and —o0 <y < }.
3. The rotation group. An important fact about §*~(nt) for n < oo is that the
orthogonal group O(n) acts upon it. The map
1= @l ) = (P eds P ed, - )
suggests that the counterpart for the Brownian motion is (or ought to be) the
group O(co) of orthogonal transformations of L*[0, co) acting upon y according

to the rule
Vo edy — {7 (image of e)dy;

in fact, this recipe induces a measure-preserving map (automorphism) of the
Brownian motion, as first noted by Akutowicz and Wiener [1]. The proof is
to remark that for any orthogonal transformation of L’[0, co),

¢'(t) = {7 (image of the indicator of 0 < ¢ < f)dy

is also a Brownian motion, as you may verify by observing that g’ is a Gaussian
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process with mean 0 and
E[y'(t)x'(t,)] = the smaller of ¢ and ¢,.

The polynomial chaos Z* is invariant under the action of O(co) so induced;
this is obvious from the fact that H,(x): |p| = n spans Z" for any choice of the
unit perpendicular basis e;, e,, - - - of L0, co). What is less obvious is that ke
action of O(co) upon Z* is an irreducible representation of that group.

Proor. Pick f # 0 from Z" and look at E(f| {¢° edy) for a fixed direction
e[|le|]] = 1]; this cannot vanish for every direction e, as that would make

E[fH,(§¢ 521 0585 dD)] = Zipi=a ()00 (00)" - - - E[TH,(3)]
=0
for every orthogonal transformation (o;;), contradicting f 0. Pick such a
direction e and a basis e, ¢,, - - - of L0, o) beginning with e, = e. Then

E(f| §5 e dp) = E(f|x)
is nontrivial multiple of H,(g,) since the expectation

E[E(f| 5)Hn(t)] = E[fHa(5)]

vanishes for m == n. Because H,(y;) spans Z* under the action of O(0), it is
now enough to check that E(f|g,) belongs to the span of f under that same
action. But the latter statement is obvious from the formula

E(fg) = 1limy 0 Som-y) (i X5 - -+ X,/ Gyr -+ +) do
in which O(m — 1) acts in the natural way upon (x,, -- -, x,) € R™! fixing x,
and g; for i > m, and do is the invariant volume element of that group. This
you check, beginning with tame functions f, using Poincaré’s estimation of the
spherical average on S™~*(m?) and the strong law of large numbers

@'+ - +2a)t = m[l + o(1)]
for m 1 co. The proof is finished.

AMPLIFICATION. O(o0): Z" — Z" should be a complete list of the irreducible
representations of O(co). For a completely satisfactory proof, you would have
to specify more closely the kind of representations permitted, but this has not
been done.

4. The spherical Laplace operator. By the previous development, you may
think of Z" as “spherical harmonics of weight n,” which suggests that you look
for an infinite-dimensional spherical Laplace operator commuting with the
action of O(co) on S*(cot) by studing the customary spherical Laplacian A on
the (n — 1)-dimensional spherical surface $*~}(n*) for n 1 co. To do this, pick a
smooth function f on S"~!(nt) and extend it nearby by the rule f = f(n* |x|~! x).
On the surface |x| = nt,

0* 0? *# n—120 1 1
o V= (L 942 SIAf,
<Zixl2 + + ox,? )f <¢7r2 + r or + r2>f+ b
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and if you work out the left-hand side by hand, you obtain

62 1 aa n_l a
g D e~ D N

n7lA = Z

still with |x| = n?; in particular,
lim,,, n7'A = ¥ (8*/0x? — x,0/dx;)

since the cross partials 6°/0x;dx; (acting on tame functions) are small in number
the comparison to n. This operator is now declared to be the infinite-dimensional
Laplacian A, and you conclude from

H) — xH

n

' = —nH,

that
A: H(x) = H, (x))H,(x,) - - - — —nH,(x)

for |p| = n, which is to say that Z* is an eigenspace of A, as it should be. A
may now be viewed as a bona fide self-adjoint operator on Z:

—A=05109203D..-.
The fact that A commutes with the action of O(co) is self-evident from this
splitting.
A can also be identified as a kind of Casimir operator: you take the infini-
tesimal rotations
x;0/0x; — x;0/0x; i<j
acting upon tame functions of x,, x,, ---, and you average the sum of their
squares on the spherical surface |x| = n! for n 1 oo, so:

7t Y icisn (X,0/0x; — x;0/0x,)
= Zia (1 — x[n)d*[ox? —

n —
n

Ly x0/0x, .

The cross partials °/dx;0x; (acting upon tame functions) have been left out as
being small in number in comparison to n, and it is plain that this operator
approximates A as n | co.

It is a source of added satisfaction to notice that the “spherical harmonics”
H,(x) come from the n-dimensional ones by making n{ co. For dimension
n = 3, fixed |p| = p, + p, + --- = m, and |x| = n?, the functions

07 |x|*—"
ox?

span out the class of spherical harmonics of weight m on $"~(n?), a fact due to
J. C. Maxwell [9] for n = 3. Fix k so large that p, = O for i > k. Then, still
with |x| = n?,

ap lez—n

lim, ., n"/2-?
nie x?

= (— l)me(x) .



GEOMETRY OF DIFFERENTIAL SPACE 205

Proor. The left-hand side can be expressed as

, _ upp 07 X4 e x2S
n/2-1 (43 2\1-nja_ 9 1 k
lim, ,, n"** (x3,, + + x,%) T |:1 + Mot T x,,’jl

— lim“w<1 _ X4 oo+ xk’>1‘”/’ip_|:1 XP4 .- + xkz:ll—n/a
" ox” n+0(1)

= exp (5 + -+ + X2 S exp[— (5 + o+ + xI)2]

= (= )"H,(x),
as stated.

5. The translation group. A case will now be made for the statement that
despite its name “‘sphere,” S*(cot) is pretty flat. The precise result is that if f is
a sure absolutely continuous function with f(0) = 0, and if ¢’ is the translated path

v =y + 1),

then

PeW)=1 or 0O
according as

[|f°]|* < co or not*;
in the first case, the distribution of ¢’ is expressed by the formula of Cameron and
Martin [2]:

P(’ € B) = El[exp (§¢ /" dy — 3 {7 (f7) 1), B],
which is to say that
j=exp(§c [ dy — 355 (f7)dn)

is the “Jacobian” of the translation g — ¢ + f. The geometrical content is that

a mild translation [||f°|| < oo] cannot move you off the spherical surface S=(oot);
plainly, this is a purely infinite-dimensional phenomenon.

PROOF OF THE CAMERON-MARTIN FORMULA FOR ||f°|| < oco: y = § f " dg is
Gaussian distributed with mean 0 and E(y*) = || f°||%, so

P@e W) =EGj =1,

which is hopeful. The rest of the proof proceeds by approximation: it is enough
to check the formula for the special cylinder sets

B = nosi5k<ai§8<%> —S<i; 1> <b¢>

‘and for. functions f of constant slope in every interval (i — 1)/n < t < i/n. But
in that case, both sides of the formula split into simple (independent) factors

2f* = dfjdr.
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of which the first is typical:

Plasy(;)<s)
=Pla=z(2)+ 1 ro<s]

= ju XPL=(2)x — n2f OF] 4,
2z [n)}

xp [f*(0)x — [f*(0)]/2n] dx

= 8 Gy

=Eh§s()<%uNWf@—%qum]

The rest of the proof is plain sailing.
ProoF THAT P(f'e W) =0 IF ||f’|| = co: The rough idea is that if

P(y’

€ W) > 0, then P({y edy’ exists) > 0 for every ee L’[0, co); as this can

happen only if § e df exists, you conclude that f* exists and belongs to L0, o).
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