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AN ALMOST SURE INVARIANCE PRINCIPLE FOR MUTIVARIATE
KOLMOGOROV-SMIRNOV STATISTICS!

By PrRANAB KUMAR SEN
University of North Carolina, Chapel Hill

An almost sure invariance principle for Kolmogorov-Smirnov statis-
tics for vector chance variables is established along the lines of Theorems
1.4 and 4.9 of Strassen [Proc. Fifth Berkeley Symp. Math. Statist. Prob.
(1967) 2 315-343]. This strengthens certain asymptotic expressions on the
probability of moderate deviations for Kolmogorov-Smirnov statistics,
obtained earlier by Gnedenko, Karoluk and Skorokhod, and by Kiefer and
Wolfowitz, among others.

1. Imtroduction. Let {X; = (X, -+, X;,)’; i = 1} be a sequence of independent
and identically distributed random vectors(i.i.d. rv) defined on a probability space
(Q, &7, P), where X, has a continuous distribution function (df) F(x), x € R,
the p (= 1)-dimensional Euclidean space. Define the empirical df’s by F,(x) =
n' Y c(x — X;), Xxe R?, n = 1, where c(u) = 1, if all the p components of u
are > 0; otherwise c(u) = 0. Consider then the general p-variate Kolmogorov-
Smirnov statistics: D,* = sup {F,(X) — F(X): xe R}, D,~ = sup {F(X) — F,(x):
x e R*} and D, = sup{|F,(x) — F(x)|: xe R*} = max{D,*, D,"}, n = 1; all of
these are nonnegative random variables.

Gnedenko, Koroluk and Skorokhod (1961, pages 154-155) reported for p = 1
the results of Karplevskaia of Li-Tsian that if {4,} be a sequence of positive num-
bers such that n2,* = O(1), then as n — oo,

(1.1) P{D,* 2 4,} = P{D,” 2 4,} = $P{D, 2 4,})[1 + o(1)]

= exp{—2n,}[1 4+ o(1)].
Kiefer and Wolfowitz (1958), and later on, Kiefer (1961) have shown that for
every ¢ > Oand p > 1, there exists a positive ¢(p, ¢), such that for every n > 1,
2,=20,P{D, = 4,} < c(p, ¢) exp{—(2 — ¢)ni,’}; but, in general, it is not possible
to make ¢ = 0. From these, it readily follows that if n4,> — co as n — oo, then
for every p > 1,

(1.2) (n2,)tlog P(D, = 4,} > —2 as n— oo,
whenever ni,} = 0(1),

and the same result holds for {D,~} and {D,*}.
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The object of the present investigation is to show that an almost sure invariance
principle similar to the one in Theorems 1.4 and 4.9 of Strassen (1967) holds for
the Kolmogorov-Smirnov statistics defined above. The main theorems along
with the basic regularity conditions are formulated in Section 2. The proofs of
the theorems, based on a reverse martingale property of D,* (and D,”) and
Theorem 1 of Kiefer (1961), are considered in Section 3. A few remarks are
included in Section 2.

2. The main theorems. Let ¢ = {¢(f): 0 < t < oo} be a positive function,
defined on [0, o0), with a continuous derivative ¢'(r), such that (i)

2.1 O() = t7ig(r) is T but rhP(r) is | in ¢, P<h< i,
(ii) as t — oo, with s/t — 1,
(22) ¢'()/¢'() = 1, (=90 —1),

and (iii) the Kolmogorov-Petrovski-Erdos criterion holds for 24, i.e.,
23) Ju(kp) = (2m)~4(k/2) §7 172g(1) exp{— k"7 '¢* ()} di < o0,
for every k = 2, n = 1. Note that by (2.1)

(2.4) P'(t) = 174’ (1) — $tig(2) (> 0) iscontinuousin ¢;
2:3) 0 < (207'(n) < ¢'(1) <3(50)7(1) -

Since the integrand in (2.3) decreases for large ¢, there exists a positive #, (< o),
such that for all t > ¢, and k = 2,

(2.6) v (f) = 3k2¢¥(t) — log (1) — loglogs is 1 to oo as 1 oo.

Thus, for large ¢, ¢*(t) > } loglog ¢ when (2.3) holds. We further assume that
uniformly in n, v,(n)/v,(n) is a continuous function of k € [2, 2 + 4], for some
0 > 0. Thus for every ¢’ (0 < ¢’ < 9), there exists an 7 > 0, such that for
n = n,

2.7 () vy(n) — 1] < 9 whenever |k — 2| < 9.

In fact, if for some ¢ > 0, lim sup,_, [(log log #)/¢*(¢)] < 2 — e, then (2.1)—(2.3)
imply (2.7). A counterexample where (2.1)—(2.3) hold but not (2.7) is ¢*(¢) =
3 loglog ¢t + 4logloglog t where 2 (> Q) is a positive number. Let us now define

(2.8) P.(¢) = P{mD,, = ¢(m) for some m = n},

and in (2.8) on replacing D, by D,* and D,~, we define P,*(¢) and P,~(¢),
respectively. Then, we have the following.

THEOREM 1. Under (2.1), (2.2), (2.3) and (2.7),
29) lim, .. {[log P,($)]/v(m)} = —1,
and the same result holds for {P,*(¢)} and {P,~(¢)}.

We may remark that whenever ¢?*(n) increases with n in such a way that as
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n — oo, (log log n)/¢*(n) — 0, we do not require (2.2), (2,3) and (2.7), and we
may also extend the range of ¢(n) to O(n¥). We have the following.

THEOREM 2. If for some C: 0< C< o0, ¢(n) < Cn# and lim,,_,, (loglog n)/¢*(n) =
0, then
(2.10) lim, . {[log P,(9)]/¢*(n)} = -2,
and the same result holds for {P,*(¢)} and {P,~(¢)}.

We postpone the proof of the theorems to Section 3.

ReMARks. (I) If we let ¢*(r) = (3 + ¢) loglogt, ¢ > 0, it follows that (2.1),

(2.2), (2.3) and (2.7) hold, where v,(r) = 2¢loglogt — (logloglog r)/2 —
3log (3 + ¢) (— oo as t — o). Therefore, by (2.9), P,(¢) —>0asn— oo, i.e.,

(2.11) P{lim sup, (2,/loglogn)tD, < 1} = 1.

On the other hand, comparing D, with any of its univariate version (which is
always smaller or equal) and using the law of iterated logarithm for such a
statistic [viz. Chung (1949)], we obtain that

(2.12) P{lim sup, (2n/loglog n)tD, > 1} = 1.
Hence,
(2.13) P{lim sup, (2n/loglog n)tD, = 1} =1,

and the same result holds for {D,*}and {D,~}. (2.13) was proved with a different
approach by Kiefer (1961), and we may also refer to Wichura (1973) and Kiefer
(1972) for certain related results in comparatively more general setups.

(II) If we let ¢(n) = n*2,, we observe that under the condition that
(log log n)/¢*(n) — 0 with n — oo, (2.10) extends (1.2) in the sense that [D, > 2,]
is replaced by [D,, = 4, for some m > n]. This extension is comparable to
Theorem 1.4 of Strassen (1967) which provides similar extension of the prob-
ability of moderate deviations for sample cumulative sums, studied earlier by
Cramér (1938), Linnik (1961), Rubin and Sethuraman (1965), and others.

3. The proof of Theorems 1 and 2. For a positive k, we define

(3.1) I(kg) = (2m)4 §7 k(1)1 exp{— $hA-g(n)} dr , n> 1.
Note that by (2.3), (2.5) and (3.1), for'every n > 1, k > 2,
(3-2) 0 < §Ju(kg) < I(k9) < 3J.(k9) -

We consider the following.
LemMA 3.1. Under (2.1), (2.2), (2.3) and (2.7), as n — oo,

3.3) {log I,(k$)}/vi(n) — —1, forevery k =2.
Proor. By virtue of (3.2), it suffices to show that as n — oo

(3.4) {log J,(k¢)}/vi(n) — —1, for every k= 2.
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Since u exp{—4#’} is | in u (= 1), on denoting ¢, by ¢*(t,) = k=*, we obtain that
for all n = ¢,
(3.5) Xz km i g(m + 1) exp{— Jkigi(m + 1)}

< 2020),(kg) < Do, kmip(m) exp{— kg (m)); k= 2.
Let us now define a set of points {n,, s = 0, 1, ...} by ny = n, and
(3.6) n, = [exp{(log n)**+=}] + 1, §=0,1,...,6>0,

where [k] denotes the integral part of k (= 0), and ¢ is arbitrarily small. Then,
the right-hand side of (3.5) is bounded from above by

Lo kg(n,) exp{—k*p¥(n,)} oy m™
(3-7) < [(log n)* — 1] 32, k¢(n,) exp{—k*¢*(n,)} log n,
= (log n)k[exp{—vi(MH[ Lo xa(5)] 5
1n(8) = exp{—3kT[¢*(n,) — ¢*(m)] + log [¢(n,)/$(n)]
(3.8) + log log n, — log log n}
= exp{—[vi(n,) — vi(n)]}, s=20,1,2, -...
We prove the lemma first for k =2 + 9, J > 0. Since v, (n) — vy(n) =
(k*[2 — 2)¢*(n) > 20¢%(n), by (2.6) and the remark made thereafter, for large n
and every s > 1,
(3.9) Vors(n,) — vars(n) > d(log logn, — log log n) = desloglogn .
Hence, for every ¢ > 0, 6 > 0, for large n,
(3-10) Zoxa(s) = Do [(log )] = {1 — (log m)™"}7 < K, ; < oo
Therefore, for k = 2 + 9, 6 > 0, we have by (3.7) and (3.8) that
(3.11)  limsup, {[log J,(k¢)]/v(n)} < —1 + e[lim sup, {(log log n)/v,(n)}]
Now, for k = 2 + 0, v, (n) > vy(n) + 20¢%(n) > 20¢*n) > 0 log log n, so that the
right-hand side of (3.11) is bounded above by —1 + ¢/6. Thus, for every 6 > 0
and 7 > 0, there exists an ¢ > 0, such that ¢/6 < » and
(3.12) lim sup, {[log J,(k¢)]/m(n)} < —1 + 7
‘ for k=2+4+3,0>0.
Similarly, by working with the left hand-side of (3.7), it follows that for every
7 >0,
(3.13) lim inf, {[log J,(k$)]ju(m)} = —1 — 7
for every k=2+0,0>0.
Thus, for every k > 2,
(3.14) lim, ., {[log J,(k¢)]/vi(n)} = —1.
Now to consider the case of k =2, we note that, by definition in (2.3),
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J.(k¢) is | in k, and hence, for every 6 > 0,

(3.15)  [logJ,(29)]/vs(n) Z [vaes(n)/o(m){[108 Ju((2 + 0)$)]/vara(m)} -
Thus, from (2.7), (3.13) and (3.15), it follows that for every 5 >0,
(3.16) lim inf, {[log J,(28)]/vy(n)} = —1 — 7.
Also, by (2.3) and a few simple steps, we obtain on using (2.7) that for every
7 > 0, there exists a 0 > 0, such that as n — oo,
Ju(2¢) = (2m)7} §i, exp{—vy(1)}(log 1)~ d(log 1)

= (2m)7* iz, exp{—vus s (D[vo(1) /ra15(1) 1}(log £) " d(log 1)
(3.17) < (2n)* iz, exp{—vars(d)(1 — 7))(log 1) d(log 1

= (2m)7* §ia exp{—4(1 — 9)(2 + 9)'d*()

+ (I — n) log §(1)}(log )77~ dt

< (2m)"H(log n)7 {7 exp{— (1 — 7)(2 + dYAOHS(O 7 dr .
Therefore, by the same technique as in (3.7) through (3.12), we obtain on
choosing ¢ (> 0) sufficiently small that

(3.18) lim sup, {[log J,(2¢)]/vs(n)} < —1 + 7, 7>0.
By letting » in (3.16) and (3.18) be arbitrarily small, we conclude that
(3.19) lim, ., {{log /,(2¢)]/u(m)} = —1. 0

LemMA 3.2. Under (2.1), (2.2), (2.3) and (2.7) for every x € R?,
(3.20) lim, ., {[log P{m[F,(x) — F(x)] = ¢(m) for some m = n}]|v,q,(n)}
= -1, where k(x) = {2F(x)[1 — F(x)]}* (= 2) .
PRroOF. Since F,(x) involves an average of i.i.d. rv’s which assume only the
values 0 and 1, the existence of the moment generating function is insured, and
mV[F,(x) — F(x)] = F(x)[1 — F(x)] (< §, for all xe R?). Thus, by Theorems
1.4 and 4.9 of Strassen (1967),
(3.21) P{m}[F,(x) — F(x)] = ¢(m) for some m > n} ~ I,(k(X)¢),

as n— oo,

where I,(k¢) is defined by (3.1) and k(x) by (3.20), and ~ indicates that the
ratio of the two sides converges to 1 as n — oo. The rest of the proof follows
from Lemma 3.1 and (3.21). [

Lemma 3.3. Under (2.1), (2.2), (2.3) and (2.7)
(3.22) lim inf, {[log P, (¢)]/vi(n)} = —1 .
Proor. For every n > 1, by definition of D, *,
(3.23) P, *(¢) = supy [P{m}[F,(X) — F(x)] = ¢(m) for some m > n}]
= P{mi[F, (x°) — F(x°)] = ¢(m) for some m = n},
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where x° is a point (in R?) for which F(x’) = . Then, by Lemma 3.2, we obtain
that

lim inf, {[log P, *(¢)]/s(n)} Z lim,_., {[log P{m![F,,(x") — F(x')] = ¢(m)
(3.24) for some m > n]/vy(n)}

=1,

as k(x°) = 2. Similarly, it follows that (3.24) holds for {P,~(¢)}, replacing
{P,*(¢)}, and hence the lemma follows.

For every n > 1, let &, be the o-field generated by the collection of X, - - -,
X, (without any regard to the order of the sequence) and by X,,,, X
&, 1s | in n. Then, we have the following.

n+1> Ppt20 "%

Lemma 3.4. {D,*, € ,;n = 1}and{D,~, € ,; n = 1} are both nonnegative reverse
submartingales for every p > 1.

Proor. For every n > 1, let Z, (a random vector) be a point in R? where
F,(x) — F(x) attains a maximum, i.e.,

(3.25) D,* =sup{F,(x) — F(x): xeR?} = F,(Z,) — F(Z,);
Z, need not be unique. Therefore, using the fact that D+ = sup {F,(x) — F(x):
Xe R} > F,(Z,,,) — F(Z,,,), for every n > 1, we obtain that
ED,* | E ) 2 E(Fu(Zys1) — F(Zy11) | E i)
=n" YL E{[e(Z, — X)) — F(Z,,)]| Z 01}
(326) = E{[e(Zyss — X)) — F(Z,.)]| E i}
= (n+ D)7 2 [e(Z, — X;) — F(Z,,,)]
= Fri(Zyyy) — F(Z,.,)
=D}, (=0), for every n>1.
The case of {D,~} follows similarly, and hence the lemma follows.

LemMMA 3.5. For each p (= 1) and every ¢ > 0, there exists a positive c(p, ¢)
(< o), such that for every k = 0,

(3.27) E[(n*D,*)¥] < ¢(p, €)(2 — &) *"T'(4k + 1), forall F,
and the same result holds for {D,~} and {D,}.

Proor. It follows from Theorem 1 of Kiefer (1961) that for each p (= 1) and
every ¢ > 0, there exists a positive ¢(p, ¢) (< oo), such that for every n > 1,
r>=0and F,

(3.28) P{n*D,* > r} < P{ntD,* = r} < c(p, €) exp{—(2 — ¢)r?} .
Therefore, by routine steps,
(3.29) E[(n*D,*)*] = (¢ x* dP{n'D,* < x} = k {¢ x*'P{n*D,*+ > x}dx
< ke(p, e) {5 x*texp{—(2 — ¢)x%dx
=c(p, )T 3k + 1)(2 — &)~
The other two cases follow similarly. []
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Lemma 3.6. If {c,} be non-decreasing, then for every N>z n>=1,1t> 0,
(3.30) P{max, .y c,D," =t} < t7%c(p, )T'(3k + 1)(2 — &) *7
X An~*e,F + TN, (ef = chy)sTH) .
The proof is a direct consequence of Lemmas 3.4 and 3.5 and of Theorem 1
of Chow (1960) which extends the Hajek-Rényi inequality for sub-martingales.
LEMMA 3.7. Under (2.3) and (2.7), for all non-decreasing {¢ (1)} such that (1) <
ctt, ¢ < oo,
(3.31) lim sup, {[log P, *($)]/wu(m)} < —1 ,
and the same result holds for {P,~(¢)} and {P,,(¢)}.

Proor. We only consider the proof for {P,*(¢)}; the case of {P,~(¢)} follows
on identical lines. Also, noting that P, *(¢) < P,(¢) £ P,*(¢) + P,~(¢), the
case of {P,(¢)} follows trivially. We consider the events

(3.32) A, (i) = {m*D,* = ip(m) for some m = n}, n=>1,2=0,
(3'33) Ano(lgb) = {U:o=0 [m&Dm‘F Z 'lgb(na) for some na é m < na+l]} ’
nx=1,

where n, = n and {n,} is an increasing sequence of positive integers to be chosen
later on. Since ¢(7) is 1 in ¢, we have

(3.34) P(A,(2¢)) = P,* () < P(A,%2¢)) forall 2=0,n>1.
On letting k,, , = 22%(2 — €)¢*(n,), s =0, 1, ..., we obtain by Lemma 3.6 and a
few steps that
(3:35)  P(4,°(4)) = X Plmax, ., . miD,* > ¢(n,))
= op, ) ZZo[4g(m)]»e(2 — e)~*nelT'(3k, , + 1)
X AL+ D7 1 — (1 — j7)#ma]}.
For every s = 0, 1, . .., by Sterling’s approximations, for large n,
log I'(}k,,, + 1)
(3.36) = —41og 27) + $(k,, + 1)10g (3k,..) — 3k, + o(1)
= —4log (27) + [(2 — &)4¢*(n,) + §]log [(2 — &)2¢*(n,)]
— (2 — 9a¥(n,) + o(1).
Also, note that
(3.37) L — (1 — j)tne = 3k, . j7 + O(lk,.[J]) ,
so that for every s < 0,
T [ — (1 — j7)kena]

1 1
k,,,(
' n,—|—1+ +n,+1—1

k,,(logn,,, — logn,) + O(1).

(3.38)

o

) + 0(k.n

IA
=
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Let us nowset 2 = 1 + 4¢, sothat 3k, , = (2 + ¢)¢%(n,) where ¢’ = ¢ — 4e* —
3¢ > Oforevery 0 < e < ¢ (> 4). We consider first the case of ¢(¢) satisfying
(2.1)—(2.3) and (2.7), such that ¢*r) < Clogt, 0 < C < co. We set then
log n, ~ (log n)**=/%, 5 = 0, 1, - .., where ~ indicates that n, is the least positive
integer for which the left-hand side is > the right-hand side. Then, for every
s=0,

(3.40) log n,,, — log n, = (log n,)((log n)** — 1) < (log n)*’(log n,) ,
so that by (3.35) and (3.40), we have for large n,
P(A,(1 + €)¢))

(3.41) = KX 9%(n,) exp{—vy(n,) — €'d(n,) + (¢/3) log log n,}]

= K. §*(n) exp{—vy(n) — &'¢*(m) + (¢/3) log log n} 3172, x.(5)
where K, (< o) depends only on ¢ (> 0), vy(n) is defined by (2.6), and
(3:42)  xa(s) = exp{—[vyn,) — vo(n)] — €[¢*(m) — ¢*(n)]

+ (¢/3)[log log n, — log log n] + 2 log [¢(m)/¢(n)]}, s=0.
By the remark made after (2.6) and (3.40), it follows that for large n,

Xa(8) < exp{—[4ee’sloglog n — (*s/9) log log ],

(3-43) [—(/12)(¢*(n,) — ¢*(n)) — log ($*(n.)/¢*(m))1}
< exp{—(¢’s/18) log log n}
= (log n)=t%n® | for 0 <e<e(<Y),

ase’ = e — $e® — 1e? > 23¢/32 > (§)e for all 0 < ¢ < ¢ ( < $), and for large n,
(¢'/12)[¢*(n,) — ¢*(n)] can be made larger than log [¢*(n,)/¢*(n)]. Therefore, for
n sufficiently large,

(3.44) 1< B 2a(s) = {1 — (log n)=**} — 1 as n— oo.
In a similar way, it follows that for every ¢ > 0, as n — oo,

(3.45) e'P*(n) = (¢'/3) loglogn + 2 log ¢(n), when (2.3) holds.
Therefore from (3.41) through (3.45), it follows that for every ¢ (0 < ¢ < ¢, < 3),
(3.46) lim sup, {[log P(4,((1 + 3)¢)]s(m)} < —1,

and (3.32) follows from (2.7), (3.34) and k3.46) by letting ¢ (> 0) to be arbitra-
rily small.

We next consider the case when ¢(7) is 1 in ¢ such that (log 7)/¢*) — 0 and
t73)*(1) £ ¢ < oo as t — oo. In this case, we letn, = [n(1 + ¢)*], s =0, 1, ---;
¢ > 0, and virtually repeat the steps (3.40)—(3.46), with some further simplifi-
cations; for brevity, the details are omitted.

Returning now to the proofs of the theorems, we note that (2.9) follows di-
rectly from Lemmas 3.3 and 3.7. For (2.10), we define by D,*, D,~ and D, the
Kolmogorov-Smirnov statistics for the univariate observations X, - - -, X,;, so

n
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that, by definition, D,* > D,*, D,~ = D, and D, > D, for all n > 1. Also,
by (1.1), for every 0 < x < cnt, P(niD,* > x} = P(n*D,~ > x} = exp{—2x%} x
{1 + 2x/3n* + O(1/n)}; P{ntD, = x} = 2 exp{—2x*}{1 + O(n~%)}.. Therefore, by

(1.2) and the above, we have -
(3-47)  2exp{=2¢'(m}{l + O(n~¥)} < P{D, = n~¥¢(n)}
= o(p, ¢) exp{—(2 — )¢’(n)},
for all ¢*(n) = O(nt). Further, by (2.8), P,(¢) = P{D, = n¢(n)}for everyn > 1,

and hence, by (3.47), lim inf, {log P,(¢)]/¢*(n)} = —2. On the other hand, by
Lemma 3.7 and the fact that v,(n)/¢*(n) — 2 as n — oo, we have

lim sup, {[log P,(¢$)]/¢*m)} < =2,

which completes the proof for {P,(¢)}; the cases of {P,*(¢)} and {P,~(¢)} follow
similarly.
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