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ON AN L, VERSION OF THE BERRY-ESSEEN THEOREM
FOR INDEPENDENT AND m-DEPENDENT VARIABLES

By R. V. ErICKsON
Michigan State University

We show that the L, norm of the difference between the standard
normal distribution and the distribution of the standardized sum of #n in-
dependent random variables is less than 72 R,, where R, is a sum of stand-
ardized “‘inside’’ third and “‘outside”” second moments. We conjecture that
72 can be replaced by 36 or even less. We also prove a similar result for
m-dependent random variables, but no constant is specified.

1. Introduction. Recently some use has been made in statistics of an L, ver-
sion of the Berry-Esséen theorem which is a trivial consequence of a result of
Bikyalis [1] if absolute moments of order 2 + « > 2 are assumed finite.

We consider the case of independent variables having only finite second mo-
ments and show that both the L, and L, version can be derived simultaneously
by the usual characteristic function techniques (see Feller [5]), the only differ-
ence being the use of the appropriate smoothing lemma. Ibragimov [7] has a
different simple proof for the independent identically distributed case.

We also extend the results of Egorov [2] in the m-dependent case to include
the L, norms, 1 < p < .

2. Notation and results. Throughout we consider random variables X, X,, - - -
with EX, = 0, EX,>’ =02 < o0, k =1,2,.... We let
Sn = Z? Xk ’ Bn = Esnz ’ s’n2 = ZIL 01:2 ’ An(‘x) = Fn(x) - ./‘(X) ’
where F, is the distribution of S, /B,* and _#" is the standard normal distribution.
Denote the L, norm of A, by
A, = 1141, -

When the random variables are independent we truncate as in Feller [5]: fix
nand for k=1,.---,nfix —c0o < —7, <0< 7/ < o0, put 4, = (—7,, 7)),
X = X1, (X)), X, = X, — X,/. Write

ﬂkl — E(XkI)Z s ‘Bkll o E(XkII)Z 5 rk, o Ele’|3 s
b= DiBS. e =i,
and

B=5,"]sz2, I'=c¢//s}, R=B+T.

TueoreMm 1. If X,, X,, - - are independent there is an absolute constant K,
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such that

where
K, = (K:/»(6)~»

and K, is some constant less than 72.

REMARK K, = 72 is much too large, and by much more tedious calculations
we can show that K; < 36. Even this is probably way off the ultimate constant
if the independent, identically distributed case, with finite third moments, can
be used as a guide. In that case Zolotarev [10] shows that lim,_. n*A, <
(3)E| X */o,®. We will say more about the calculation of K, in the proof of the
theorem.

For fixed n, taking r, = r,/ = 5,, we have a
CorOLLARY. If X;, X,, - -- are independent and 0 < 6 < 1 then
Anp < K,, S Elelzw/snzH .
Recall that X, X,, - - - are m-dependent if (X, ---, X,) and (X, .-, X,) are

independent for all integers 1 < r < s<nwiths—r>m2=0.
The L., version of the following theorem appears in Egorov [2].

THEOREM 2. If X,, X,, - - - are m-dependent and if (i) B, — oo, (ii) 5,7 = O(B,)
and (iii) >* E|X,|*** = O(B,) for some 6,0 < d < 1, then there is an absolute con-
stant C, such that

A,, < C,B,""

where
8, = 0Jp(2 + 49) + (1 — 1/p)d/2 + 30) .

Since ||+]|,* < ||+|ls/|+||l«*"*, We need prove only the L, estimates, the L esti-
mates being known.

3. Proof of Theorem 1. Fix n throughout this section.

We state the smoothing lemma only for the case at hand: let X, have character-
istic function y,, set u,(t) = x,(¢/s,), v,(t) = exp{—o,2*/2s,}andw, = u, - - - u, —
vy e 0, = 257 (4 — I, 1L, = AL w10, 0)).

LEMMA. Forany T > 0
Ty = §r [Wa(n)/t] dt + (24/T)(27)7H,
A, = 87T + (3 + 4/T*ke + 0, + 0,
where
¢ = I [w (/1 d1,
0" = §Zr [wa(n)]e* dr,
0;" = §1r [w,/(1)/1]* dt
and w,’ = (d/dt)w,.

The L, part of this lemma, due essentially to Berry, is proved in Feller [4]
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page 538. The L, part, due to Esséen, is proved in [8] page 25 and, save for the
8x/T, is a simple consequence of the material of Chapter XIX. 7 of Feller [4].
The 87/T term rests on a minimal extrapolation lemma of Esséen ([1] page 13);
we update the references cited in the proof of this lemma and indicate its level
of difficulty by noting that it is based on the fact that

Blz2) = Ly (=D)"/(z +n) = 1)z — log2 — Zip (—1)"z/n(z + n)

is meromorphic with principal parts p,(z) = (—1)"z at poles z, = —n < 0 and
that 7G(z) = (B(z) — 4z) sin =z is therefore entire and G(z) + G(—z) = 1 (see
Hille [6] pages 219, 221 and 264).

We use the L,-part of this smoothing lemma in exactly the same way as Feller
[5] uses the L, part.

We have chosen to write the proof of Theorem 1 in a way that makes obvious
what may be varied in hopes to improving the constant K;,. We then indicate
choices of variables which give K, = 36, and K, = 72 and mention how these

were made.
Using Feller’s version of the L, Berry-Esséen Theorem over I = [—a, a] and
Chebyshev’s inequality and symmetry of 5 over I° and integrating we have

A, £ 12Ra + 3/2a.
This is minimal when a* = 1/8R so without loss of generality we may suppose
that K, R < 24R/(8R)? and thus
1) R < 72/K? = p°.
By the moment inequality (8,’)* < (r,’)* and hence (see Feller [5] (17))
(o4/s,)' < L)t + B'T's.™
= Dy, + (20F + B)B,"[s,” .

Fix R, substiute B = R — I, and allow I' to vary under the restriction 0 <

I' < R. We see that the maximum of 2I'* .- R — I is attained at' = R, B =0
if R < (4)>. Hence

) 1 (ou/sa)' = pT' + 20°B
if we assume (1) and take K; = 6 (which implies R < (%)%).
Assuming (1) and (2) we obtain /
() Il — o] = T/6 + Blef* + [1'(eT" + 20°B)[8 = ¢(1) ,
@ X/ — o/ = T2 + 2B]t] + [f¥(el + 20°B)/2 = [1¢(7) »
() IO+ Zhalv/O = TIP2 + 2B + 1] = |d(x(1) + 1),
all t, k = 1, ..., n. The first of these is immediate from (3.3) of Feller [5] (his
final Y is a misprint). Equations (4) and (5) are easy consequences of

I (1) + to}] = |E(e"*x — 1 — itX,)(iX,’ + iX,”")|
< iy[2 + 28,1, all 1
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which implies

/(1) = v/ (O < 7117)28,° + 2B, [1l/s,.* + o,4e[2s,!
and
max {|u/ (], [0/ (O} = 72/167/25,° + 28,"|1l/s,> + o,]1]/3, .
To get bounded on II, and II,;, where II,; is defined as II,/u; if j < k and
I, /v; if j > k, we argue exactly as in Feller [5], (3.6) to (3.14), but we use the
index set 4 = {k|1 — 8,/T?/2s,2 = 0}. This shows that

(6) HI(5)] < exp{—(*/2)[1 — TT/2} — 2B — 2/T*]}
and
(7) HL;(1)] < exp{—(£/2)[1 — TT/2* — 2B — 4/T*]}

forallk, j=+ kand |f] < T.
Now define T by
1

8 7=rl"-i-sB, 0s<r,

so that 1/T < rR < rp®. Then the bracket in (6) is bounded below by
9) pr=1—1/r2t — 2r2p°
while that in (7) is bounded below by
(10) g9, =1 — 1/r2t — 4r%p®
if sT/r2¢ > 2, which is the case if
(11) s*/8rt = p°.
Combining the above, if we assume (1) with K, > 6 and (8) and (11) we obtain
(12) [Wa(O)] = exp(—p, [2)(1) and
(13) W' (O] = exp (=4, 2/2)[e() (1) + 1) + exp(—p, /) |1]¢()

for |f| < T.
To carry out the computations define

(18) =T ("T“> .
so that fora >0,k =0,1, ...,
2 §5 tkexp(—ar?) di = cy(a~t)++t.

For any polynomial P(t) = Y, a,;t’ define for a > 0,
(15) PNa) = X3 a;e,(at) = 2§ P(1) exp(—ar’) dt .
Defining the polynomials ¢(f) = [¢(#)/t]* and 6,(f) = [¢(?)/*]* we have, in the
notation of the smoothing lemma,
(16) & < \(p,)

0" = 0.(p,)
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and
0" = [¢'17(p)) + 2[ed(n + DI(m,) + [¢*( + 1)°T°(4,) »

where m, = (p, + q,)/2-

These computations are quite tedious for any given value of r and p. To find
a really good approximation to the best value of K, would require a computer.
We have preferred to make rough upper estimations of the above for a few well
chosen values of r with a p corresponding to a K, we hoped to attain. We then
used that value of r which gave the best rough results to calculate a much more
precise estimate. In this more precise estimate all the transformations in the
right-hand side of (16) were calculated in full and then dominated by expressions
of the form (a;I" + b;B)?, save the term [¢*(y + 1)*]"(g,). This term seemed too
difficult to calculate explicitly and was bounded by

Q¢*(Q)[c, Q°T?/4 + 2Qc¢,BI' 4 4¢,B* + 4¢,B + chr] + [902],\(‘]1)
< (T + 6By,
some a, b > 0, where Q = ¢,7%.

Notice that the estimate given by the above calculations and smoothing lemma
can only be improved by a better choice of r and a better approximation of the
[0*(p + 1)*]” term. We feel this will yield little gain on K, = 36, but we invite
the interested reader to better 36 if he can.

We have done much calculating and have found that the choice r = 1.1,
s = .62, K; = 36 will lead to A,, < 36R. Rather than present these tedious and
uninformative calculations here, we content ourselves with stating in theorem
form only the result K, < 72.

We point out that K; = 72 is easily proved usingr = 1.1, s = 3.7/8x, P = p,~%,
Q = g, and & < ¢,¢"(P)/P, 32 < c,p*(P)/P* and 6,2 < ¢, Q[e(Q)(1(Q) + 1) +
¢(Q)P. This is inefficient because of the use of ¢, throughout the estimate of
0,. We leave this easy verification to the reader.

4. Proof of Theorem 2. Egorov’s proof of the L. version of this theorem is
based on the following well-known, easily-proved

LEMMA. Let X and Y be random variables (in general dependent) with distributions
F and G, and let H be the distribution of X + Y. If 4 denotes the standard normal
distribution, then for all ¢ > 0, x real
F(x —e) — A7(x) — P(|Y| > ¢) < H(x) — A7(x)
SF(x+e¢)— A(x)+ P(|Y| > ).
COROLLARY. With assumptions and notation of the above lemma and 0 < 7 < 1
we have

(a) [[H— Ao < |IF — Al + 7(27)"* + P(Y]| > 7)
(b) [H— A7 < 2(1 — )7 H|F — A7, + 49(1 — )7'(2m)*
+ 2971 ¢ P(|Y| > y)dy.
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Proor. (a) Clear if one estimates ||.#7(« + 7)) — A7(+)||o-
(b) The lemma implies that

[Hx) — A < [F(x + ¢) — A (x + ¢)| + | A (x + &) — A7 (%)
+F(x —¢) = A(x — ¢ + | A (x — &) — A7 (%)]
+ P(IY] > [el)
for ¢ = 0. Set ¢ = 5x and integrate. (b) follows from the fact that

Qr)t (2 [ A(x) — A (x £ px)|dx = (1 £ p)7*.

Egorov now uses a technique originated by Bernstein: decompose S,/B,t =
X + Y, where X is a standardized sum of independent random variables to
which our corollary to Theorem 1 may be applied. This gives an estimate for
[|F — A7||,, p = 1, oo in the notation of (a) and (b) above. This decomposition
must also be arranged so that Chebyshev’s inequality yields a nice estimate of
P(lY| > y). If K, is any sequence of reals increasing to infinity, Egorov shows
how to decompose S, /B, = X + Y so that, under the assumptions of the theorem
and notation of the above lemma,

IF — 7, < C(K,/B,)""
and

[*] P(Y] > y) = C/K, )", y>0,

C an absolute, p = co. Our corollary to Theorem 1 shows this holds also for
p = 1. Using [*] over the interval [K,~%, co) and the bound 1 over [0, K, %),
substitution in (b) above gives

A = C{(KL/B)" (1 — 7)™ + (1 — 7)™ + 77K, 7

Now take K, = (s5,})¥/®+V, y = (s5,2)~*/*+2, The theorem follows since B, <
(1 4+ m)s,? and 5,2 = O(B,) by assumption.

REMARK. L,Chebyshev-Cramér expansionsare attainable using an appropriate
version of the smoothing lemma above. We present these elsewhere, if they are
not already known.
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